• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一款基于0.13 μm CMOS 工藝,0.1 GHz ~18 GHz 采用雙反饋和噪聲消除技術的低噪聲放大器設計*

    2012-12-22 06:00:10元,張
    電子器件 2012年4期
    關鍵詞:智慧結晶西安電子科技大學禁帶

    梁 元,張 弘

    (西安電子科技大學寬禁帶半導體材料與器件教育部重點實驗室,西安710071)

    Recently wireless system demands RF front-end module coping with increased wideband and flexibility.Due to various tradeoffs involved in RF circuit design the implementation of adaptive analog front-end seems to be more challenging than the adaptive digital backend.The advancement in device manufacturing technology has enabled the designers to integrate many transistors on a single chip for the realization of flexible circuits. In ultra-wideband(UWB)receiver front-end design,the UWB low-noise amplifier(LNA)is a critical block that receives small signals from the whole UWB band(3.1 GHz ~10.6 GHz)and amplifies them with a good signal-to-noise ratio property.In addition,high and flat power gain S21,good input and output impedance matching(i. e.,low S11and S22),and low noise figure(NF)performances across the whole UWB band are required.Besides,it is beneficial to design a LNA to possess greatly broadband functionality,which potentially accommodates large data rate transmission.The principal challenge is how to suppress NF and how to capture I/O matching over the wide band. As a result,in recently published literatures[1-3],high gain wideband low noises amplifiers(LNAs)have been in great interest. Finally,area consumption and power dissipation are other aspects that compromise the design of the LNA.The proposed LNA in this letter concentrates on comprehensive application scenarios.

    This paper is organized as follow:section 1 represents the entire structure of the cascade LNA as well as analysis of each stage. Section 2 provides the performances and some discussions. Final conclusion will be given in section 3 to sum up this dissertation.

    1 Circuit Illustration

    The proposed LNA is schematically presented in Fig.1.The entire structure is composed of two stages.The first stage,which includes M1-M4,source degenerated Lsand low Q inductive loads,employs double-feedback topology to extend the 3-dB bandwidth.For the sake of gain enhancement and noise cancellation,the second stage is adopted.The second stage is characterized by an inverter,followed by source follower.Shunt capacitance Csmakes sure that the active current source M9is short at radio frequency operation range.

    Fig.1 The proposed cascade LNA

    where H1(s)is the transfer function[See Fig.2(b)].

    Fig.2 The simplified circuit of the first stage

    Hypothesize that Coutis compensated by Lload,the input impedance can be modified as

    As a start,assume Ls=0,that is,regardless of the inductive degeneration feedback,the Zin(s)is derived as

    which is the traditional inductorless feedback utilizing active source follower as feedback network.Clearly,sCgswill deteriorate input matching at high frequencies.Following this inspection,alternative loop is established to compensate the degradation.Such a loop is also a feedback network,constructed by M2. Similarly,hypothesize that gM2=0,i. e. cut off the feedback loop established by M2.The input impedance can hence be written as

    which is identical with the classical narrow band resonance topology using inductive degeneration[4].

    Fig.3 shows the input impedance due to each feedback network alone with simultaneously the both ones due to each feedback mechanism alone,respectively,and the both ones.Note also that the forward gain of the first stage can be characterized by the transfer function H1(s).Even though shunt-peaking neutralizes Couteffectively,the frequency-dependent nature of inductive source degeneration in turn impacts on gain enhancement,even worsen at high frequency of operation. However,this gain reduction can be compensated by the second stage,which will be discussed later.The power gain performance of the first stage is shown in Fig.4.

    Fig.3 Simulated input impedance of the first stage(Ω)

    Fig.4 Simulated power gain of the first stage

    Another threshold problem involves with the inductance of LD1. Since the operation frequency is broad,LD1should maintain a small value so that the first stage would not damage the entire power gain or avoid induced oscillation.Large inductance immediately results in larger inductor with many rings,which in turn potentially introduces more substrate noise and parasitic capacitance. In this design,the minimum dimension(width =3 μm,number of ring =1,rad =15 μm)of on-chip inductor is employed.Larger width leads to higher parasitic capacitance,and therefore results in greater swing in inductance.Lsof 150 pH is dictated.Lsis formed by dual paralleled minimum dimension inductors.Clearly,from Fig.4,the power gain sees a peak at around 10 GHz due to the inductive load,but eventually drops due to parasitic capacitance.More importunately,the double feedback induces more noise and provides lower gain,which necessitates cascade topology to release noise.

