• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and Numerical Study on Hydrodynamic Performance of Impermeable Comb-Type Breakwater

    2012-12-13 02:56:42FANGZhuoZHANGNingchuanZANGZhipeng
    船舶力學(xué) 2012年6期

    FANG Zhuo,ZHANG Ning-chuan,ZANG Zhi-peng

    (1 State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China;2 Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China)

    1 Introduction

    Comb-type breakwater is a new type of breakwater that is found to be efficient to reduce the wave reflection,the wave force and dissipate the incident wave energy compared with the traditional vertical wall breakwater.A type of permeable comb-type breakwaters has been successfully installed in Dayao Bay,Dalian[1].To investigate the hydrodynamic characteristics of comb-type breakwater,Niu et al[2-3]introduced the original purpose of developing the combtype breakwater and the experimental implementation plan of comb-type breakwater was proposed.Zhu et al[4]analyzed the mechanism and characteristic of the permeable comb-type breakwater and the shield effect of the permeable comb-type breakwater was also analyzed.Zhang et al[5]proceeded the structural analysis on side-plates according to the wave forces measured in experiments.The stress of side-plates was calculated and the reinforce design of side-plates was suggested.Hydrodynamic performances of comb-type breakwaters were stud-ied through physical model testing by Li et al[6]and Dong et al[7].Wave forces and wave reflections under both regular waves and irregular waves were studied.The empirical formulae for wave force reduction coefficient and wave reflection coefficient were proposed based on their experimental results.In their studies,limited dimension sizes of the structure under only one water level were considered.

    While the studies mentioned above were almost exclusively based on model experiments with limited wave conditions and dimension sizes,there is still no numerical effort contributed to this issue.The hydrodynamic performance of the comb-type breakwater has not been studied adequately yet,especially the dangerous water level and mechanism of the wave force on the breakwater.

    Compared with the permeable comb-type breakwater,the impermeable comb-type breakwater(shown in Fig.1)has been drawn much attention in the recent harbor construction for the purpose of ship berthing,because there is no wave transmission at the back-wave side of the breakwater.So the main purpose of this work is to investigate this impermeable comb-type breakwater under irregular waves by both experimental and numerical studies.The experimental setup is described in Section 2.The development of the 3-D numerical wave flume is described and validated in Section 3.In Section 4,the characteristics of wave pressure on the impermeable comb-type breakwater is firstly investigated by the experiments.Then the stress mechanism of the breakwater is analyzed by numerical techniques.Finally,the improved impermeable comb-type breakwaters with‘I’type baffle are proposed,the wave pressure characteristics and reflection coefficient of the improved structure are investigated.Conclusions are drawn in Section 5.

    Fig.1 Sketch of an impermeable comb-type breakwater

    2 Experimental setup

    The experiments were conducted in the 69 m×2 m×1.8 m wave flume at the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology.The experimental setup is shown in Fig.2.The physical model is positioned at 25 m away from the wave maker.Three wave gauges are positioned in front of the structure to analyze the wave reflection coefficient of comb-type breakwater.The distance c should be at least 1.5 times of wave length in order to dissipate local disturbance,the interval of wave gauges a and b should not be the multiples of half wave length.Wave reflection coefficient is calculated by Goda two points method[8].Each test is repeated for three times.

    Fig.2 Sketch of experimental setup

    Fig.3 shows the original dimensions of one unit comb-type breakwater.According to the Froude Similarity Law and in consideration of the facilities available at the laboratory,a scale of 1:27 is adopted in the present study.The hydrodynamic characteristics of impermeable comb-type breakwater under irregular waves are investigated.JONSWAP spectrum is adopted to generate irregular waves.The experimental wave conditions are shown in Tab.1,the 1%wave height H1%ranges from 1.5 m to 3.5 m,and the extreme wave height is H1%=7.5 m.

    Fig.3 The original dimensions of one unit comb-type breakwater

    Tab.1 Experimental wave conditions

    3 Numerical model

    3.1 Governing equations and numerical techniques

    The governing equations employed for the numerical wave flume are the Reynolds-Av-eraged Navier-Stokes(RANS)Equations.In RANS,turbulence flow could be regarded as the superposition of time-averaged flowand instantaneous fluctuation flow(ui′,p′),which could be expressed as Eq.(1).The governing equations can be written as Eqs.(2)and(3),and standard k-ε turbulence closure is used to close the model[9].

    where i,j=1,2,3 for three-dimensional flows;ui=ith component of the velocity vector;ρ=density;p=pressure;gi=ith component of the gravitational acceleration;ν=kinematic viscosity coefficient;=Reynolds stress item.

    This simulation is based on a CFD package Fluent.The VOF method is used to simulate the free surface,and tracking interface is accomplished by solving the continuity equation for the volume fraction[10].The mass source function method is applied to generate incident waves for the numerical wave flume[11-12].To generate waves using a mass source function,the Cartesian form of Eq.(2)in the source region is modified as follows:

    Two opposite trains of surface gravity waves can be generated simultaneously from the source region.The source item in Eq.(4)is given by:

    where s(x,y,z,t)=nonzero mass source function inside the source region;u(x,t)=horizontal velocity of wave particle;dx=mesh length along x direction.

