• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    5-氨基雙四唑富氮配位化合物的合成、結(jié)構(gòu)及其對高氯酸銨的熱分解影響

    2012-12-11 11:37:08夏正強陳三平高勝利
    無機化學學報 2012年2期
    關(guān)鍵詞:高氯酸西北大學材料科學

    謝 鋼 夏正強 陳三平 高勝利

    (合成與天然功能分子教育部重點實驗室,西北大學化學與材料科學學院,西安 710069)

    5-氨基雙四唑富氮配位化合物的合成、結(jié)構(gòu)及其對高氯酸銨的熱分解影響

    謝 鋼 夏正強 陳三平*高勝利*

    (合成與天然功能分子教育部重點實驗室,西北大學化學與材料科學學院,西安 710069)

    水熱條件下合成了兩個5-氨基雙四唑配位化合物Cu(bta)(bpy)(H2O)(1)和Pb2(bta)2(en)2·4H2O(2)(H2bta=5-氨基雙四唑,bpy=2,2′-聯(lián)吡啶,en=乙二胺),并借助單晶X-射線衍射技術(shù)對其結(jié)構(gòu)進行了表征。在配合物1中,5-氨基雙四唑配體以雙齒螯合模式與銅離子配位形成離散的分子,并通過H鍵作用進一步形成了三維的超分子結(jié)構(gòu)。在配合物2中,強的R22(8)氫鍵環(huán)作用將雙核的Pb2(bta)2(en)2單元連接成一維的鏈,這些鏈通過與水分子氫鍵作用被進一步組裝成三維的超分子結(jié)構(gòu)。另外,通過DSC技術(shù)探究了它們作為添加劑對高氯酸銨的熱分解催化影響。研究發(fā)現(xiàn),鉛基化合物2的催化效果較銅基化合物1要好。

    5-氨基雙四唑;配位化合物;高氯酸銨;晶體結(jié)構(gòu)

    Energetic metal salts are employed as attractive alternatives in view that they ballistically modify the combustion pattern of propellants without much negative effect on energetics[1].Of those energetic metal salts,rich-nitrogen energetic compounds as environmentally benign explosives are employed as the ligands tosynthesize the energetic metal salts.As one of the energetic materials,tetrazoles with an outstanding property of high nitrogen content,high positive heat of formation and good thermal stability,owing to their aromatic ring system[2],have promised their complexes interesting for energetic materials.Furthermore,metal cations complexes are sought components for pyrotechnical mixtures,by the combination of the energetic nitrogen rich ligands and the colorant metal cations[3].Until now,many metal-tetrazole derivatives complexes have been synthesized and characterized to be the potential energetic materials,components for pyrotechnical mixtures,additives in pyrotechnics and AP based propellants for their characteristics of high energy and thermal stability[3-8].In addition,the application field of tetrazoles are involved of magnetic[9-11]and catalytic application[12],as well as adsorption[13-14],topology[15-17]and energetic materials[18-21].

    N,N-bis(1H-tetrazole-5-yl)-amine(H2bta)has been widely reported as energetic materials with high nitrogen and high thermal stability.As the derivative of tetrazole,H2bta possesses versatile coordination modes due to the nine electron-donating nitrogen atoms are the potential coordination sites,which promises the H2bta to be an intriguing ligand in coordination chemistry.Moreover,the nitrogen atoms are predicted to be involved in the hydrogen bonds motif to construct supramolecules and capture guest molecules[22].Above all,the H2bta complexes with the metal ions could not only give an interesting structure but also provide the active metals or metal oxides at the molecule level on the propellant surface to improve combustion reaction when the compounds are used as the additives in the propellant[1,23].Therefore,both in theoretical prospect and practical application,the syntheses and structures of H2bta complexes are of significance.

    In this paper,we report the syntheses and structures of two new energetic coordination compounds based on N,N-bis(1H-tetrazole-5-yl)-amine,Cu(bta)(bpy)(H2O)(1)and Pb2(bta)2(en)2·4H2O(2).Because the thermal decomposition of AP directly influences the combustion behavior of solid propellants[24-25],compounds 1 and 2 as the additives on the decomposition of AP were explored by the differential scanning calorimetry(DSC)techniques.