    2018年11月7日,在金秋收獲的日子里,哈挺在上海舉辦了新品發(fā)布會,哈挺最新的中國制造及全球智慧結晶產(chǎn)品——哈挺JONES?&?SHIPMAN?10精密外圓磨床在上海正式對外發(fā)布。出席本次發(fā)布會的嘉賓有哈挺全球CEO?Chuck?Dougherty先生、哈挺亞洲區(qū)總裁張靜娟女士、哈挺全球及哈挺中國高層代表、合作伙伴及媒體朋友等百余位嘉賓。

    Therefore,the realization of noise cancellation and gain enhancement depend on the second stage.Fig.5 illustrates the simplified schematic for noise cancellation illustration. For simplicity,hypothesize that Rs=50 Ω,i.e.the output impedance of the buffer stage of the first stage,including M5,M6,is well matched.Then we proceed by writing

    where

    Fig.5

    Initially we assume that merely the channel thermal noise of active devices and of passive resistors take responsibility to the noise source.Gate induced noises are not included in calculation for facilitation. The thermal noise current Inflows out of M7,M8through node Y and node X,introducing the identical voltage sign at those two nodes.The voltage gain of the inverter,

    where gM(s)is the equivalent combined trans-conductance of the PMOS and NMOS of the inverter,could be negative.It follows that,this difference in sign in terms of noise and signal makes it possible to cancel the noise of the matching device while simultaneously achieve desired signal summation.

    The noise induced voltage at node X and Y are,respectively.

    The output noise due to the matched device is therefore obtained as follow

    Cancellation occurs when

    Surprisingly,from equation(12),the noise cancellation condition is independent on the device performance or operation conditions,e.g.temperature,supply fluctuation.On the other hand,the overall voltage gain at the output terminal is given by

    Fig.6 can be applied to calculate noise figure[NF=10lgF].Regardless of the noises originated from the current source,the load of the buffer of the second stage,and the isolation transistor M11,respectively.

    Fig.6 The schematic for NF calculation

    The noise figure of the second stage is displayed in Fig.7.From equation(19),numerical result shows NF =10lgF=125 dB if cancellation occurs,which is closed to the simulation one. (It has been assume that γ =2.0,which is an adequately precise approximation for short channel devices[4]).Besides,NF is well closed to NFmin.

    Admittedly,any small signal that can be modeled by a current source between the drain and source of the matching device is cancelled as well(e. g.,1/f noise,thermal noise of the distributed gate resistance,and the bias noise current injected into node Y). However,the noise derived from Rfbis partially cancelled.

    Fig.7 The NF characteristic of the second stage

    It is instructive to investigate the transfer function of the second stage,which is known as the splitting-load peaking inverter.Ref.[1]indicates that Avfis expressed by

    Therefore,the resultant poles from the proposed inductive splitting-load peaking inverter cell is,whose location has been boosted to a higher frequency as a requirement of bandwidth extension.Additional work is to implement a series peaking inductor preceding the buffer of the second stage,which renders the gain from node Y to the output terminal can be expressed as

    where ro=[1+(gM11+gMb11)ro11]ro10.Consequently,the peaking inductor in series with the gate of M12also plays a role of pushing the pole up to a higher frequency.Eventually,the overall gain from node X to the output terminal is acquired

    It follows that Av.Y·Av.fcan be adequately large at high frequencies so that the gain decline due to the first stage could be compensated,or even inversed. Unfortunately however,the equivalent inductance of a physical inductor typically rises up with frequency,and then drops because of self-resonance.In practice,all inductors in this design are chosen with minimum width(3 μm)allowed by process so as to alleviate change and self-resonance characteristic. Such a consideration primary tries to find a broadband solution of stable and quasi-constant inductance,from which the high frequency operation does not necessary demands large inductor but rather small one to provide a peak.Shown in Fig.8,the above inductors create a peak response at high frequencies realm.This characteristic is significant in cascade topology design when the first stage suffers gain decline response. Fig.4 substantiates that this is the case.

