• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Steady Interaction Numerical Simulation of Cavitating Turbulent Flow between Ship Hull and Propeller

    2012-12-13 02:56:36JULeiSUYuminZHAOJinxinLIUYebaoCUITong
    船舶力學(xué) 2012年6期

    JU Lei,SU Yu-min,ZHAO Jin-xin,LIU Ye-bao,CUI Tong

    (1 State Key Laboratory of Autonomous Underwater Vehicle,Harbin Engineering University,Harbin 150001,China;2 Shanghai Zhenhua Heavy Industry Co.,Ltd.,Shanghai 200125,China)

    1 Introduction

    Scholars at home and abroad have carried out a lot of research on cavitation performance of propeller,which have predicted and improved the cavitation performance of propeller.A test program was conducted to measure the alternating blade forces in inclined flow in a water tunnel where effects of cavitation could be assessed by Stuart Jessup et al[1].Shosaburo Yamasaki et al[2]discussed the effectiveness of cavitation control by tip load distribution as a propeller design parameter and presented the results of systematic experiments and numerical computations to develop practical design tools for high-performance marine propeller.A partial sheet cavitation model has been developed and implemented within a 3D BEM code to estimate the hydrodynamics forces and performance of a propeller working in an unsteady flow environment by Surasak Phoemsapthawee et al[3].Takashi Kanemaru et al[4-5]developed a calculation method for the steady and unsteady cavitating propeller problem based on a simple surface panel method‘SQCM’which satisfies the Kutta condition easily.Meanwhile,a calculation method for the pressure fluctuation on the hull surface induced by cavitating pro-peller has been proposed.Francesco Salvatore et al[6]summarized results from the Rome 2008 Workshop on cavitating propeller modelling and seven computational models by RANS,LES and BEM have been benchmarked against a common test case addressing the INSEAN E779A propeller in uniform flow and in a wakefield.

    The cavitating flows around conventional and highly-skewed propellers in the behind-hull condition are simulated by an in-house RANS solver by Keun Woo Shin et al[7].The computed unsteady cavitation patterns in behind-hull condition and with respect to the blade angle have qualitatively acceptable accuracy,but with respect to the cavity extent,there are quantitative discrepancies.Experimental characterization of two CP propellers at different pitch settings,considering cavitating behaviour and related noise phenomena was conducted by Daniele Bertetta et al[8].FlorianVesting et al[9]presented an optimisation of a propeller blade with the propeller operating in behind conditions and considering sheet cavitation.Bart Schuiling et al[10]presented that the scale effect on the wake field of ship models was an important cause of prediction inaccuracies of hull pressure amplitudes at the first blade rate frequency,as induced by the cavitating propeller in model experiments.

    Generally,when predicting cavitation performance of propeller,single propeller was considered and the interaction between the ship and the propeller was ignored.While in the prediction of wake field of ship without propeller,interference from propeller on the wake field was ignored.Based on these questions,calculation of ship and propeller as a whole has the certain superiority to improve the calculation precision of flow field.Interaction between the ship and the propeller was the key research topic in 20th International Towing Tank Conference.Wake field of ship is greatly affected by design of hull line and complexity of the disturbed wake field which has great influence on hydrodynamic performance of propeller.Abdel-Maksoud et al[11]adopted CFX-TASC flow to consider ship and propeller as a whole.Calculating program combining the flow field of ship and hydrodynamic performance of propeller has been applied to predict the disturbed flow field by Stern et al[12].Based on Computational Fluid Dynamics techniques and hybrid grid model,interaction between the ship and the propeller has been conducted by Zhang et al[13].Unsteady interaction hydrodynamic performance between the ship and the propeller has been predicted by Shen et al[14].The results demonstrated that propeller affected by wake field was mainly because the non uniformity of wake field changed the inlet velocity before propeller and the pressure distribution of blades.While propeller was a great influence on ship because the surface pressure distribution of ship was changed by the rotation and suction of propeller which gave rise to ship resistance.

    2 Governing equation and cavitation model

    The continuity and the momentum equations are as follows:

    where uiand Fiare the velocity and body force in the i direction respectively,and P is the mixture pressure,and μ and μtare laminar viscosity and turbulent viscocity.