    1 Experimental

    1.1 Materials and instruments

    All reagents were purchased commercially and used without further purification.H2bta·H2O was synthesized according to the reference[4].Elemental analyses were carried out with an Elementar Vario EL Ⅲ analyzer.IR spectra were recorded with a Tensor 27 spectrometer(Bruker Optics,Ettlingen,Germany).Thermogravimetric measurements were performed with a Netzsch STA449C apparatus under a nitrogen atmosphere with a heating rate of 10℃·min-1from 30 to 900℃.DSC experiments were performed with a thermal analyzer of Perkin-Elmer Pyris 6 DSC with heating rates of 5,10,15 and 20℃·min-1from 30 to 500℃.

    1.2 Preparation

    Preparation of Cu(bta)(bpy)(H2O)(1):A mixture of Cu(NO3)2·3H2O(0.048 8 g,0.2 mmol),H2bta·H2O(0.034 3 g,0.2 mmol),2,2′-bipyridyl(0.031 2 g,0.2 mmol)and H2O(7 mL)was sealed in a 10 mL Teflonlined stainless autoclave and heated at 130℃under autogenous pressure for 3 d and then cooled at a rate of 5℃·min-1to room temperature;green block crystals were obtained.Yield:0.022 5 g(28.9%based on Cu).Anal.calcd.for C12H11ON11Cu(Mr=388.87)(%):C 37.03,H 2.83,N 39.60;found(%):C 36.68,H 2.76,N 39.04.IR(KBr,cm-1):3 527(s),3 458(s),3 394(m),3195(w),2819(m),2364(m),1 652(vs),1515(vs),1 456(s),1 338(m),1 247(m),1 145(m),1 147(m),1 097(w),1 051(s),1002(s),854(s),810(m),734(s),686(s).

    Preparation of Pb2(bta)2(en)2·4H2O(2):A mixture ofPb(NO3)2(0.066 2 g,0.200 mmol),H2bta·H2O(0.034 7 g,0.2 mmol),ethylenediamine(30 μL)and H2O(7 mL)was sealed in a 10 mL Teflon-lined stainless autoclave and heated at 120℃under autogenous pressure for 3 d and then cooled at a rate of 5℃·h-1to room temperature;colorless block crystals were obtained in the solution of the reactors after 1 week.Yield:0.0620 g(34.1%based on Pb).Anal.calcd.for C8H26O4N22Pb2(Mr=908.91)(%):C 10.57,H 2.88,N 33.91;found(%):C 10.34,H 2.67,N 33.68.IR(KBr,cm-1):3 357(w),3 284(w),3 143(w),2914(m),1 616(vs),1 525(s),1 496(s),1 419(s),1 398(s),1 313(s),1 236(s),1124(s),995(s),781(s),694(s),559(s).

    1.3 X-ray crystallography

    All single-crystal X-ray diffraction experiments were performed with a Bruker Smart Apex CCD diffractometer equipped with graphite monochromated Mo Kα radiation(λ=0.071 073 nm)using φ-ω scan mode.The single-crystal structures of compounds were solved by direct methods and refined with full-matrix least-squares techniques based on F2using SHELXS-97 and SHELXL-97[26-27].All non-hydrogen atoms were refined anisotropically.The H atoms attached C or N atoms were placed at calculated positions in the ridingmodelapproximation, with their displacement parameters set to 1.2 times Ueqof the parent atoms.The water H atoms were located in difference Fourier maps,and then refined with isotropic thermal parameters 1.5 times those of O atoms.Crystal data and structure refinements parameters for 1 and 2 are listed in Table 1.The selected bond distances and angles are shown in Table 2 and hydrogen bonding interactions for 1 and 2 are shown in Tables 3.

    CCDC:855627,1;774052,2.