    Fig.8 The forward gain of the second stage

    Our investigation also concerns the result of Fig.4,where the gain response is flat even at low frequencies.To corporate such an issue,an inevitable objective is to figure out whether the second stage can also be able to keep constant at the same frequency range.By scrutinizing Equation(19)~Equation(21),we find that gain flatness is done when some hypothesis and approximations are involved.Equation(21)is written as

    Note that Cgs7Lg7is a small coefficient,so is Cgs12Lg12.So their corresponding s2terms can be neglected at low frequencies. Since Lg12is comparatively small,the buffer of the LNA is ideal and free of inductive influence also at low frequencies. Alternatively,we specify gM8Rfb?1 in order that no strong frequency-dependent term exits at the numerator.Thus,the low-frequency response is therefore given as

    Equ.(24)explains why the second stage is able to hold constant over low frequency range. Next,we investigate how the gain reacts to increasingly frequency. At this scenario,s2term becomes dominant as compared to other lower order counterparts.The numerator sees no parameters that are associated with frequency.Thus,the overall gain of the second stage at high frequencies can be expressed as

    Adjusting the dimension of active devices and Lg7,12to ensure Cgs7Lg7≈(Cgs12Lg12)/(gM12ro). According to Ref. [1],Cgs7and Lg7should be adjusted becoming matched to the preceding stage,and Cgs12is directly proportional to the dimension of M12from which output matching is achieved. Thus,the only left parameters available to be set is Lg12.This is why and how Lg12can impact on the gain.As a result,equation(27)is modified as

    This is the case explaining why the peak response occurs.

    If Av(s)=Av.cis satisfied,the overall gain is

    The forward gain of the second stage is shown in Fig.8.As observed,at high frequencies the second stage provides gain enhancement substantially.In addition,flat response at low frequencies is also captured.Noise suppression of the second stage is therefore enhanced because of the overall gain recovery at high frequencies from the second stage.In short,broadband gain flatness can be achieved by cascade configuration in which each stage provides gain contribution at uncorrelated frequency range.

    2 Performancs and Discussions

    Fig. 9 shows the input reflection coefficient as Smith-chart form S11better than -10 dB is attained.Fig.10 displays the gain of the first stage,the second stage and the complete hierarchy,respectively. Gain bandwidth of 22 GHz is observed. Numerical result shows that the forward gain attains its maximum value 15.342 dB at 9.75 GHz meanwhile the minimum one 14.537 dB at 18 GHz. Thus,the maximum swing is merely 0.805 dB.Gain flatness within UWB is achieved gorgeously.Note that 9.75 GHz approximately accords with the poles generated by Cgs7Lg7and Cgs12Lg12.

    Fig.9 The input reflection coefficient

    Fig.10 The forward gain of the complete circuit

    The output reflection coefficient is dominated by the buffer stage since 1/gM12=50 Ω is able to hold over the broadband.Unfortunately,the series peaking inductor Lg12will compensate and even take over the gate-source capacitive superiority of M12and therefore evidently affects the output matching at high frequencies. Inversely,the bandwidth of power gain enlarges with larger Lg12.Fig.11 demonstrates such a tradeoff.

    Fig.11 Trade-off between gain bandwidth and output impedance matching(dB)

    NF characteristic of each stage is displayed in Fig.12. Obviously,the second stage contributes lower noise at high frequencies.Besides,the first stage enjoys lower noise at low frequencies due to high gain. Thus,the cascade structure fulfills low noise figure within the band of operation. Numerical result shows that the NF ranges from 2.2 dB to 3.94 dB.

    Fig.12 Noise figure of the corresponding stage

    Fig.13 illustrates a two-tone test with 100 kHz frequency offset.IIP2=IIP3= -5 dBm and 1 dB desensitization point of -24 dBm at 9 GHz are presented.Distortions are mainly because of the nonlinearity from the common source stage M10~M12as well as incompletely complement inverter.Enlarging the overdrive voltage of M1is likely to release nonlinearity at the expense of more power consumption[7].

    Table 1

    3 Conclusion

    In this study,a LNA using double feedback and noise cancellation technology is presented.Input impedance matching is captured by considering the doublefeedback topology as the first stage.The inverter as the second stage concurrently achieves noise cancellation and gain enhancement. The cascade configuration ensures broadband gain flatness. The performances of the proposed LNA presented in this dissertation as well as some recently published counterparts have been tabulated.Admittedly,some features of this proposed LNA perform availability for the state-of-the-art recommendations.

    [1] Shih-Fong Chao,Jhe-Jia Kuo,Chong Liang Lin,et al.A 0.1 -11.5 GHz Low-Power[J]. Wideband Amplifier Using Splitting-Load Inductive Peaking Technique,2008:1531-1309.

    [2] Wei-Hung Chen,Gang Liu,Boos Zdravko,et al. A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation[J].IEEE Journal of Solid-State Circuits,2008,43(5).

    [3] Behzad Razavi.RF Microelectronics[M].Prentice Hall PTR,Upper Saddle River,NJ 07458,ISBN 0-13-887571-5.