    Conversion between water and vapor is described by cavitation model.A.K.Singhal Full Cavitation Model is applied in the paper.The working fluid is assumed to be a mixture of liquid,vapor and noncondensable gases.Standard governing equations in the mixture model and the mixture turbulence model describe the flow and account for the effects of turbulence.The cavitation model is as follows:

    where f is vapor mass fraction,ρ is the mixture density,is the velocity vector of the vapor phase,γ is the effective exchange coefficient,and Reand Rcare the vapor generation and condensationrate terms.

    where Vchis a characteristic velocity,σ is the surface tension coefficient,and Pvis the saturation vapor pressure at 300K.Where Cεand Ccare empirical constants,0.02 and 0.01 respectively.

    3 Geometry,meshing technique,and boundary conditions

    A NACA66(MOD)airfoil section with camber ratio of 0.02,mean line of 0.8 and thickness ratio of 0.09 and DTRC4381 propeller were used to simulate steady cavitation flow.Computational domain and grid,and grid distribution are shown in Fig.1 and Fig.2.

    Fig.1 Grid dividion of hydrofoil domain of NACA66

    Fig.2 Mesh distribution of DTRC 4381 propeller

    The mesh around the blades has been refined carefully to calculate the cavity evolution,especially the tip vortex cavitation.The boundary layer mesh was applied to ensure the nondimensional normal distance from the blade surface,and the first thickness and the number of the boundary layer are 0.000 1D and 7 with the ratio 1.1,respectively.Grid dividion of calculated domain of DTRC 4381 is shown in Fig.3.

    Korea Research Institute of Ships and Ocean Engineering(KRISO)Container Ship(KCS)was selected as the object ship.Based on the information on geometrical shape and the experimental conditions of the KCS provided by KRISO,the ship model,named SRI M.S.No.631 was manufactured at the Ship Research Institute(SRI).The propeller model,named KP505,offered by KRISO,was selected as the object propeller.The principal particulars are given in Tab.1.The computational model of the interaction between the ship hull and the propeller are shown in Fig.4.

    Fig.3 Grid dividion of calculated domain of DTRC 4381

    Tab.1 Main parameters of KCS ship and KP505 propeller

    Fig.4 Computational model of the interaction between the ship hull and the propeller

    Prediction accuracy of the ship wake field determines validity of the interaction between the ship hull and the propeller.The quality and quantity of the grid affect the result of flow filed computation greatly.In the mesh distribution,there are with emphasis a few points:

    (1)The size near the propeller disk and the bow is 0.003L,which has a gradual change to small-twisted part to control the mesh quantity,as shown in Fig.5.

    (2)Six prism layers have been applied on the hull and propeller surface,and the first thickness is 0.003L with the ratio 1.1,as shown in Fig.6.

    (3)Some important regions should be refined,that is,local refined region centers on the propeller disk and extends 4D to the bow,1D to the aft and 1.5D to the radial direction,respectively,as shown in Fig.7.

    Fig.5 The mesh of ship surface

    Fig.6 The prism layers of the ship and propeller

    Fig.7 The local refined mesh near the propeller plane

    The boundary conditions for the steady cavitation flow simulation are as follows:The undisturbed uniform velocity is given at the domain inlet,and the averaged static pressure is set at the domain outlet.The outer wall of the domain is regarded as the free slip wall while the solid surface of the propeller is set as the nonslip wall.SST k-ε turbulence model was selected.The governing equations were discretized using implicit method.The second order scheme was selected for the pressure,while the bounded central differencing scheme was selected for the momentum.For the velocity and pressure coupling,the SIMPLEC algorithm was used.

    In all the simulations presented below,the working fluid is water at 300K,with liquid and vapor densities of 1 000 and 0.025 58 kg/m3,saturation pressure of 3 540 Pa and surface tension σ=0.071 7 N/m.

    4 Numerical results

    4.1 Steady cavitating flow over a hydrofoil

    To study the effect of different cavitation number on hydrofoil,the cavitation numbers of 0.84,0.91 and 1.0 with the chord length of 0.1 m and the attack angle of 4°were chosen to get the pressure variation[15]and the total volume fraction distributions on the suction side of the hydrofoil,shown in Fig.8.From comparison with the experimental data,pressure distribution on the suction side of the hydrofoil was predicted satisfactorily in a wide range of cavitation number by using the present method.

    It can be seen from Fig.8 that the pressure coefficients of suction side with three different cavitation numbers were predicted satisfactorily compared with the experimental data.The coverage area of cavitation is related to cavitation number.When V∞was kept constant,cavi-tation number was varied by changing P∞,and the larger the cavitation number,the smaller the coverage area of cavitation.

    Fig.8 The pressure coefficient of suction side and volume fraction distribution with different cavitation number

    Fig.9 Calculational and experimental results of steady cavitation of DTRC 4381

    4.2 Cavitation performance of propeller

    The cavitation number of 3.5 and the advance ratio of 0.7 were chosen in this part.The calculational and experimental data[16]are shown in Fig.9.