    Table 1 Crystal data and structure parameters for 1 and 2

    Table 2 Selected bond lengths(nm)and angles(°)for 1 and 2

    Continued Table 1

    Table 3 Hydrogen bonding interactions in 1 and 2

    2 Results and discussion

    2.1 Description of crystal structures

    Single-crystal X-ray diffraction studies reveal that 1 and 2 both crystallize in the triclinic crystal system,space group P1.The molecular structure of 1 is shown in Fig.1.There are two crystallographically unique Cu(Ⅱ)ions,two bta2-ligands,two bpy co-ligands and two coordinated water molecules in the asymmetric unit.The Cu1(Ⅱ)ion is five-coordinated by four N atoms from one bta2-ligand(N1 and N2)and one bpy molecule(N3 and N8),and one coordinated water molecule(O1).The coordination environment of Cu2(Ⅱ)center is exactly similar with that of Cu1(Ⅱ)in 1,while there are some subtle differences in the bond lengths and angles.The Cu-N bond distances vary from 0.1960(3)to 0.205 6(4)nm with the mean of 0.199 7(8)nm,while the Cu-O bond distance is slightly longer,0.2234(3)nm.

    Fig.1 ORTEP drawing of asymmetric unit of compound 1 with 30%probability level

    It is worth noting that the tetrazole nitrogen atoms and coordinated water molecules are involved in the extensive strong,very directional hydrogen bonds(Fig.2 and Table 3),which connect the discrete Cu(Ⅱ)coordination units to generate a 3D supramolecular structure.

    Fig.2 Intermolecular hydrogen bonding interactions in compound 1

    As shown in Fig.3,2 is a binuclear molecule with two bta2-and ethylenediamine,which is just like the reported Pb2(bta)2(bpy)2(2′)and[Pb2(bta)2(phen)2]·2H2O(2″)[28].The similar structures are due to the same coordination modes of bta2-and the auxiliary ligands.However,the length of the bridge bonds N-Pb and Pb…Pb are different(0.289 2 nm for 2,0.279 1 nm for 2′,0.2848 nm for 2″).The strong hydrogen bond ring motif(N5…N6i0.29543 nm,i2-x,1-y,1-z)is identified as the very commonwhich bridges the binuclear units to the 1D chain(Fig.4 and Table 3),where the Pb2N4ring planes are parallel.The free water molecules construct the 1D chain to a 3D supramolecule through the hydrogen bonds.

    Fig.3 Coordination environment of Pb2+ion in 2 with 30%thermal ellipsoids probability level

    Fig.4 1D chain afforded by hydrogen bonds in 2

    2.2 Thermal gravimetric analyses

    Thermal gravimetric(TG)analyses were carried out between 30 and 800℃(Fig.5)under nitrogen atmosphere.In the TG curve,1 undergoes a dehydration process during the temperature range from 100 to 150℃with a weight loss of 4.81%corresponding to the loss of one water molecule(calcd.4.62%).Then the compound are stable until 200℃and loses 72.81%(calcd.74.81%),which is due to the decomposition of ligand ejecting nitrogen gas[30].For 2,it firstly loses the lattice water between 50 and 110℃,and then loses en molecules at around 220℃,after that a series of weight losses up to 700℃are found.

    Fig.5 TG curves of 1(left)and 2(right)

    2.3 Effects on thermal decomposition of ammonium perchlorate

    To check the effects of thermal decomposition of AP after adding the as-synthesized compounds,compounds 1 and 2 and AP were mixed at a mass ratio of 1∶3 to prepare the target samples for thermal decomposition analyses.A total sample mass used was less than 1.0 mg for all runs.The Kissiger′s method was used to investigate the apparent activate energy(Ea)and the pre-exponential factor(A)by four different heat rates of 5,10,15 and 20℃·min-1[28].DSC curve of AP has three peaks under our experiments condition.The first endothermic peak at 242℃is attributed to the crystallographic transition of AP from orthorhombic to cubic.The second peak at 288℃is exothermic,which is corresponding to the low-temperature decomposition(LTD).The third peak following the LTD instantly is an endothermic peak which is assigned to the hightemperature decomposition(HTD).The HTD process either exothermic or endothermic process,depending on the competition between sublimation and thermal decomposition[31-32].

    After adding the compounds 1 and 2 as the additives to the AP,the first endothermic peak of crystallographic transition was not affected.But the decomposition of AP has changed,the endothermic HTD process change to the exothermic or convert to one exothermic peak with the LTD.Compared to the HTD of the pure AP,the decomposition temperature is lower,as shown in Fig.6.For AP with complexes 1 and 2 as the additives respectively,the two decomposition process become to a broad exothermic band with one or several peaks,which is due the compounds decompose earlier than the pure AP.