    [4] Thomas H Lee. The Design of CMOS Radio-Frequency Integrated Circuits[M].Cambridge Uuiversity Press,2001.

    [5] Shaeffer D K,Lee T H.A 1.2V 1.5GHz CMOS low noise amplifier[J].IEEE J.Solid-State Circuit,1997,32(5):745-759.

    [6] Omid E Najari,Torkel Arnborg,Atila Alvandpour.Wideband Inductorless LNA Employing Simultaneous 2nd and 3rd Order Distortion Cancellation[J].978-1-4244-8973-2/10/2010 IEE.

    [7] Li,Yuan J S. Linearity Analysis and Design Optimization 0.18pm CMOS RF Mixer for 0.18pm CMOS RF Mixer[J].IEE Proceedings Online no.20020355 DOE 10.1049/ip-cds:20020355.

    [8] Omid E Najari,Torkel Arnborg,Atila Alvandpour.Wideband Inductorless LNA Employing Simultaneous 2nd and 3rd Order Distortion Cancellation[J].978-1-4244-8973-2/10/2010 IEEE.

    [9] Li,Yuan J S. Linearity Analysis and Design Optimization 0.18μm CMOS RF Mixer[J]. IEE Proceedings Online no.20020355,DOE 10.1049/ip-cds:2002035.

    [10] Chao S F,Kuo J J,Lin C L,et al. A DC -11.5 GHz Low-Power,Wideband Amplifier Using Splitting-Load Inductive Peaking Technique[J].IEEE Microw.Wireless Compon.Lett.,2008,18(7):482-484.

    [11] Liao C F,Liu S I.A Broadband Noise-Canceling CMOS LNA for 3.1-10.6-GHz UWB Receivers[J].IEEE Journal of Solid-State Circuits,2007,42(2):329-330.