    4.3 Prediction of wake field

    Tab.2 represents the computational and experimental results of resistance coefficient of the ship.From the table,it can be seen that the error reaches-2.1%.

    Tab.2 Resistance coefficient of KCS ship without propeller

    The computational and experimental results obtained by Fujisawa et al[17]of the ship pressure coefficient without propeller are shown in Fig.10.However,there is some distortion near the waterline.The reason is because the wave of free surface was not concerned.

    Fig.10 Calculation and experimental results of surface pressure distribution on ship hull without propeller

    The computational and experimental results[18]of the wake field are shown in Fig.11.Comparison with the experimental data,the axial,tangential and radial components are basically accurate.

    Fig.11 Calculation and experimental results of local velocity field at 0.25D behind the propeller plane of ship without propeller

    4.4 Steady cavitation interaction between the ship and the propeller

    The undisturbed uniform velocity,i.e.,V=2.196 m/s,is given at the domain inlet,and the averaged static pressure is set at the domain outlet.Multiple Reference Frame model is selected for propeller rotation.The wall Y plus of KP505 propeller and KCS ship is shown in Fig.12.

    Cavitation number is one of the most important parameters in the simulation of cavitating turbulent flow.Surface pressure distribution on propeller changes versus cavitation number.To study the effect of different cavitation number on propeller,the cavitation numbers of 3.0,3.5 and 3.75 were chosen to get the pressure variation and the gas volume fraction distribution on the propeller,shown in Fig.13.It is also clarified that the smaller the cavitation number,the larger the coverage area.

    Fig.12 Wall Y plus of KP505 propeller and KCS ship

    Fig.13 Contours of static pressure and vapor fraction with different cavitation number

    5 Conclusions

    Based on the present study,the following conclusions can be drawn:

    (1)The numerical method to predict cavitation performance of propeller is usable to simulate the interaction between the ship and the propeller.

    (2)The results obtained from the steady cavitation simulation of airfoil and propeller show that the pressure coefficient and vapor coverage areas are predicted satisfactorily compared with experimental measurement.

    (3)It is clarified that ship and propeller could be considered as a whole when computing steady cavitation interaction between the ship and the propeller.For cavitation performance optimization of existing ship now,adding appendages before propeller has some feasibility in practice to improve the flow field before propeller.

    [1]Stuart Jessup,Martin Donnelly,Ian McClintock,Scott Carpenter.Measurements of controllable pitch propeller blade loads under cavitating conditions[C]//First International Symposium on Marine Propulsors.Trondheim,Norway,2009.

    [2]Shosaburo Yamasaki,Akinori Okazaki,Nobuhiro Hasuike,Yasutaka Kawanami,Yoshitaka Ukon.Numerical and experimental investigation into cavitation of propellers having blades designed by various load distributions near the blade tips[C]//First International Symposium on Marine Propulsors.Trondheim,Norway,2009.

    [3]Surasak Phoemsapthawee,Jean-Baptiste Leroux,Jean-Marc Laurens,Fran?ois Deniset.A versatile partial sheet cavitation model[C]//First International Symposium on Marine Propulsors.Trondheim,Norway,2009.

    [4]Takashi Kanemaru,Jun Ando.Numerical analysis of steady and unsteady sheet cavitation on a marine propeller using a simple surface panel method“SQCM”[C]//First International Symposium on Marine Propulsors.Trondheim,Norway,2009.

    [5]Takashi Kanemaru,Jun Ando.Numerical analysis of pressure fluctuation on ship stern induced by cavitating propeller using a simple surface panel method“SQCM”[C]//Second International Symposium on Marine Propulsors.Hamburg,Germany,2011.

    [6]Francesco Salvatore,Heinrich Streckwall,Tom van Terwisga.Propeller cavitation modelling by CFD-Results from the VIRTUE 2008 Rome Workshop[C]//First International Symposium on Marine Propulsors.Trondheim,Norway,2009.

    [7]Keun Woo Shin,Poul Andersen,Robert Mikkelsen.Cavitation simulation on conventional and highly-skewed propellers in the behind-hull condition[C]//Second International Symposium on Marine Propulsors.Hamburg,Germany,2011.

    [8]Daniele Bertetta,Luca Savio,Michele Viviani.Experimental characterization of two CP propellers at different pitch settings,considering cavitating behaviour and related noise phenomena[C]//Second International Symposium on Marine Propulsors.Hamburg,Germany,2011.