    The spongy layers are set on two sides of the wave flume to absorb the wave energy[13].In the spongy layers,the momentum source function μ(x)uicould be added to momentum equations(3).The coefficient μ(x)could be found in Troch and Rouch[14]and described in Eq.(6):

    where x0is the start point of spongy layer;s is the length of spongy layer,which is about twice the length of the incident wave.

    3.2 Validation of numerical model

    3.2.1 Numerical wave tank

    Irregular wave trains are generated by using the source wave generation method based on a known energy spectrum.The irregular wave is composed of a series of linear waves with different frequency,wave height,and so on.The source function employed to generate random wave trains is:

    wheresηη(wi)=ithcomponent of spectrum value,component of angular frequency,εi=ithcomponent of random initial phase and d=water depth.

    Five different wave trains with wave mode number(Nw)Nw=50,Nw=100,Nw=150,Nw=200 and Nw=250 were generated in the numerical wave flume,respectively.Wave period ranges between 0.5~2.2 s,the significant wave period is TP=1.39 s,the significant wave height is H1/3=0.038 m,and the water depth is d=0.523 m.Fig.4 shows the comparisons between the simulated wave spectrum and the target spectrum with different wave modes number,it can be seen that the results with wave modes number Nwranging from 150 to 250 are quite acceptable,although the wave spectrum with Nw=200 appears to agree better with the target spectrum than those with Nw=150 and Nw=250.The time history of simulated wave elevations with Nw=200 at location x=25.0 m is also analyzed,and the simulated significant wave period is TP=1.38 s and wave height is H1/3=0.040 m,the difference between the theoretical result and the simulated result is within 5%.Based on the comparison,Nw=200 is employed in simulating irregular waves in the following sections.

    Fig.4 Comparisons between target spectra and simulated spectra with different wave modes

    3.2.2 Wave pressure on a comb-type breakwater

    The interaction between waves and an impermeable comb-type breakwater under three different random wave conditions is simulated in the 3-D wave tank,respectively.The numerical models are set up corresponding to the experimental conditions.The wave conditions and the numerical results are shown in Fig.5.The maximum wave pressure on side-plate PMis calculated for each case and compared to the experimental results.The numerical results agree well with the experimental results.

    It can be seen from above validations that the present numerical wave flume is able to generate desired wave trains accurately,and the performance of the numerical wave flume in predicting wave forces is good.The numerical model is further applied to investigate the interactions between waves and the impermeable comb-type breakwaters in Subsection 4.2.

    Fig.5 Comparison between experimental and numerical result of maximum wave pressure on side-plate

    4 Results and discussions

    4.1 Experimental results of wave pressure on the original comb-type breakwater

    In this section,the hydrodynamic characteristics of the original impermeable comb-type breakwater shown in Fig.1 are studied.Totally 45 pressure transducers are distributed on the surface of the impermeable comb-type breakwater as shown in Fig.6.The distribution of the maximum wave pressure PMis analyzed under different incident waves.The experiments are carried out under seven different water levels of dw=-0.2 m,+0.44 m,+1.3 m,+2.3 m,+4.00 m,+4.30 m and+5.10 m.

    Fig.6 Distributions of pressure transducers on surface of impermeable comb-type breakwater

    Fig.7(a)-(c)shows the maximum wave pressure distribution on different surfaces of the structure with dw=+0.44 m,+2.3 m+4.00 m,respectively.It can be concluded that,with the same water depth,the maximum wave pressure on each point generally increases with the in-crease of the wave height H1%.The maximum wave pressure on points No.1-16 and points No.24-36 is very low with the value ranging from 0 to 30 kPa.The maximum pressure at points No.17-23 increases sharply from the bottom to the top of the side-plate and reaches its peak value on ponit No.23 with a value of more than 100 kPa.The maximum pressure on the bottom face of the super-structure(No.37-45)increases from the front to the rear and the peak value appears near the points No.44 and No.45 with a value of more than 150 kPa.

    Then the experiments are conducted under the extreme wave of H1%=7.5 with the above three water levels,respectively.The result is shown in Fig.7(d).It can be seen that the trend of pressure distribution on the structure is similar to that discussed above.The pressure on the side-plates and on the bottom of the super-structure is higher than that on other locations.The pressure with water level+0.44 m is higher than that with the other two water levels(+4.00 m and+5.10 m),with the peak value of over 250 kPa.