    Fig.6 DSC curves for AP,AP after adding 1 and 2 respectively

    Comparing the DSC curves of 1 and 2 with the AP,the decomposition peaks temperature(Tp)of the mixture for adding 2 are lower than that for 1 as well as the activation energy of the mixture,as illustrated in Table 4.Therefore,2 shows better on the decomposition of AP than 1,which is consistent with the report that the lead energetic 4-(2,4.6-trinitroa-nilino)benzoic acid salts performs better than its cobalt or nickel salts for the propellants[23].In summary,the analyses results reveal that both the two metal compounds with H2bta ligand have significant impact on the thermal decomposition of AP,and are good candidates of the additives for the AP-based propellants.

    Table 4 Kinetic parameters of thermal decomposition for AP and AP with additives

    [1]Kulkarni P B,Reddy T S,Nair J K,et al.J.Hazard.Mater.,2005,123:54-60

    [2]Stierstorfer J,Tarantik K R,Klaptke T M.Chem.Eur.J.,2009,15:5775-5792

    [3]Hartdegen V,Klap?tke T M,Sproll S M.Inorg.Chem.,2009,48:9549-9556

    [4]Friedrich M,Galvez-Ruiz J C,Klaptke T M,et al.Inorg.Chem.,2005,44:8044-8052

    [5]Klap?tke T M,Sabate C M,Welch J M.Eur.J.Inorg.Chem.,2009:769-776

    [6]Klap?tke T M,Sabate C M,Rasp M.Dalton Trans.,2009:1825-1834

    [7]Karaghiosoff K,Klaptke T M,Sabate C M.Chem.-Eur.J.,2009,15:1164-1176

    [8]ZHAO Feng-Qi(趙鳳起),CHEN San-Ping(陳三平),FAN Guang(范廣),et al.Chem.J.Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao),2008,29:1519-1522

    [9]Gao E Q,Liu N,Cheng A L,et al.Chem.Commun.,2007:2470-2472

    [10]Lu Y B,Wang M S,Zhou W W,et al.Inorg.Chem.,2008,47:8935-8942

    [11]Janiak C,Scharmann T G,Brzezinka K W,et al.Chem.Ber.,1995,128:323-328

    [12]Horike S,Dinca M,Tamaki K,et al.J.Am.Chem.Soc.,2008,130:5854-5855

    [13]Li J R,Tao Y,Yu Q,et al.Chem.-Eur.J.,2008,14:2771-2776

    [14]DincǎM,Yu A F,Long J R.J.Am.Chem.Soc.,2006,128:8904-8913

    [15]Zhang X M,Jiang T,Wu H S,et al.Inorg.Chem.,2009,48:4536-4541

    [16]Chen Q Y,Li Y,Zheng F K,et al.Inorg.Chem.Commun.,2008,11:969-971

    [17]Janiak C,Scharmann T G.Polyhedron,2003,22:1123-1133

    [18]Klap?tke T M,Mayer P,MiróSabaté C,et al.Inorg.Chem.,2008,47:6014-6027

    [19]Steinhauser G,Klap?tke T K.Angew.Chem.,Int.Ed.,2008,47:3330-3338

    [20]Singh R P,Verma R D,Meshri D T,et al.Angew.,Chem.Int.Ed.,2006,45:3584-3601

    [21]Joo Y H,Twamley B,Garg S,et al.Angew.Chem.,Int.Ed.,2008,47:6236-6239

    [22]Zheng L L,Li H X,Leng J D,et al.Eur.J.Inorg.Chem.,2008:213-217

    [23]Pundlik S M,Palaiah R S,Nair J K,et al.J.Energ.Mater.,2001,19:339-347

    [24]Cui P,Li F S,Zhou J,et al.Propellants,Explos.Pyrotech.,2006,31:452-455

    [25]Chen L J,Li L P,Li G S.J.Alloys Compd.,2008,464:532-536

    [26]Sheldrick G M.SHELXS-97,Program for Solution of Crystal Structures,University of Gottingen,Germany,1997.

    [27]Sheldrick G M.SHELXL-97,Program for Refinement of Crystal Structures,University of Gottingen,Germany,1997.