    猜你喜歡
    智慧結晶西安電子科技大學禁帶
    壓電周期板中耦合禁帶影響規(guī)律分析
    淺論活字印刷術
    科技資訊(2019年20期)2019-11-04 00:17:13
    一道中考題的三種解法
    寬絕對禁帶的一維磁性光子晶體結構?
    物理學報(2017年1期)2017-07-31 01:36:58
    文化是古鎮(zhèn)之魂
    藝海(2017年1期)2017-03-02 17:55:44
    Redefinition of Tragedy in Modern Age: The Case of Death of a Salesman
    基于介質圓柱結構的復式二維光子晶體禁帶研究
    OnRadicalFeminism
    EmploymentAgeDiscriminationonWomen
    ItIsBetterToGiveThanItIsToReceive
    国产亚洲精品av在线| 精品国内亚洲2022精品成人| 国产日本99.免费观看| 亚洲欧美日韩卡通动漫| 亚洲高清免费不卡视频| 好男人视频免费观看在线| 99久久精品国产国产毛片| 最后的刺客免费高清国语| 国产淫片久久久久久久久| 干丝袜人妻中文字幕| 欧美成人免费av一区二区三区| 中文字幕制服av| 精品人妻一区二区三区麻豆| 午夜久久久久精精品| 亚洲第一电影网av| 精品久久久噜噜| 免费看光身美女| 亚洲成人久久性| 亚洲精品成人久久久久久| 男女边吃奶边做爰视频| 欧美xxxx黑人xx丫x性爽| 一级毛片我不卡| 能在线免费看毛片的网站| 国产视频内射| 丝袜喷水一区| 日韩国内少妇激情av| 亚洲电影在线观看av| 午夜福利在线在线| 久久99蜜桃精品久久| 久久久午夜欧美精品| 看非洲黑人一级黄片| 亚州av有码| 国产黄a三级三级三级人| 国产极品精品免费视频能看的| 国产精品国产高清国产av| 欧美最新免费一区二区三区| 亚洲一区二区三区色噜噜| 国产三级中文精品| 亚洲精品日韩在线中文字幕 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 可以在线观看毛片的网站| 联通29元200g的流量卡| 国产在线精品亚洲第一网站| 免费观看精品视频网站| 久久久欧美国产精品| 欧美+日韩+精品| 亚洲精华国产精华液的使用体验 | 亚洲国产欧美人成| 真实男女啪啪啪动态图| 亚洲美女搞黄在线观看| 中文字幕人妻熟人妻熟丝袜美| 免费人成在线观看视频色| 插逼视频在线观看| 国产精品av视频在线免费观看| 亚洲七黄色美女视频| 韩国av在线不卡| 亚洲第一电影网av| 精品久久久噜噜| 大又大粗又爽又黄少妇毛片口| 免费人成在线观看视频色| 小蜜桃在线观看免费完整版高清| 免费人成在线观看视频色| 欧美人与善性xxx| 亚洲人成网站在线播放欧美日韩| 日韩欧美 国产精品| 97人妻精品一区二区三区麻豆| 久久亚洲精品不卡| 五月玫瑰六月丁香| 99九九线精品视频在线观看视频| 最后的刺客免费高清国语| 久久精品夜色国产| 国产中年淑女户外野战色| 三级毛片av免费| 欧美3d第一页| 免费看av在线观看网站| 免费看av在线观看网站| 久久久久久久亚洲中文字幕| 久久久久免费精品人妻一区二区| 国产伦一二天堂av在线观看| 97超碰精品成人国产| 欧美不卡视频在线免费观看| 日本黄大片高清| 亚洲精品成人久久久久久| 免费电影在线观看免费观看| 日韩三级伦理在线观看| 成人漫画全彩无遮挡| 美女内射精品一级片tv| 久久久久网色| 国产真实乱freesex| 美女高潮的动态| 日韩 亚洲 欧美在线| 男人狂女人下面高潮的视频| 99久久人妻综合| 成人一区二区视频在线观看| 日韩成人伦理影院| 精品一区二区三区人妻视频| 人人妻人人澡欧美一区二区| 国产不卡一卡二| av在线播放精品| 日本三级黄在线观看| 精品不卡国产一区二区三区| 有码 亚洲区| 久99久视频精品免费| 18+在线观看网站| 2021天堂中文幕一二区在线观| 欧美一区二区亚洲| 亚洲久久久久久中文字幕| av福利片在线观看| 国产精品三级大全| 欧美成人免费av一区二区三区| 三级经典国产精品| 在线免费观看的www视频| 亚洲欧美日韩高清专用| 欧美+日韩+精品| 日韩精品有码人妻一区| 久久久色成人| 国产成人午夜福利电影在线观看| 欧美日韩在线观看h| 亚洲av熟女| 极品教师在线视频| 一级黄色大片毛片| 亚洲欧洲日产国产| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 麻豆国产97在线/欧美| 日韩一区二区三区影片| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 