    Fig.7 Maximum wave pressure on structure surface under different wave conditions

    From the experimental results,it can be seen that the maximum pressure on the structure occurs mainly at two locations:the side-plates(surface 3)and the bottom face of the superstructure(surface 8).The pressure on points No.43-45 is higher than the pressure on other points on the bottom face of the super-structure.The pressure on points 22 and 23 on the side-plate is higher than that on other points on the side-plate.The maximum pressure on the side-plate is much larger than the designed bearing capacity.So it can be concluded that the most dangerous part of the comb-type breakwater is near the conjunction between the side-plate and the bottom of the super-structure.The dangerous water level for this structure ranges from+0.44 m to+2.3 m.

    4.2 Numerical analysis on the mechanism of the wave pressure

    The experimental results indicate that the top area of the side-plate suffers the impact wave pressure.This phenomenon was also simulated by the numerical model.As shown in Fig.8(a)and Fig.8(b),the time history of impact wave pressure on point 21 and point 23 of sideplate by the numerical model is compared with that of experimental result,respectively.The maximum impact wave pressure occurs on point 23 with a value of around 100 kPa.

    Fig.8 Comparisons between experimental and numerical result of impact wave pressure on points of side-plate

    Fig.9 shows the evolution of wave profiles during the impact wave attacking on the sideplate.Fig.10 shows the 2-D flow field around the side plate at the instant of impact wave occurring.

    Fig.9 The 2-D wave profiles of impact wave acting on the breakwater

    Fig.10 The 2-D velocity vector field of impact wave

    For the dangerous water level,when waves propagate into the cavity and reach to the side-plate,the water is raised up and stranded temporarily in the rear of the cavity;then the water tends to escape out of the cavity in a reverse direction as shown in Fig.9(e).The space that was full of air originally is occupied by the rising water.At the same time,wave crests continue to advance to the side-plate,but the upper superstructure prevents the rising water dissipate effectively.So the mixture of air and wave appeared to become a large reversal vortex(Fig.10).In this process,the air can be divided into two parts:a portion of the air escapes along the bottom face of the superstructure in the opposite direction of wave propagation and the velocity vector of the air appears sharp shape and the velocity magnitude is obviously faster than that of the water.Further more,another portion of the air fails to escape and is trapped in the cavity by the waves.This is because that more air is carried into the cavity by the advancing wave and a few bumps also are formed between the water surface and the structure.These bumps block the air in the cavity from escaping,which leads to the impact wave pressure and the local stress concentration at he corner of the cavity.

    It is understood from the structure design of the caisson that the high pressure zone occurs at the corner between the side plate and the bottom wall of the superstructure.The large water pressure was induced there because the superstructure prevented water from flowing upward when waves impacted the side plate.The above numerical analysis indicates that the special cavity composed of the superstructure and side-plate is the reason that causes the extreme impact wave pressure and the local stress concentration.In the following study,the superstructure between two caissons is removed to make a further verification of this assumption.The structure with the superstructure(structure 1)and the structure without the super-structure(structure 2)are shown in Fig.11.

    Fig.11 Comb-type breakwater with and without superstructure between caissons

    The wave pressure on the two structures is calculated with the water level dw=+0.44 m and the wave height H1%=2.0 m.When the side-plate is suffering the maximum wave force,the synchronous wave pressure on two separate caissons and two adjacent side-plates is shown in Fig.12(a)and 12(b),respectively.The x-axis in the figure denotes the width of the caisson and the two side-plates;the y-axis denotes the water depth.The contour lines of the wave pressure are in kPa.It can be observed that the wave pressure on structure 2 is apparently reduced from 100 kPa to 30kPa after being removed the superstructure.

    Fig.12 Maximum wave pressure on structure 1 and structure 2 when dw=+0.44 m,H1%=2.0 m

    4.3 An improved structure

    In order to find an effective structure design to reduce the maximum wave pressure on the side-plate in the cavity,a few types of improved structures were proposed and analyzed.Finally the impermeable comb-type breakwater with‘I’type baffle(shown in Fig.13)was found to be the most efficient one among those proposed structures.In the following part,the hydrodynamic performance of this improved structure with‘I’type baffle is discussed.The experiments were carried out under the water level from+0.44 m to+5.1 m and the incident wave height H1%ranges from 2.0 m to 3.5 m.

    Fig.13 Sketch of improved structure with‘I’type baffle

    Fig.14 Relationship of maximum wave pressure and relative wave height

    Fig.15 The relationship between reflection coefficient and water level

    4.3.1 Relationship between wave pressure and H1%/d

    In the experiments,9 pressure transducers(No.1-9)are distributed evenly on the sideplate of the improved structure from bottom to top as shown in Fig.13(a).The relationship between relative wave height H1%/d and maximum wave pressure on the side-plate is shown in Fig.14(a)-14(c).It can be concluded that,with a constant d/L,the maximum wave pressure increases with the increase of H1%/d on each point.In addition,the maximum wave pressure PMgenerally increases from the bottom to the top of the side-plate.The maximum wave pressure on side-plate of the improved structure is much less than that on the original structure,with the value of around 50 kPa.