    [28]Wang W T,Chen S P,Gao S L.Eur.J.Inorg.Chem.,2009:3475-3480

    [29]Etter M C.Acc.Chem.Res.,1990,23:120-126

    [30]Poturovic S,Lu D,Heeg M J,et al.Polyhedron.,2008,27:3280-3286

    [31]Lang A J,Vyazovkin S.Combust.Flame.,2006,145:779-790

    [32]Vyazovkin S,Wight C A.Chem.Mater.,1999,11:3386-3393

    Nitrogen-Rich Coordination Compounds with N,N-Bis(1H-tetrazole-5-yl)-amine:Synthesis,Structure and Effect on the Thermal Decomposition of Ammonium Perchlorate

    XIE GangXIA Zheng-QiangCHEN San-Ping*GAO Sheng-Li*
    (Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education,College of Chemistry and Materials Science,Northwest University,Xi′an 710069,China)

    Two coordination compounds with N,N-bis(1H-tetrazole-5-yl)-amine(H2bta),Cu(bta)(bpy)(H2O)(1)and Pb2(bta)2(en)2·4H2O(2)(bpy=2,2′-bipyridyl and en=ethylenediamine),have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction.In 1,the H2bta ligands coordinate with Cu2+ions in the bidentate chelate mode to form discrete molecular structures,which are assembled through extended hydrogen bonds to generate a 3D architecture.2 presents a 3D supramolecule stucture constructed from 1D chains,in which the binuclear Pb2(bta)2(en)2units are bridged by the strong hydrogen bond ring motif R22(8).Furthermore,compounds 1 and 2 were explored as additives to promote the thermal decomposition of ammonium perchlorate(AP)by the differential scanning calorimetry techniques(DSC).DSC curves reveal that lead-based compound 2 shows better performance than the copper-based compound 1.CCDC:855627,1;774052,2.

    N,N-bis(1H-tetrazole-5-yl)-amine;coordination compounds;ammonium perchlorate;crystal structure

    O614.43+3;O614.121

    A

    1001-4861(2012)02-0367-07

    2011-11-01。收修改稿日期:2011-12-05。

    國家自然科學基金(No.21073142,21173168,21127004),陜西省自然科學基金(No.09JS089)和陜西省教育廳科技專項基金(No.2010JK882,2010JQ2007)資助項目。