国产午夜精品论理片| 久久精品国产自在天天线| 插阴视频在线观看视频| 看黄色毛片网站| 91午夜精品亚洲一区二区三区| 免费观看人在逋| 亚洲久久久久久中文字幕| 高清午夜精品一区二区三区 | 国产精品野战在线观看| 欧美日韩在线观看h| 一个人观看的视频www高清免费观看| 中文在线观看免费www的网站| 成年女人看的毛片在线观看| 成人特级av手机在线观看| 国产单亲对白刺激| 精品一区二区三区人妻视频| 两个人视频免费观看高清| 一级黄色大片毛片| 乱人视频在线观看| 99久久成人亚洲精品观看| 寂寞人妻少妇视频99o| 久久精品综合一区二区三区| 欧美极品一区二区三区四区| 免费观看在线日韩| 一个人免费在线观看电影| 99久久人妻综合| 99久久久亚洲精品蜜臀av| 激情 狠狠 欧美| 国产精品蜜桃在线观看 | 我要搜黄色片| 久久久a久久爽久久v久久| 日韩av不卡免费在线播放| 综合色丁香网| 又黄又爽又刺激的免费视频.| 一区二区三区高清视频在线| 亚洲七黄色美女视频| 真实男女啪啪啪动态图| 深夜a级毛片| 国产成人a∨麻豆精品| 亚洲在线自拍视频| 黄片wwwwww| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 亚洲综合色惰| 国产成人aa在线观看| 看免费成人av毛片| 变态另类丝袜制服| 亚洲av不卡在线观看| 在线观看免费视频日本深夜| 欧美性感艳星| 久久久精品大字幕| 看非洲黑人一级黄片| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 久久婷婷人人爽人人干人人爱| av女优亚洲男人天堂| 亚洲无线观看免费| 一边亲一边摸免费视频| 中文字幕制服av| 1000部很黄的大片| 卡戴珊不雅视频在线播放| 亚洲欧美日韩高清在线视频| 午夜a级毛片| 久久久色成人| 人人妻人人澡人人爽人人夜夜 | 国产爱豆传媒在线观看| 18禁在线无遮挡免费观看视频| 联通29元200g的流量卡| 色综合亚洲欧美另类图片| 国产精品嫩草影院av在线观看| 中文字幕久久专区| 一个人看的www免费观看视频| 久久99蜜桃精品久久| 国产精品国产三级国产av玫瑰| 69av精品久久久久久| 精品人妻熟女av久视频| 免费看av在线观看网站| 日日摸夜夜添夜夜添av毛片| 你懂的网址亚洲精品在线观看 | 九九久久精品国产亚洲av麻豆| 青青草视频在线视频观看| 乱系列少妇在线播放| 免费观看精品视频网站| 国产女主播在线喷水免费视频网站 | 亚洲熟妇中文字幕五十中出| 性插视频无遮挡在线免费观看| 看免费成人av毛片| 美女大奶头视频| 亚洲欧洲日产国产| 久久99热6这里只有精品| av在线亚洲专区| 久久久午夜欧美精品| 听说在线观看完整版免费高清| 久久久久网色| kizo精华| 少妇被粗大猛烈的视频| 久久国内精品自在自线图片| 免费一级毛片在线播放高清视频| 又粗又爽又猛毛片免费看| 国产精品女同一区二区软件| 一级av片app| 女同久久另类99精品国产91| 有码 亚洲区| 久久精品久久久久久久性| 国产成人freesex在线| 午夜福利在线在线| 狂野欧美激情性xxxx在线观看| 日本黄色片子视频| 色综合色国产| 免费看a级黄色片| or卡值多少钱| 最近的中文字幕免费完整| 亚洲国产精品国产精品| 欧美日本视频| 久久人人精品亚洲av| 嫩草影院精品99| 美女 人体艺术 gogo| 美女被艹到高潮喷水动态| 成人毛片60女人毛片免费| 日韩三级伦理在线观看| 在线观看午夜福利视频| av黄色大香蕉| 伦精品一区二区三区| av天堂在线播放| 免费观看人在逋| 国产麻豆成人av免费视频| 麻豆一二三区av精品| 久久久久久伊人网av| 久久精品国产99精品国产亚洲性色| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 美女xxoo啪啪120秒动态图| 日本一本二区三区精品| 久久久久久伊人网av| 免费看日本二区| 天天躁夜夜躁狠狠久久av| 精品久久久久久久末码| 亚洲性久久影院| 99在线人妻在线中文字幕| 蜜桃久久精品国产亚洲av| av在线观看视频网站免费| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 国产一区二区激情短视频| 国产大屁股一区二区在线视频| 亚洲成人精品中文字幕电影| 51国产日韩欧美| 成年女人看的毛片在线观看| 高清毛片免费观看视频网站| 日本成人三级电影网站| 免费搜索国产男女视频| 日韩,欧美,国产一区二区三区 | 淫秽高清视频在线观看| 成人午夜精彩视频在线观看| 国产成人精品婷婷| 欧美成人免费av一区二区三区| 男的添女的下面高潮视频| 一个人观看的视频www高清免费观看| 久久久久久久久中文| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 欧美日本亚洲视频在线播放| 热99re8久久精品国产| 永久网站在线| 给我免费播放毛片高清在线观看| 色综合色国产| 欧美激情在线99| 国产精品人妻久久久久久| 美女黄网站色视频| 乱码一卡2卡4卡精品| 久久99精品国语久久久| 国产日本99.