    4.3.2 Relationship between reflection coefficient and water level

    The reflection coefficient KRis another important factor to appraise the effectiveness of the breakwater.The comb-type breakwater can absorb majority of the wave energy mainly because there exists a phase difference between the reflected wave from the side-plate and that from the front wall of the caisson.When the designed parameters are selected properly,the incident waves and the reflected wave will superimpose with a phase difference in front of the caisson.This can reduce the effect of the wave forces on the breakwater.The relationship between the reflection coefficients and the water level is obtained in the experiments and shown in Fig.15.It can be seen that the reflection coefficient is much dependent on the water level.The value of KRunder water level dw=+4.0 m is much larger than the values under other water levels.But the reflection coefficient does not vary too much with the change of the relative wave height H1%.

    5 Conclusions

    In this paper,the hydrodynamic characteristics of an impermeable comb-type breakwater and its proposed improved structure are investigated experimentally and numerically.Main conclusions can be drawn as follows:

    (1)A 3-D numerical wave flume is set up to simulate the irregular wave.Through comparisons,the present numerical model could simulate numerical irregular wave well with 200 random wave modes.

    (2)The hydrodynamic performance of an impermeable comb-type breakwater is investigated by experimental studies under irregular waves.The results show that the extreme high wave pressure on the top area of the side-plate under the dangerous water level is the main cause which seriously influences the safety of the structure.

    (3)The interaction between this impermeable comb-type breakwater and the irregular waves is simulated by the 3-D numerical model.The existence of the special cavity composed of the superstructure and side-plate is the main cause of the excessive wave impact pressure and the local stress concentration on the side-plate.The mechanism of the impact wave force is analyzed by the numerical technique.

    (4)An improved impermeable comb-type breakwater with‘I’type baffle was proposed to reduce the extreme high wave pressure on the side-plate.The maximum wave pressure and the wave reflection coefficient of the improved structure are studied.

    [1]Niu E Z,Wang Y W,Ma D T.Innovation of breakwater structures[J].Port&Waterway Engineering,2006,394(10):58-63.

    [2]Niu E Z,Ma D T,Sun Z C.The novel comb-type breakwater[J].China Civil Engineering Journal,2003,36(10):51-55.

    [3]Niu E Z,Deng L,Ma D T.Experimental studies and construction of comb-type breakwater[J].China Harbour Engineering,2001,6:5-8.

    [4]Zhu H,Niu E Z,Zheng T L.Mechanism&characteristics of comb-type permeable breakwater and its sheltering effect[J].Port&Waterway Engineering,2001,333(10):31-34.

    [5]Zhang T,Wang Q X,Zhao G F.Research of design theory for flange plate of comb-type caisson[J].The Ocean Engineering,2002,20(1):13-17.

    [6]Li Y C,Sun Z C,Xu S Q.The hydraulic performance of comb-type vertical breakwater[J].Journal of Hydrodynamics,Ser.A,2002,17(4):472-482.

    [7]Dong G H,Li Y C,Sun Z C.Interaction between waves and a comb-type breakwater[J].China Ocean Engineering,2003,17(4):517-526.

    [8]Goda Y,Suzuki Y.Estimation of incident and reflected waves in random wave experiments[C]//Proceeding of 15th International Conference on Coastal Engineering.New York,ASCE,1976:828-845.

    [9]Wang R J,Zhang K,Wang G.The technical bases and application examples of Fluent[M].Beijing:Tsinghua University Press.2007.

    [10]Zhang C X,Wang G Y,Wang Y X.Study on the performances of air curtain breakwater by numerical simulation[J].Journal of Hydrodynamics,Ser.A,2009,24(5):543-549.

    [11]Lin P Z,Liu P L F.Internal wave-maker for Navier-Stokes equations models[J].Journal of Waterway,Port,Coastal,and Ocean Engineering,1999,125(4):207-215.

    [12]Li S Z.Study on 2-D numerical wave tank based on the software fluent[D].Harbin:Harbin Institute of Technology,2006.

    [13]Li L,Lin Z W,You Y X.The numerical wave flume of the viscous fluid based on the momentum source method[J].Journal of Hydrodynamics,Ser.A,2007,22(1):76-82.

    [14]Troch P,Rouch J D.Development of two-directional numerical wave flume for wave interaction with rubble mound breakwater[C].Proceedings of 26th Conference on Coastal Engineering,1998:1638-1649.