    [9]FlorianVesting,Rickard Bensow.Propeller optimisation considering sheet cavitation and hull interaction[C]//Second International Symposium on Marine Propulsors.Hamburg,Germany,2011.

    [10]Bart Schuiling,Frans Hendrik Lafeber,Auke van der Ploeg,Erik van Wijngaarden.The influence of the wake scale effect on the prediction of hull pressures due to cavitating propellers[C]//Second International Symposium on Marine Propulsors.Hamburg,Germany,2011.

    [11]Paik B G,Kim.Analysis of wake behind a rotating propeller using PIV technique in a cavitation tunnel[J].Journal of O-cean Engineering,2007,34(3-4):594-604.

    [12]Stern F,Kim.A viscous flow approach to the computation of propeller-hull interaction[J].Journal of Ship Research,1988,32:246-262.

    [13]Zhang Zhirong,Li Baiqi,Zhao Feng.Integral calculation of viscous flow around ship hull with propeller[J].Journal of Ship Mechanics,2004,8(5):19-26.

    [14]Shen Hailong.Research on the unsteady interaction between ship hull and energy-saving appendage and propeller[D].Harbin:Harbin Engineering University,Ph.D.Thesis,2010.

    [15]Shen Y T,Dimotakis P.The influence of surface cavitation on hydrodynamic forces[C].Proceedings of 22nd American Towing Tank Conference,St Johns N F,1989:44-53.

    [16]Jules W Lindau,David A Boger,Richard B Medvitz,Robert F Kunz.Propeller cavitation breakdown analysis[J].Journal of Fluids Engineering,2005,127:995-1002.

    [17]Fujisawa J,et al.Surface pressure measurements on the KCS Model(SRI M.S No.631)in the SRI 400 m towing tank[R].SPD Report No.00-004-01.Ship Performance Division,Ship Research Institute,2000.

    [18]Fujisawa J,et al.Local velocity field measurements around the KCS Model(SRI M.S No.631)in the SRI 400 m towing tank[R].SPD Report No.00-003-02.Ship Performance Division,Ship Research Institute,2000.