免费观看| 天堂中文最新版在线下载 | 亚洲性久久影院| 久久精品综合一区二区三区| 看片在线看免费视频| 日韩制服骚丝袜av| 蜜桃久久精品国产亚洲av| 久久99蜜桃精品久久| 国产真实乱freesex| 精品不卡国产一区二区三区| 国产精品久久久久久av不卡| 国产成人freesex在线| 久久久精品欧美日韩精品| 国产av麻豆久久久久久久| 我的女老师完整版在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲自拍偷在线| 国产美女午夜福利| 国产乱人视频| 99热6这里只有精品| 国产免费一级a男人的天堂| 一个人观看的视频www高清免费观看| 不卡视频在线观看欧美| 免费看美女性在线毛片视频| av在线亚洲专区| 日韩强制内射视频| 久久久久久久久中文| 国产精品三级大全| 赤兔流量卡办理| 哪里可以看免费的av片| 国产日韩欧美在线精品| 亚州av有码| 亚洲天堂国产精品一区在线| 99热网站在线观看| 国产亚洲av片在线观看秒播厂 | 小说图片视频综合网站| 国产成人影院久久av| 亚洲av二区三区四区| 91在线精品国自产拍蜜月| 欧美日韩国产亚洲二区| 午夜亚洲福利在线播放| 久久久久国产网址| 少妇猛男粗大的猛烈进出视频 | 99在线视频只有这里精品首页| 国产熟女欧美一区二区| 春色校园在线视频观看| 成人特级黄色片久久久久久久| 欧美xxxx黑人xx丫x性爽| 一个人看的www免费观看视频| 日韩av在线大香蕉| 三级经典国产精品| 一区二区三区免费毛片| 在线观看免费视频日本深夜| 毛片女人毛片| 国内精品美女久久久久久| 禁无遮挡网站| 成年女人看的毛片在线观看| 国产淫片久久久久久久久| av在线蜜桃| 亚洲av免费高清在线观看| 国产午夜福利久久久久久| 高清毛片免费观看视频网站| 日本黄大片高清| 在现免费观看毛片| 午夜福利高清视频| 精品人妻熟女av久视频| 国产极品天堂在线| 麻豆av噜噜一区二区三区| 久久99蜜桃精品久久| 亚洲一区高清亚洲精品| 免费观看a级毛片全部| 极品教师在线视频| 国产伦精品一区二区三区视频9| 亚洲精品乱码久久久v下载方式| 一区福利在线观看| 简卡轻食公司| 欧美又色又爽又黄视频| 国产亚洲欧美98| 亚洲乱码一区二区免费版| a级毛色黄片| 国产三级在线视频| 国产精品伦人一区二区| 久久亚洲精品不卡| 国产 一区 欧美 日韩| 美女国产视频在线观看| 亚洲在线观看片| 国产av不卡久久| 欧美潮喷喷水| 我要看日韩黄色一级片| 成人高潮视频无遮挡免费网站| 狂野欧美激情性xxxx在线观看| 97超碰精品成人国产| 偷拍熟女少妇极品色| 内射极品少妇av片p| 天美传媒精品一区二区| 免费无遮挡裸体视频| 精品久久久久久久末码| 国产成人精品久久久久久| 亚洲av免费高清在线观看| 边亲边吃奶的免费视频| 中文字幕精品亚洲无线码一区| 亚洲精品亚洲一区二区| 一级av片app| 色噜噜av男人的天堂激情| 亚洲图色成人| 五月玫瑰六月丁香| 中文字幕av在线有码专区| 九九热线精品视视频播放| 91精品一卡2卡3卡4卡| 免费大片18禁| 成年版毛片免费区| 亚洲va在线va天堂va国产| av.在线天堂| 在现免费观看毛片| 久久欧美精品欧美久久欧美| 又爽又黄无遮挡网站| 少妇丰满av| 级片在线观看| 麻豆国产97在线/欧美| 日韩欧美在线乱码| 亚洲欧美日韩卡通动漫| 熟妇人妻久久中文字幕3abv| 69av精品久久久久久| 女同久久另类99精品国产91| 国产老妇伦熟女老妇高清| 91久久精品电影网| 亚洲一区高清亚洲精品| 亚洲欧洲国产日韩| 久久久精品大字幕| 乱人视频在线观看| 婷婷亚洲欧美| 久久国内精品自在自线图片| 久久精品人妻少妇| 中出人妻视频一区二区| 国产高清激情床上av| 国产色爽女视频免费观看| 天堂√8在线中文| 中文字幕av在线有码专区| 少妇裸体淫交视频免费看高清| www.av在线官网国产| 性色avwww在线观看| av在线蜜桃| 久久人人爽人人片av| 97人妻精品一区二区三区麻豆| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 一级毛片aaaaaa免费看小| 噜噜噜噜噜久久久久久91| 少妇熟女aⅴ在线视频| 亚洲精品久久国产高清桃花| 国内少妇人妻偷人精品xxx网站| 