    *通訊聯(lián)系人。E-mail:gaoshli@nwu.edu.cn,sanpingchen@126.com

    猜你喜歡
    高氯酸西北大學材料科學
    中海油化工與新材料科學研究院
    西北大學木香文學社
    材料科學與工程學科
    《西北大學學報》(自然科學版)征稿簡則
    福建工程學院材料科學與工程學科
    《材料科學與工藝》2017年優(yōu)秀審稿專家
    《我們》、《疑惑》
    西北大學博物館
    石油知識(2017年4期)2017-08-31 16:54:22
    酸溶-高氯酸氧化光度法測定錳礦石中全錳的含量
    高氟高氯酸性廢水處理實驗研究
    涩涩av久久男人的天堂| 99九九在线精品视频| 国产成人一区二区三区免费视频网站| 日韩大码丰满熟妇| 狠狠狠狠99中文字幕| 黄色视频,在线免费观看| 在线天堂中文资源库| h视频一区二区三区| videos熟女内射| 纯流量卡能插随身wifi吗| 老熟妇乱子伦视频在线观看 | 亚洲精品自拍成人| 国产一区二区三区在线臀色熟女 | 国产91精品成人一区二区三区 | 久热这里只有精品99| 超碰97精品在线观看| 亚洲午夜精品一区,二区,三区| 日日夜夜操网爽| 多毛熟女@视频| 日韩一卡2卡3卡4卡2021年| 免费高清在线观看视频在线观看| 欧美在线一区亚洲| 免费观看人在逋| 国产一区二区三区综合在线观看| 少妇被粗大的猛进出69影院| 天天影视国产精品| 国产日韩欧美在线精品| 日韩 欧美 亚洲 中文字幕| 久久国产精品男人的天堂亚洲| 国产精品影院久久| 久久精品国产a三级三级三级| 久久久精品区二区三区| 一本久久精品| 99国产精品99久久久久| 久久久久久久精品精品| 两人在一起打扑克的视频| 69av精品久久久久久 | 伊人久久大香线蕉亚洲五| 免费在线观看影片大全网站| 男人爽女人下面视频在线观看| 一区二区三区四区激情视频| 国产片内射在线| 国产精品免费大片| 少妇的丰满在线观看| 亚洲国产av影院在线观看| 免费不卡黄色视频| 成年女人毛片免费观看观看9 | 日本撒尿小便嘘嘘汇集6| 日韩大码丰满熟妇| 亚洲黑人精品在线| 久久久久国内视频| 如日韩欧美国产精品一区二区三区| 黄片大片在线免费观看| 色精品久久人妻99蜜桃| 狠狠婷婷综合久久久久久88av| 亚洲av电影在线进入| 日韩熟女老妇一区二区性免费视频| 在线精品无人区一区二区三| 1024香蕉在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲全国av大片| 动漫黄色视频在线观看| 国产精品一区二区精品视频观看| 欧美精品啪啪一区二区三区 | 乱人伦中国视频| 国产在线一区二区三区精| 丝瓜视频免费看黄片| 悠悠久久av| 女人被躁到高潮嗷嗷叫费观| 不卡一级毛片| 国产深夜福利视频在线观看| 亚洲伊人色综图| 国产野战对白在线观看| 无遮挡黄片免费观看| 欧美黑人精品巨大| 男女床上黄色一级片免费看| 五月开心婷婷网| 丝袜美腿诱惑在线| 成年美女黄网站色视频大全免费| 欧美精品一区二区大全| 十八禁人妻一区二区| 久9热在线精品视频| 老司机午夜十八禁免费视频| 国产成人免费观看mmmm| 2018国产大陆天天弄谢| 黑人猛操日本美女一级片| 青春草亚洲视频在线观看| 黄片播放在线免费| 看免费av毛片| 在线观看舔阴道视频| 免费日韩欧美在线观看| 国产精品久久久久久精品电影小说| 亚洲午夜精品一区,二区,三区| 久久久久国产精品人妻一区二区| 亚洲精品中文字幕在线视频| 亚洲国产欧美日韩在线播放| av在线app专区| 欧美黄色片欧美黄色片| 久久精品人人爽人人爽视色| 男女之事视频高清在线观看| 免费高清在线观看视频在线观看| 久久久国产成人免费| 国产精品久久久久久人妻精品电影 | 真人做人爱边吃奶动态| 老司机深夜福利视频在线观看 | 最近最新中文字幕大全免费视频| 最近最新免费中文字幕在线| 亚洲国产欧美一区二区综合| 国产一区二区在线观看av| 国产成人欧美在线观看 | 天堂中文最新版在线下载| 18禁观看日本| 99久久精品国产亚洲精品| 人妻人人澡人人爽人人| 