    99久久精品一区二区三区| 国产乱人偷精品视频| 久久午夜福利片| 国产男女内射视频| 街头女战士在线观看网站| 人人妻人人澡人人爽人人夜夜| 日韩视频在线欧美| 中文乱码字字幕精品一区二区三区| 久久影院123| 亚洲国产av新网站| 大话2 男鬼变身卡| 欧美人与善性xxx| 直男gayav资源| 97精品久久久久久久久久精品| 久久97久久精品| 一级片'在线观看视频| 成人黄色视频免费在线看| 国产精品一区二区性色av| 免费看光身美女| 免费少妇av软件| 欧美成人精品欧美一级黄| 国产淫片久久久久久久久| 精品少妇久久久久久888优播| 亚洲一级一片aⅴ在线观看| 午夜福利在线在线| h日本视频在线播放| 80岁老熟妇乱子伦牲交| 直男gayav资源| 青春草国产在线视频| 国产亚洲精品久久久com| 在线免费十八禁| 性色avwww在线观看| 我要看日韩黄色一级片| 亚洲伊人久久精品综合| 交换朋友夫妻互换小说| 久久99蜜桃精品久久| 免费大片黄手机在线观看| 美女被艹到高潮喷水动态| 国产91av在线免费观看| 丝袜脚勾引网站| 久久韩国三级中文字幕| av一本久久久久| 国产成人91sexporn| 亚洲av国产av综合av卡| 夫妻性生交免费视频一级片| 国产精品人妻久久久久久| 老女人水多毛片| 又爽又黄无遮挡网站| 国产精品嫩草影院av在线观看| 黄色怎么调成土黄色| 又粗又硬又长又爽又黄的视频| 日韩伦理黄色片| 亚洲精品乱码久久久久久按摩| 久久久久久久久久人人人人人人| 亚洲人成网站在线观看播放| 老师上课跳d突然被开到最大视频| 色视频www国产| 午夜爱爱视频在线播放| 亚洲国产最新在线播放| 深爱激情五月婷婷| 亚洲av福利一区| 亚洲美女视频黄频| 免费看a级黄色片| 在线观看av片永久免费下载| .国产精品久久| 亚洲在久久综合| 另类亚洲欧美激情| 成人美女网站在线观看视频| 国产爽快片一区二区三区| 青春草国产在线视频| 男人爽女人下面视频在线观看| 亚洲高清免费不卡视频| 精品少妇久久久久久888优播| 亚洲国产欧美人成| 免费av毛片视频| 欧美bdsm另类| 国产精品无大码| 午夜福利在线在线| 精品人妻偷拍中文字幕| 欧美区成人在线视频| 一个人看视频在线观看www免费| 国产一区有黄有色的免费视频| 中文字幕亚洲精品专区| a级毛色黄片| 国产精品99久久99久久久不卡 | 边亲边吃奶的免费视频| 九九在线视频观看精品| .国产精品久久| 伦理电影大哥的女人| 尾随美女入室| 人人妻人人看人人澡| 国产欧美日韩精品一区二区| 国产成人精品一,二区| 成年av动漫网址| 国产精品蜜桃在线观看| 美女视频免费永久观看网站| 日韩亚洲欧美综合| 国语对白做爰xxxⅹ性视频网站| 王馨瑶露胸无遮挡在线观看| 少妇猛男粗大的猛烈进出视频 | 色5月婷婷丁香| 日韩电影二区| 一级毛片aaaaaa免费看小| 联通29元200g的流量卡| 大又大粗又爽又黄少妇毛片口| 成人美女网站在线观看视频| 久久久a久久爽久久v久久| 观看免费一级毛片| 中文在线观看免费www的网站| 亚洲av在线观看美女高潮| 国产久久久一区二区三区| 欧美日韩亚洲高清精品| 久热久热在线精品观看| 国产v大片淫在线免费观看| 嘟嘟电影网在线观看| 美女视频免费永久观看网站| 啦啦啦啦在线视频资源| 少妇 在线观看| 韩国av在线不卡| 国产乱来视频区| 韩国av在线不卡| 天堂俺去俺来也www色官网| 久久久久国产精品人妻一区二区| 简卡轻食公司| 午夜爱爱视频在线播放| 亚洲人与动物交配视频| 久久精品久久久久久噜噜老黄| 日韩欧美精品v在线| 蜜臀久久99精品久久宅男| 国产乱人视频| 亚洲av中文av极速乱| 精品人妻偷拍中文字幕| 国产永久视频网站| 欧美精品一区二区大全| 午夜福利高清视频| 日韩欧美 国产精品| 22中文网久久字幕| 久久久午夜欧美精品| 中文欧美无线码| 婷婷色综合大香蕉| 3wmmmm亚洲av在线观看| 少妇人妻 视频| 国产伦精品一区二区三区视频9| 搡女人真爽免费视频火全软件| 国产成人免费观看mmmm| 国产亚洲91精品色在线| 有码 亚洲区| 激情 狠狠 欧美| 欧美日韩视频高清一区二区三区二| 亚洲精品久久午夜乱码| 国精品久久久久久国模美| 18禁在线无遮挡免费观看视频| 久久久久九九精品影院| 老司机影院成人| 亚洲精品成人av观看孕妇| 久久精品久久久久久久性| 蜜桃亚洲精品一区二区三区| 如何舔出高潮| 日日啪夜夜爽| 日韩视频在线欧美| kizo精华| 岛国毛片在线播放| 99精国产麻豆久久婷婷| 两个人的视频大全免费| 蜜臀久久99精品久久宅男| eeuss影院久久| 