国产成人aa在线观看| 国产精品无大码| 亚洲精品乱码久久久v下载方式| 97超视频在线观看视频| 国产成人午夜福利电影在线观看| 欧美zozozo另类| 精品不卡国产一区二区三区| 熟女人妻精品中文字幕| 精华霜和精华液先用哪个| 乱码一卡2卡4卡精品| 亚洲av.av天堂| 99久久人妻综合| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 午夜免费激情av| 国内精品久久久久精免费| 国产成人福利小说| 国产成人影院久久av| 婷婷精品国产亚洲av| 日日摸夜夜添夜夜爱| 国产伦一二天堂av在线观看| 听说在线观看完整版免费高清| 99久久精品一区二区三区| 国产精品人妻久久久影院| 国产又黄又爽又无遮挡在线| 美女国产视频在线观看| 高清在线视频一区二区三区 | 欧美不卡视频在线免费观看| 高清毛片免费观看视频网站| 2022亚洲国产成人精品| 日本三级黄在线观看| 天堂√8在线中文| 国产成人一区二区在线| 性色avwww在线观看| 日韩一本色道免费dvd| 国产精品蜜桃在线观看 | 亚洲国产精品久久男人天堂| 哪里可以看免费的av片| 亚洲欧美日韩东京热| 国模一区二区三区四区视频| 日韩av不卡免费在线播放| 精品日产1卡2卡| 黑人高潮一二区| 中国美白少妇内射xxxbb| 国产精品久久视频播放| 亚洲激情五月婷婷啪啪| 亚洲久久久久久中文字幕| 又粗又硬又长又爽又黄的视频 | 成人特级av手机在线观看| 大香蕉久久网| 国产精品一区www在线观看| 国产真实伦视频高清在线观看| 亚洲图色成人| 九九热线精品视视频播放| 国产白丝娇喘喷水9色精品| 在现免费观看毛片| 91av网一区二区| 亚洲人成网站高清观看| 18禁在线播放成人免费| 在线天堂最新版资源| 国产日本99.免费观看| 色综合亚洲欧美另类图片| 少妇的逼水好多| 成人午夜高清在线视频| 91久久精品电影网| 精品久久久久久成人av| 国国产精品蜜臀av免费| 国产精品1区2区在线观看.| 国产黄色视频一区二区在线观看 | 国模一区二区三区四区视频| 2022亚洲国产成人精品| 又爽又黄a免费视频| or卡值多少钱| 99视频精品全部免费 在线| 一进一出抽搐动态| 99久久精品热视频| 久久久欧美国产精品| 国产精品久久视频播放| 蜜臀久久99精品久久宅男| 级片在线观看| 深爱激情五月婷婷| 全区人妻精品视频| 99在线视频只有这里精品首页| 在线观看av片永久免费下载| 91精品国产九色| 国产成人精品婷婷| www.av在线官网国产| 久久九九热精品免费| 2021天堂中文幕一二区在线观| 亚洲国产精品国产精品| 亚洲精品色激情综合| 亚洲三级黄色毛片| 欧美日韩乱码在线| 麻豆久久精品国产亚洲av| 久久久久性生活片| 五月伊人婷婷丁香| 高清在线视频一区二区三区 | 亚洲婷婷狠狠爱综合网| 午夜福利在线在线| 国产又黄又爽又无遮挡在线| 午夜亚洲福利在线播放| 国产女主播在线喷水免费视频网站 | 国产一区二区亚洲精品在线观看| 国产精品.久久久| 人妻少妇偷人精品九色| 久久婷婷人人爽人人干人人爱| 日韩欧美在线乱码| 男插女下体视频免费在线播放| 国产精品无大码| 成人综合一区亚洲| 一区二区三区四区激情视频 | 亚洲av不卡在线观看| 色哟哟·www| 欧美最新免费一区二区三区| 青春草国产在线视频 | 九九爱精品视频在线观看| 久久久久久大精品| 人体艺术视频欧美日本| 干丝袜人妻中文字幕| 久久精品影院6| 成年版毛片免费区| 麻豆乱淫一区二区| 国产精品久久久久久精品电影| 国产伦理片在线播放av一区 | 三级男女做爰猛烈吃奶摸视频| 非洲黑人性xxxx精品又粗又长| 免费电影在线观看免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩亚洲欧美综合| 亚洲精品日韩av片在线观看| 免费人成在线观看视频色| 亚洲精品影视一区二区三区av| 国产极品天堂在线| 亚洲在线自拍视频| 亚洲国产精品成人综合色| 日韩一本色道免费dvd| 国产综合懂色| 一个人免费在线观看电影| 欧美一区二区精品小视频在线| 婷婷色av中文字幕| 国产成人91sexporn| 国产欧美日韩精品一区二区| 亚洲综合色惰| 美女xxoo啪啪120秒动态图| 搞女人的毛片| а√天堂www在线а√下载| 免费无遮挡裸体视频| 免费观看的影片在线观看| 国产伦精品一区二区三区视频9| 久久精品影院6| 亚洲性久久影院| 欧美+亚洲+日韩+国产| 日本黄色片子视频| 日韩制服骚丝袜av| 99热精品在线国产| 日日干狠狠操夜夜爽| 亚洲电影在线观看av| 久久久久性生活片| 国产不卡一卡二| 国产成人精品一,二区 | 精品久久久久久成人av| av又黄又爽大尺度在线免费看 | 高清毛片免费看|