    中文字幕另类日韩欧美亚洲嫩草| 欧美日韩一级在线毛片| xxx大片免费视频| 中文字幕高清在线视频| 18禁观看日本| 久久女婷五月综合色啪小说| 国产极品粉嫩免费观看在线| 国产精品女同一区二区软件| 免费看av在线观看网站| 欧美黄色片欧美黄色片| 国产精品无大码| 亚洲国产欧美在线一区| 美女国产高潮福利片在线看| 国产野战对白在线观看| av.在线天堂| 日韩制服骚丝袜av| 一级毛片我不卡| 国产精品蜜桃在线观看| 黄色一级大片看看| 日本wwww免费看| 日日摸夜夜添夜夜爱| 婷婷成人精品国产| www.av在线官网国产| 久久性视频一级片| 日本av手机在线免费观看| 欧美成人午夜精品| 亚洲久久久国产精品| 十八禁人妻一区二区| 夫妻午夜视频| 97人妻天天添夜夜摸| 亚洲av欧美aⅴ国产| 欧美日韩一区二区视频在线观看视频在线| 老鸭窝网址在线观看| 欧美日韩一级在线毛片| 成年女人毛片免费观看观看9 | 最近的中文字幕免费完整| 国产乱来视频区| 飞空精品影院首页| 精品国产一区二区三区四区第35| 久久久久精品人妻al黑| 最近最新中文字幕大全免费视频 | 日日撸夜夜添| 伦理电影免费视频| 9191精品国产免费久久| 少妇 在线观看| 人人妻,人人澡人人爽秒播 | 国产福利在线免费观看视频| 欧美少妇被猛烈插入视频| 9热在线视频观看99| 国产又爽黄色视频| 亚洲激情五月婷婷啪啪| 国产精品女同一区二区软件| 熟妇人妻不卡中文字幕| 国产精品av久久久久免费| av片东京热男人的天堂| 2021少妇久久久久久久久久久| 波多野结衣av一区二区av| 亚洲av电影在线进入| 午夜老司机福利片| 高清欧美精品videossex| 91成人精品电影| 你懂的网址亚洲精品在线观看| 成人国产av品久久久| 久久久国产精品麻豆| 少妇人妻 视频| 日日摸夜夜添夜夜爱| 国产欧美日韩一区二区三区在线| 久久女婷五月综合色啪小说| 亚洲av福利一区| 亚洲国产欧美网| 国产欧美日韩一区二区三区在线| 99国产综合亚洲精品| 日日撸夜夜添| 亚洲欧美一区二区三区国产| 宅男免费午夜| 操出白浆在线播放| 美国免费a级毛片| 免费黄频网站在线观看国产| 免费女性裸体啪啪无遮挡网站| 中国三级夫妇交换| 亚洲欧美中文字幕日韩二区| 久久毛片免费看一区二区三区| 国产精品国产三级专区第一集| 青青草视频在线视频观看| 蜜桃国产av成人99| 亚洲人成77777在线视频| 国产麻豆69| 欧美乱码精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 美女大奶头黄色视频| 免费av中文字幕在线| 亚洲欧美精品综合一区二区三区| 精品人妻熟女毛片av久久网站| 别揉我奶头~嗯~啊~动态视频 | 中文字幕最新亚洲高清| 熟妇人妻不卡中文字幕| 永久免费av网站大全| 男女国产视频网站| 在线亚洲精品国产二区图片欧美| 精品国产一区二区三区久久久樱花| 最近最新中文字幕免费大全7| 免费在线观看视频国产中文字幕亚洲 | 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| 嫩草影院入口| 成年动漫av网址| 色精品久久人妻99蜜桃| 青青草视频在线视频观看| 纯流量卡能插随身wifi吗| 大香蕉久久网| 亚洲精品国产一区二区精华液| 最近2019中文字幕mv第一页| 在线天堂中文资源库| 极品人妻少妇av视频| 国产精品久久久久成人av| h视频一区二区三区| 日韩人妻精品一区2区三区| 青春草亚洲视频在线观看| 2021少妇久久久久久久久久久| 久久精品aⅴ一区二区三区四区| 免费高清在线观看视频在线观看| 91精品伊人久久大香线蕉| 国产日韩欧美亚洲二区| 亚洲精品视频女| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 日韩熟女老妇一区二区性免费视频| 亚洲av男天堂| 亚洲欧美日韩另类电影网站| 99精国产麻豆久久婷婷| 成人影院久久| 日韩制服丝袜自拍偷拍| 男女免费视频国产| 天美传媒精品一区二区| 欧美精品亚洲一区二区| avwww免费| 母亲3免费完整高清在线观看| 成人国产麻豆网| 色播在线永久视频| 热99久久久久精品小说推荐| 大香蕉久久成人网| 久久 成人 亚洲| 午夜福利视频在线观看免费| 久久精品国产亚洲av高清一级| 国产男人的电影天堂91| 18禁动态无遮挡网站| 精品国产露脸久久av麻豆| www.精华液| 精品国产超薄肉色丝袜足j| 国产一区二区激情短视频 | 亚洲欧洲国产日韩| 亚洲欧美一区二区三区国产| av国产精品久久久久影院| 超碰成人久久| 十八禁高潮呻吟视频| 日韩,欧美,国产一区二区三区| 亚洲av中文av极速乱| 亚洲精品乱久久久久久| 卡戴珊不雅视频在线播放| 亚洲精品在线美女| 免费看不卡的av| 亚洲精品aⅴ在线观看| 少妇的丰满在线观看| 欧美日韩国产mv在线观看视频| 老汉色∧v一级毛片| 亚洲,欧美,日韩| 亚洲人成电影观看| www.