亚洲国产精品一区三区| 50天的宝宝边吃奶边哭怎么回事| 国产高清国产精品国产三级| 青春草亚洲视频在线观看| 热re99久久国产66热| 九色亚洲精品在线播放| 国产精品一区二区精品视频观看| 国产精品免费视频内射| 9热在线视频观看99| 午夜两性在线视频| 精品少妇一区二区三区视频日本电影| 精品人妻一区二区三区麻豆| 国产精品影院久久| 亚洲 国产 在线| 亚洲第一av免费看| 99国产精品免费福利视频| www.av在线官网国产| 91成人精品电影| 91麻豆精品激情在线观看国产 | 在线观看免费视频网站a站| 在线观看免费视频网站a站| 国产欧美亚洲国产| 91麻豆精品激情在线观看国产 | 在线亚洲精品国产二区图片欧美| 日韩制服丝袜自拍偷拍| 欧美黑人精品巨大| 欧美激情高清一区二区三区| av福利片在线| 亚洲国产中文字幕在线视频| 国产免费视频播放在线视频| 欧美精品亚洲一区二区| 精品福利永久在线观看| 亚洲第一青青草原| 岛国毛片在线播放| cao死你这个sao货| 欧美成狂野欧美在线观看| 日本撒尿小便嘘嘘汇集6| www.熟女人妻精品国产| 亚洲国产欧美网| 久久久久国产精品人妻一区二区| 纯流量卡能插随身wifi吗| 久久精品aⅴ一区二区三区四区| 精品少妇黑人巨大在线播放| 日本a在线网址| 亚洲精品日韩在线中文字幕| 99久久精品国产亚洲精品| 啦啦啦中文免费视频观看日本| 水蜜桃什么品种好| 一个人免费看片子| 十八禁网站免费在线| 久久人妻福利社区极品人妻图片| 如日韩欧美国产精品一区二区三区| 两人在一起打扑克的视频| 国产一区二区 视频在线| 亚洲专区字幕在线| 悠悠久久av| 欧美黑人精品巨大| 狠狠婷婷综合久久久久久88av| 久久香蕉激情| 久久影院123| 国产成人免费无遮挡视频| 啦啦啦啦在线视频资源| 美女中出高潮动态图| 欧美日韩亚洲综合一区二区三区_| 亚洲五月婷婷丁香| 午夜久久久在线观看| 欧美乱码精品一区二区三区| 免费在线观看影片大全网站| 一区二区日韩欧美中文字幕| 国产精品av久久久久免费| 国产精品成人在线| 亚洲avbb在线观看| 人妻人人澡人人爽人人| 狠狠精品人妻久久久久久综合| 蜜桃在线观看..| 大陆偷拍与自拍| 欧美人与性动交α欧美精品济南到| 欧美精品av麻豆av| 国产精品熟女久久久久浪| 悠悠久久av| 秋霞在线观看毛片| 午夜福利视频在线观看免费| 久久av网站| 一级,二级,三级黄色视频| 亚洲国产中文字幕在线视频| 美国免费a级毛片| 亚洲午夜精品一区,二区,三区| 午夜免费成人在线视频| www.av在线官网国产| 国产黄频视频在线观看| 午夜久久久在线观看| 一本大道久久a久久精品| 欧美日韩亚洲高清精品| 国产一卡二卡三卡精品| 男女下面插进去视频免费观看| 夜夜夜夜夜久久久久| 色播在线永久视频| 婷婷成人精品国产| 蜜桃在线观看..| 国产精品久久久久久人妻精品电影 | 一区福利在线观看| 日韩视频一区二区在线观看| 后天国语完整版免费观看| 免费久久久久久久精品成人欧美视频| 一本久久精品| 美女视频免费永久观看网站| 日韩欧美一区视频在线观看| 性色av乱码一区二区三区2| 女警被强在线播放| 久久综合国产亚洲精品| 手机成人av网站| 精品亚洲乱码少妇综合久久| 五月开心婷婷网| 亚洲欧美成人综合另类久久久| 亚洲欧洲精品一区二区精品久久久| 欧美乱码精品一区二区三区| 纯流量卡能插随身wifi吗| 丰满饥渴人妻一区二区三| 国产精品影院久久| 捣出白浆h1v1| 亚洲五月婷婷丁香| 欧美另类一区| 成年人午夜在线观看视频| 午夜免费成人在线视频| 久久女婷五月综合色啪小说| 久久香蕉激情| xxxhd国产人妻xxx| 国产日韩欧美视频二区| 精品一品国产午夜福利视频| 亚洲七黄色美女视频| 亚洲国产欧美在线一区| 天天躁日日躁夜夜躁夜夜| 国产深夜福利视频在线观看| 人妻一区二区av| 汤姆久久久久久久影院中文字幕| 午夜激情久久久久久久| 一本大道久久a久久精品| 999久久久国产精品视频| 国产精品一区二区在线观看99| 精品国产乱码久久久久久小说| 亚洲国产精品一区三区| 日韩中文字幕欧美一区二区| av欧美777| 美女大奶头黄色视频| 