国产成人91sexporn| 欧美精品国产亚洲| 欧美国产精品一级二级三级 | 一个人看视频在线观看www免费| 三级经典国产精品| 亚洲第一区二区三区不卡| 久久精品人妻少妇| 国产精品秋霞免费鲁丝片| 亚洲av电影在线观看一区二区三区 | 亚洲av欧美aⅴ国产| 午夜福利高清视频| 欧美日韩视频精品一区| 亚洲国产精品专区欧美| 国产av不卡久久| 一级毛片久久久久久久久女| 男男h啪啪无遮挡| 大香蕉97超碰在线| 少妇 在线观看| 国产欧美日韩一区二区三区在线 | 国产又色又爽无遮挡免| 在线精品无人区一区二区三 | 国产有黄有色有爽视频| 日韩av不卡免费在线播放| 国产精品无大码| 我的女老师完整版在线观看| 大片电影免费在线观看免费| 久久综合国产亚洲精品| 97热精品久久久久久| 国产美女午夜福利| 晚上一个人看的免费电影| av在线老鸭窝| 91狼人影院| 高清午夜精品一区二区三区| 91午夜精品亚洲一区二区三区| 五月伊人婷婷丁香| 国产精品国产三级国产av玫瑰| 亚洲精品国产色婷婷电影| 91精品伊人久久大香线蕉| 人妻少妇偷人精品九色| 欧美日韩亚洲高清精品| 夜夜爽夜夜爽视频| 国产成人一区二区在线| 色网站视频免费| 男人舔奶头视频| 99久久精品热视频| 成人特级av手机在线观看| 在线观看免费高清a一片| 麻豆成人午夜福利视频| 特大巨黑吊av在线直播| 青春草视频在线免费观看| 国产成人freesex在线| 欧美xxⅹ黑人| 亚洲欧美日韩无卡精品| 中国三级夫妇交换| 少妇裸体淫交视频免费看高清| 大香蕉97超碰在线| 国产精品久久久久久精品古装| 日本一本二区三区精品| 99re6热这里在线精品视频| 午夜福利在线观看免费完整高清在| 有码 亚洲区| 少妇猛男粗大的猛烈进出视频 | 欧美xxⅹ黑人| 亚洲成人中文字幕在线播放| 久久人人爽人人爽人人片va| 一区二区三区四区激情视频| 在线 av 中文字幕| 国产精品久久久久久久久免| 免费少妇av软件| 欧美激情久久久久久爽电影| 男的添女的下面高潮视频| 亚洲欧美成人综合另类久久久| 国产一区二区亚洲精品在线观看| av卡一久久| 99热6这里只有精品| 丝袜喷水一区| 国产一区二区三区综合在线观看 | 久久精品国产a三级三级三级| 波多野结衣巨乳人妻| 欧美日韩综合久久久久久| 国产精品福利在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 少妇裸体淫交视频免费看高清| 五月天丁香电影| 99久久人妻综合| 欧美老熟妇乱子伦牲交| 精品熟女少妇av免费看| 26uuu在线亚洲综合色| 亚洲最大成人av| 久久国内精品自在自线图片| 久热久热在线精品观看| 精品久久久久久久人妻蜜臀av| 国产极品天堂在线| 亚洲精品国产色婷婷电影| 最近2019中文字幕mv第一页| 中文在线观看免费www的网站| 特级一级黄色大片| 国产高潮美女av| 美女国产视频在线观看| 久久99热这里只频精品6学生| 国产成人aa在线观看| 亚洲天堂国产精品一区在线| 日韩,欧美,国产一区二区三区| 交换朋友夫妻互换小说| 国产成人免费观看mmmm| 91在线精品国自产拍蜜月| 熟女人妻精品中文字幕| 老女人水多毛片| 成年版毛片免费区| 黄片无遮挡物在线观看| 男女边吃奶边做爰视频| 日韩欧美精品免费久久| 极品教师在线视频| 国产精品不卡视频一区二区| 成人毛片60女人毛片免费| 精品一区二区免费观看| 国产av国产精品国产| 国产精品一二三区在线看| 欧美潮喷喷水| 白带黄色成豆腐渣| 亚洲成人精品中文字幕电影| 亚洲国产欧美人成| 亚洲精品影视一区二区三区av| 国产淫片久久久久久久久| 水蜜桃什么品种好| 内地一区二区视频在线| 久久久久久久久久久丰满| 天天一区二区日本电影三级| 免费高清在线观看视频在线观看| 国产av不卡久久| 久久国内精品自在自线图片| 国产在线一区二区三区精| 国产一区二区三区综合在线观看 | 国产成人精品一,二区| 三级男女做爰猛烈吃奶摸视频| 日本午夜av视频| 偷拍熟女少妇极品色| 亚洲成人久久爱视频| 亚洲三级黄色毛片| 国产午夜福利久久久久久| 日本wwww免费看| 国产高清有码在线观看视频| 国产精品一二三区在线看| 另类亚洲欧美激情| 天天躁夜夜躁狠狠久久av| 又粗又硬又长又爽又黄的视频| 禁无遮挡网站| 在线观看人妻少妇| 熟女电影av网| 高清日韩中文字幕在线| 18禁在线无遮挡免费观看视频| 精品99又大又爽又粗少妇毛片| 日韩,欧美,国产一区二区三区| 国产一区二区三区av在线| 超碰av人人做人人爽久久| 国产视频内射| 