熟女人妻精品国产| 欧美精品亚洲一区二区| 久久久精品免费免费高清| 久久天躁狠狠躁夜夜2o2o | 久久韩国三级中文字幕| 女的被弄到高潮叫床怎么办| 欧美xxⅹ黑人| 黄色怎么调成土黄色| 精品亚洲乱码少妇综合久久| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 国产伦理片在线播放av一区| 成年女人毛片免费观看观看9 | 如何舔出高潮| 国产成人精品无人区| 伦理电影免费视频| 丝袜喷水一区| 波多野结衣一区麻豆| 99九九在线精品视频| 男女无遮挡免费网站观看| 一区二区三区精品91| 亚洲国产欧美网| av视频免费观看在线观看| 中文字幕人妻熟女乱码| 亚洲欧美一区二区三区国产| 欧美日韩一区二区视频在线观看视频在线| 国产av国产精品国产| 欧美av亚洲av综合av国产av | 伊人久久大香线蕉亚洲五| 天天操日日干夜夜撸| 久久精品久久精品一区二区三区| h视频一区二区三区| 99精品久久久久人妻精品| 免费日韩欧美在线观看| 精品人妻熟女毛片av久久网站| 可以免费在线观看a视频的电影网站 | 美女高潮到喷水免费观看| 久久久久国产一级毛片高清牌| 一区二区三区乱码不卡18| 欧美成人精品欧美一级黄| 国产日韩欧美在线精品| 成人亚洲欧美一区二区av| 各种免费的搞黄视频| 国产精品久久久久成人av| 青春草视频在线免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 老司机影院成人| 亚洲成人免费av在线播放| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 天天躁日日躁夜夜躁夜夜| 丰满饥渴人妻一区二区三| 国产av一区二区精品久久| 亚洲av欧美aⅴ国产| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 亚洲久久久国产精品| av免费观看日本| 亚洲精品av麻豆狂野| 亚洲美女搞黄在线观看| 久久精品人人爽人人爽视色| 日本vs欧美在线观看视频| 人妻人人澡人人爽人人| 巨乳人妻的诱惑在线观看| 制服丝袜香蕉在线| 欧美日韩亚洲国产一区二区在线观看 | 尾随美女入室| 国产精品久久久久久人妻精品电影 | 日韩精品免费视频一区二区三区| 久久99一区二区三区| 久久久久精品国产欧美久久久 | 久久人妻熟女aⅴ| 日本一区二区免费在线视频| 国产精品免费大片| 日本欧美国产在线视频| 成年动漫av网址| 1024视频免费在线观看| 搡老乐熟女国产| 亚洲国产欧美日韩在线播放| 久久鲁丝午夜福利片| 又大又黄又爽视频免费| 一区二区三区乱码不卡18| 一级爰片在线观看| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 一二三四在线观看免费中文在| 热99久久久久精品小说推荐| 成人手机av| 精品少妇久久久久久888优播| 亚洲第一av免费看| 国产成人91sexporn| 热re99久久精品国产66热6| 制服丝袜香蕉在线| 亚洲欧美清纯卡通| 大陆偷拍与自拍| 校园人妻丝袜中文字幕| 宅男免费午夜| av一本久久久久| 午夜福利视频在线观看免费| 国产国语露脸激情在线看| 亚洲熟女毛片儿| 亚洲七黄色美女视频| 啦啦啦视频在线资源免费观看| av视频免费观看在线观看| 各种免费的搞黄视频| 国产欧美日韩一区二区三区在线| 只有这里有精品99| 欧美成人午夜精品| 亚洲av国产av综合av卡| 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区久久| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 啦啦啦啦在线视频资源| 久久精品熟女亚洲av麻豆精品| 国产黄频视频在线观看| 中文字幕av电影在线播放| 高清在线视频一区二区三区| 亚洲国产精品一区二区三区在线| 国产片内射在线| 中文字幕亚洲精品专区| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 欧美日韩精品网址| 久久av网站| 国产精品秋霞免费鲁丝片| 免费日韩欧美在线观看| 亚洲第一青青草原| 国产一区二区在线观看av| 亚洲国产精品成人久久小说| 一本一本久久a久久精品综合妖精| 天天躁日日躁夜夜躁夜夜| 男女无遮挡免费网站观看| 亚洲精品视频女| 久久人人爽av亚洲精品天堂| 亚洲欧美日韩另类电影网站| 伦理电影大哥的女人| 少妇人妻 视频| 在线 av 中文字幕| 日本黄色日本黄色录像| 色婷婷av一区二区三区视频| 97人妻天天添夜夜摸| 欧美日本中文国产一区发布| 免费在线观看黄色视频的| 天美传媒精品一区二区| 女人高潮潮喷娇喘18禁视频| 欧美精品人与动牲交sv欧美| 午夜免费鲁丝| av在线app专区| 天天躁夜夜躁狠狠久久av| 久久97久久精品| 久久国产精品男人的天堂亚洲| 久久天躁狠狠躁夜夜2o2o | 亚洲精品国产色婷婷电影| 飞空精品影院首页| 久久精品国产亚洲av高清一级| 一边亲一边摸免费视频| 性色av一级| 女性生殖器流出的白浆| 亚洲成国产人片在线观看| 国产乱来视频区| 久久国产精品大桥未久av| 国产精品一区二区在线不卡| 午夜精品国产一区二区电影| 亚洲成人av在线免费| www.精华液| 精品亚洲乱码少妇综合久久| 精品免费久久久久久久清纯 | 久久免费观看电影| 亚洲 欧美一区二区三区| 巨乳人妻的诱惑在线观看| 亚洲美女黄色视频免费看| 亚洲综合精品二区| 国产成人午夜福利电影在线观看| 日韩精品有码人妻一区| 水蜜桃什么品种好| 九草在线视频观看| 亚洲欧洲日产国产| 日韩制服丝袜自拍偷拍| 天天操日日干夜夜撸| 又黄又粗又硬又大视频| 免费女性裸体啪啪无遮挡网站| 人妻人人澡人人爽人人| 成年美女黄网站色视频大全免费| www日本在线高清视频| 亚洲第一区二区三区不卡| 一本大道久久a久久精品| 丝袜美腿诱惑在线| 2021少妇久久久久久久久久久| 在线天堂最新版资源| 欧美日韩国产mv在线观看视频| 国产精品一区二区在线观看99| 91精品伊人久久大香线蕉| 看十八女毛片水多多多| 在线观看免费高清a一片| 伦理电影大哥的女人| 久久 成人 亚洲| 在线天堂中文资源库| av在线播放精品| 岛国毛片在线播放| 9191精品国产免费久久| 欧美日韩一区二区视频在线观看视频在线| 老司机影院成人| 亚洲一码二码三码区别大吗| 欧美日韩av久久| 天天躁夜夜躁狠狠久久av| 亚洲欧美精品综合一区二区三区| av在线观看视频网站免费| 国产精品一二三区在线看| 久久精品亚洲av国产电影网| 欧美日韩亚洲高清精品| 日韩制服骚丝袜av| 亚洲欧美色中文字幕在线| 国产精品亚洲av一区麻豆 | 国产精品一区二区在线不卡| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 大香蕉久久网| 国语对白做爰xxxⅹ性视频网站| 精品国产一区二区三区久久久樱花| av电影中文网址| 国产伦人伦偷精品视频| 美女国产高潮福利片在线看| 汤姆久久久久久久影院中文字幕| 啦啦啦啦在线视频资源| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 国产极品粉嫩免费观看在线| 人人妻,人人澡人人爽秒播 | 天美传媒精品一区二区| 国产免费现黄频在线看| 一区二区三区乱码不卡18| 天堂中文最新版在线下载| 一边摸一边抽搐一进一出视频| 电影成人av| 在线免费观看不下载黄p国产| 丝袜人妻中文字幕| 亚洲精品国产区一区二| 亚洲国产av新网站| 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 两个人免费观看高清视频| 国产视频首页在线观看| 在线天堂中文资源库| 色播在线永久视频| 久久99一区二区三区| 国产精品免费视频内射| 午夜av观看不卡| 纯流量卡能插随身wifi吗| 菩萨蛮人人尽说江南好唐韦庄| 人人妻,人人澡人人爽秒播 | 免费观看性生交大片5| 久久久久久久久久久免费av| 午夜福利影视在线免费观看| 国产精品 国内视频| 欧美成人午夜精品| 国产欧美日韩综合在线一区二区| 无遮挡黄片免费观看| e午夜精品久久久久久久| 国产一区有黄有色的免费视频| 美女扒开内裤让男人捅视频| 熟女av电影| 亚洲,一卡二卡三卡| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 国产福利在线免费观看视频| 国产亚洲一区二区精品| 久久精品久久久久久噜噜老黄| 亚洲少妇的诱惑av| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 久久国产亚洲av麻豆专区| 一级毛片黄色毛片免费观看视频| 一二三四在线观看免费中文在| 亚洲美女黄色视频免费看| 美女视频免费永久观看网站| 桃花免费在线播放| 考比视频在线观看| 精品少妇一区二区三区视频日本电影 | 亚洲精品一二三| 久久久精品94久久精品| 精品国产一区二区三区四区第35| 最近最新中文字幕免费大全7| 国产日韩欧美亚洲二区| 日韩一卡2卡3卡4卡2021年| 久久久久久人妻| bbb黄色大片| 伊人久久大香线蕉亚洲五| 亚洲欧美成人综合另类久久久| 三上悠亚av全集在线观看| 