日日摸夜夜添夜夜添av毛片| 蜜臀久久99精品久久宅男| 噜噜噜噜噜久久久久久91| 久久精品夜色国产| 人人妻人人看人人澡| 男人舔奶头视频| 国产亚洲最大av| 国产中年淑女户外野战色| 久久久欧美国产精品| 男女边摸边吃奶| 久久ye,这里只有精品| 久久久久性生活片| a级一级毛片免费在线观看| 欧美三级亚洲精品| 日韩大片免费观看网站| 国模一区二区三区四区视频| 又爽又黄a免费视频| 人体艺术视频欧美日本| 丰满人妻一区二区三区视频av| 精品久久久精品久久久| 久久久a久久爽久久v久久| 亚洲电影在线观看av| 久久人人爽人人爽人人片va| 王馨瑶露胸无遮挡在线观看| 97在线人人人人妻| 日本免费在线观看一区| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 在线观看一区二区三区| 国产亚洲一区二区精品| av网站免费在线观看视频| 日本一二三区视频观看| 五月开心婷婷网| 深夜a级毛片| 少妇人妻精品综合一区二区| 国产有黄有色有爽视频| 久久影院123| 中文乱码字字幕精品一区二区三区| 亚洲精品影视一区二区三区av| 欧美成人精品欧美一级黄| 人妻制服诱惑在线中文字幕| 色吧在线观看| 少妇熟女欧美另类| 午夜福利在线观看免费完整高清在| 日韩成人av中文字幕在线观看| 99热6这里只有精品| 日韩在线高清观看一区二区三区| 亚洲精品视频女| 亚洲av电影在线观看一区二区三区 | videos熟女内射| 精品国产露脸久久av麻豆| 亚洲精品色激情综合| 亚洲最大成人手机在线| 丝袜喷水一区| 永久网站在线| 国产黄a三级三级三级人| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 人妻夜夜爽99麻豆av| 2018国产大陆天天弄谢| 下体分泌物呈黄色| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 亚洲国产欧美人成| 久久久久国产精品人妻一区二区| 亚洲人成网站在线观看播放| 国产黄色免费在线视频| av在线天堂中文字幕| 高清在线视频一区二区三区| 熟女电影av网| 国产欧美另类精品又又久久亚洲欧美| 欧美成人一区二区免费高清观看| 国产亚洲一区二区精品| 亚洲国产日韩一区二区| 久久精品久久久久久噜噜老黄| 91精品伊人久久大香线蕉| 日日啪夜夜爽| 在线看a的网站| 18禁在线播放成人免费| 亚洲精品第二区| 国产伦理片在线播放av一区| 少妇人妻一区二区三区视频| 亚洲,一卡二卡三卡| av线在线观看网站| 99久久九九国产精品国产免费| 草草在线视频免费看| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| 在线观看av片永久免费下载| 观看美女的网站| 欧美成人精品欧美一级黄| 国产精品一区二区在线观看99| 中文精品一卡2卡3卡4更新| 午夜爱爱视频在线播放| 日韩国内少妇激情av| 草草在线视频免费看| 亚洲最大成人手机在线| 色5月婷婷丁香| eeuss影院久久| 男插女下体视频免费在线播放| 国产免费又黄又爽又色| av播播在线观看一区| 国产精品久久久久久av不卡| 新久久久久国产一级毛片| 永久网站在线| 亚洲av电影在线观看一区二区三区 | 国产成人a区在线观看| 日韩av不卡免费在线播放| 女人十人毛片免费观看3o分钟| 日本一本二区三区精品| 亚洲精品乱码久久久久久按摩| 黄色怎么调成土黄色| 免费黄频网站在线观看国产| 神马国产精品三级电影在线观看| 一二三四中文在线观看免费高清| 国产一区有黄有色的免费视频| 国产精品国产三级专区第一集| 在线观看免费高清a一片| 中文字幕久久专区| 亚洲欧美精品专区久久| 最后的刺客免费高清国语| 国产成人午夜福利电影在线观看| 免费播放大片免费观看视频在线观看| 在线 av 中文字幕| 岛国毛片在线播放| 国产国拍精品亚洲av在线观看| 干丝袜人妻中文字幕| 大话2 男鬼变身卡| 久久6这里有精品| 亚洲av中文字字幕乱码综合| 99久久精品热视频| 国产精品国产三级国产专区5o| av天堂中文字幕网| 欧美性感艳星| 国产成人精品一,二区| 日本色播在线视频| 精品一区二区三区视频在线| 国产成人精品福利久久| 99热网站在线观看| 久久精品国产亚洲网站| 一级毛片黄色毛片免费观看视频| 国产综合精华液| 日韩电影二区| 日韩制服骚丝袜av| 国产视频内射| 亚洲欧美一区二区三区黑人 | 一级av片app| 1000部很黄的大片| 欧美成人a在线观看| 中国美白少妇内射xxxbb| 国产精品人妻久久久影院| 