99热国产这里只有精品6| 免费黄网站久久成人精品| 亚洲欧洲国产日韩| 亚洲国产成人一精品久久久| 超色免费av| 日韩一区二区三区影片| 日韩大码丰满熟妇| 亚洲欧美中文字幕日韩二区| 久久人妻熟女aⅴ| 最近手机中文字幕大全| 老司机影院毛片| 国精品久久久久久国模美| 黄片小视频在线播放| 亚洲欧洲日产国产| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 少妇精品久久久久久久| 女人精品久久久久毛片| 宅男免费午夜| 一区二区三区精品91| 日韩中文字幕欧美一区二区 | 男男h啪啪无遮挡| 亚洲欧美成人精品一区二区| 久久精品久久久久久噜噜老黄| 国产深夜福利视频在线观看| 精品一区二区三区四区五区乱码 | 一级黄片播放器| av在线观看视频网站免费| 亚洲欧美日韩另类电影网站| 亚洲一区二区三区欧美精品| 免费看av在线观看网站| 女人久久www免费人成看片| 午夜福利视频精品| 叶爱在线成人免费视频播放| 午夜免费鲁丝| 久久久国产精品麻豆| 中文字幕高清在线视频| 欧美最新免费一区二区三区| 午夜日韩欧美国产| 久久人妻熟女aⅴ| 九色亚洲精品在线播放| 男女边摸边吃奶| 9热在线视频观看99| 伊人亚洲综合成人网| 日韩中文字幕欧美一区二区 | 少妇人妻久久综合中文| 免费黄网站久久成人精品| 又大又黄又爽视频免费| 久久精品国产a三级三级三级| 国产97色在线日韩免费| 一个人免费看片子| 成人国产av品久久久| 亚洲欧美成人精品一区二区| 大片电影免费在线观看免费| 在线观看人妻少妇| 国产97色在线日韩免费| 久久国产精品男人的天堂亚洲| 高清av免费在线| 久久毛片免费看一区二区三区| 成人漫画全彩无遮挡| avwww免费| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲av涩爱| 综合色丁香网| 性高湖久久久久久久久免费观看| 少妇猛男粗大的猛烈进出视频| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 一级毛片黄色毛片免费观看视频| 亚洲欧美中文字幕日韩二区| 色精品久久人妻99蜜桃| 激情视频va一区二区三区| 91国产中文字幕| 999久久久国产精品视频| 一级毛片 在线播放| 日韩视频在线欧美| 欧美中文综合在线视频| 久久天堂一区二区三区四区| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 久久精品亚洲熟妇少妇任你| 国产精品 国内视频| 欧美亚洲日本最大视频资源| 亚洲av男天堂| avwww免费| 天美传媒精品一区二区| 大陆偷拍与自拍| 亚洲精品日本国产第一区| 国产有黄有色有爽视频| 女人爽到高潮嗷嗷叫在线视频| 在线天堂最新版资源| 2021少妇久久久久久久久久久| 国产免费福利视频在线观看| 水蜜桃什么品种好| av在线观看视频网站免费| 蜜桃国产av成人99| 免费在线观看黄色视频的| 熟妇人妻不卡中文字幕| 国产成人免费观看mmmm| 午夜福利视频在线观看免费| 国产精品免费大片| 国产又爽黄色视频| 一级毛片电影观看| 美女脱内裤让男人舔精品视频| 日韩一区二区三区影片| 少妇的丰满在线观看| 日本黄色日本黄色录像| 午夜激情av网站| 性少妇av在线| 亚洲男人天堂网一区| 国产精品嫩草影院av在线观看| 美女主播在线视频| 午夜福利一区二区在线看| 色播在线永久视频| 91国产中文字幕| 日韩 欧美 亚洲 中文字幕| 亚洲,一卡二卡三卡| 久久天躁狠狠躁夜夜2o2o | 精品国产露脸久久av麻豆| 免费看av在线观看网站| 日韩av免费高清视频| 90打野战视频偷拍视频| 丰满饥渴人妻一区二区三| 777米奇影视久久| 五月开心婷婷网| 亚洲欧美激情在线| 精品久久蜜臀av无| www.av在线官网国产| 一边摸一边抽搐一进一出视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产毛片av蜜桃av| 国精品久久久久久国模美| 亚洲av中文av极速乱| 亚洲成人免费av在线播放| xxxhd国产人妻xxx| 欧美精品人与动牲交sv欧美| 女人高潮潮喷娇喘18禁视频| 精品少妇久久久久久888优播| 久久久久久久久久久久大奶| 男女午夜视频在线观看| 综合色丁香网| 一级片免费观看大全| videos熟女内射| 一区二区三区四区激情视频| 亚洲精品日韩在线中文字幕| 亚洲欧美色中文字幕在线| 综合色丁香网| 亚洲av日韩在线播放| 欧美成人精品欧美一级黄| 2018国产大陆天天弄谢| 欧美激情极品国产一区二区三区| 五月天丁香电影| 99精品久久久久人妻精品| 在线观看免费视频网站a站| 91精品伊人久久大香线蕉| 欧美精品一区二区免费开放|