中文字幕亚洲精品专区| 又粗又硬又长又爽又黄的视频| 欧美 日韩 精品 国产| 亚洲精品视频女| 久久国内精品自在自线图片| 九草在线视频观看| 日韩强制内射视频| 免费黄频网站在线观看国产| av免费观看日本| 最近的中文字幕免费完整| 插逼视频在线观看| 啦啦啦中文免费视频观看日本| 99久久精品一区二区三区| av免费在线看不卡| 欧美丝袜亚洲另类| 高清午夜精品一区二区三区| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 少妇人妻久久综合中文| 美女高潮的动态| 亚洲av欧美aⅴ国产| 欧美xxxx黑人xx丫x性爽| 人妻一区二区av| 少妇的逼好多水| 97在线人人人人妻| 亚洲天堂av无毛| 最近的中文字幕免费完整| 国产精品久久久久久久电影| 一区二区三区四区激情视频| 亚洲人成网站在线观看播放| 一本色道久久久久久精品综合| 香蕉精品网在线| freevideosex欧美| 亚洲精品日本国产第一区| av福利片在线观看| 国产黄片视频在线免费观看| 另类亚洲欧美激情| 亚洲国产欧美在线一区| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 国产精品99久久99久久久不卡 | 亚洲国产精品国产精品| 深夜a级毛片| 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站| 精品久久久久久久末码| 天天一区二区日本电影三级| 国产视频首页在线观看| 精品一区二区三卡| 99久久中文字幕三级久久日本| 亚洲精品国产av蜜桃| 国产精品无大码| 99热6这里只有精品| 永久免费av网站大全| 亚洲精品国产av成人精品| 国产黄片美女视频| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 高清av免费在线| 成人美女网站在线观看视频| 亚洲国产精品专区欧美| 欧美高清性xxxxhd video| 亚洲精品日韩av片在线观看| 国产69精品久久久久777片| freevideosex欧美| 亚洲人与动物交配视频| 边亲边吃奶的免费视频| 男人和女人高潮做爰伦理| 成年女人看的毛片在线观看| 日韩免费高清中文字幕av| 亚洲成人av在线免费| 六月丁香七月| 网址你懂的国产日韩在线| 丝袜美腿在线中文| 白带黄色成豆腐渣| 在线观看免费高清a一片| 国产白丝娇喘喷水9色精品| 国产成人免费无遮挡视频| 免费大片黄手机在线观看| 久久99热这里只频精品6学生| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂 | 国产毛片在线视频| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添av毛片| av在线天堂中文字幕| 尾随美女入室| 青青草视频在线视频观看| 在线精品无人区一区二区三 | 免费观看无遮挡的男女| 欧美激情久久久久久爽电影| 亚洲色图综合在线观看| 大香蕉久久网| 国产成人免费无遮挡视频| 成年版毛片免费区| 亚洲婷婷狠狠爱综合网| 最近中文字幕2019免费版| 亚洲精品国产av成人精品| 亚洲第一区二区三区不卡| 五月天丁香电影| 午夜福利高清视频| 99热6这里只有精品| 亚洲精品,欧美精品| 成人二区视频| 欧美bdsm另类| 九九爱精品视频在线观看| 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂| 97超视频在线观看视频| 成人综合一区亚洲| 亚洲国产欧美人成| 欧美高清成人免费视频www| 成人漫画全彩无遮挡| 一个人看视频在线观看www免费| 91在线精品国自产拍蜜月| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频 | av又黄又爽大尺度在线免费看| 看黄色毛片网站| 舔av片在线| 国产探花在线观看一区二区| 九九久久精品国产亚洲av麻豆| 日本一本二区三区精品| 欧美少妇被猛烈插入视频| 欧美+日韩+精品| 欧美zozozo另类| 久久久久久久久久人人人人人人| 婷婷色综合www| 91久久精品电影网| 97精品久久久久久久久久精品| 一区二区三区精品91| 高清毛片免费看| 国产成年人精品一区二区| 联通29元200g的流量卡| 亚洲精品国产成人久久av| 日本熟妇午夜| 亚洲精品影视一区二区三区av| 在线天堂最新版资源| 亚洲成人久久爱视频| 日本午夜av视频| 尤物成人国产欧美一区二区三区| 18禁裸乳无遮挡动漫免费视频 |