免费久久久久久久精品成人欧美视频| 国产精品熟女久久久久浪| 一个人免费看片子| 丝袜美腿诱惑在线| 精品久久久久久电影网| 久久 成人 亚洲| 丝袜在线中文字幕| 午夜福利,免费看| a级毛片在线看网站| 久久久国产一区二区| 黄色视频在线播放观看不卡| 青春草视频在线免费观看| 亚洲av欧美aⅴ国产| 亚洲avbb在线观看| 精品福利观看| 少妇被粗大的猛进出69影院| 国产黄频视频在线观看| 色视频在线一区二区三区| 一级a爱视频在线免费观看| 亚洲欧美色中文字幕在线| 久久精品国产亚洲av高清一级| 亚洲avbb在线观看| 9热在线视频观看99| 亚洲精品久久成人aⅴ小说| 高清黄色对白视频在线免费看| 老司机福利观看| 99国产精品一区二区三区| avwww免费| 亚洲精品自拍成人| 成人影院久久| 亚洲欧美激情在线| 18禁国产床啪视频网站| 久久精品成人免费网站| 亚洲精品国产色婷婷电影| 九色亚洲精品在线播放| 在线观看免费视频网站a站| 最近最新免费中文字幕在线| 91大片在线观看| 午夜两性在线视频| 国产欧美日韩精品亚洲av| 丝袜人妻中文字幕| 亚洲欧美日韩高清在线视频 | 国产1区2区3区精品| 欧美日韩黄片免| 精品视频人人做人人爽| 亚洲一区二区三区欧美精品| 欧美大码av| 少妇粗大呻吟视频| 人人妻人人澡人人爽人人夜夜| 国产精品秋霞免费鲁丝片| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| 欧美激情极品国产一区二区三区| 国产黄频视频在线观看| 一级毛片电影观看| 国产精品久久久久久精品古装| 欧美精品高潮呻吟av久久| 亚洲av日韩精品久久久久久密| 日韩有码中文字幕| 国产成+人综合+亚洲专区| 一二三四在线观看免费中文在| 日韩视频在线欧美| 51午夜福利影视在线观看| 99热网站在线观看| 亚洲欧美一区二区三区久久| 国产一级毛片在线| av有码第一页| 日韩一卡2卡3卡4卡2021年| 国产老妇伦熟女老妇高清| 久久av网站| 日本一区二区免费在线视频| 午夜福利影视在线免费观看| 两个人免费观看高清视频| 欧美亚洲 丝袜 人妻 在线| 日日爽夜夜爽网站| 韩国精品一区二区三区| 国产亚洲精品久久久久5区| 人妻久久中文字幕网| 超碰97精品在线观看| 人人妻人人澡人人爽人人夜夜| 成人国产av品久久久| 涩涩av久久男人的天堂| 免费高清在线观看日韩| 成人国产av品久久久| 亚洲成人手机| 精品亚洲成国产av| 国产福利在线免费观看视频| 日本猛色少妇xxxxx猛交久久| 激情视频va一区二区三区| 大香蕉久久网| 日本撒尿小便嘘嘘汇集6| 五月天丁香电影| 精品少妇黑人巨大在线播放| 久久久精品国产亚洲av高清涩受| 精品国产国语对白av| 久久久国产欧美日韩av| 母亲3免费完整高清在线观看| 脱女人内裤的视频| 欧美97在线视频| 亚洲国产欧美一区二区综合| 精品国内亚洲2022精品成人 | 欧美激情久久久久久爽电影 | 一级毛片精品| 欧美+亚洲+日韩+国产| 精品免费久久久久久久清纯 | 国产xxxxx性猛交| av网站免费在线观看视频| 两个人看的免费小视频| 成年av动漫网址| 国产福利在线免费观看视频| 人人澡人人妻人| 国产精品影院久久| 中国美女看黄片| 高潮久久久久久久久久久不卡| 丝瓜视频免费看黄片| 亚洲av日韩在线播放| 高清在线国产一区| 每晚都被弄得嗷嗷叫到高潮| 国产有黄有色有爽视频| 夫妻午夜视频| 12—13女人毛片做爰片一| 中文字幕另类日韩欧美亚洲嫩草| 精品一区在线观看国产| 狠狠精品人妻久久久久久综合| 母亲3免费完整高清在线观看| 色视频在线一区二区三区| 十八禁高潮呻吟视频| 久久天躁狠狠躁夜夜2o2o| av在线播放精品| 天天躁狠狠躁夜夜躁狠狠躁| 色精品久久人妻99蜜桃| 啦啦啦在线免费观看视频4| 亚洲第一av免费看| 久久精品亚洲av国产电影网| 一本久久精品| 91麻豆精品激情在线观看国产 | 国产人伦9x9x在线观看| 久久人人97超碰香蕉20202| 亚洲黑人精品在线| 免费一级毛片在线播放高清视频 | 国产亚洲午夜精品一区二区久久| 久久久久网色| 一二三四社区在线视频社区8| 成人国产av品久久久| 在线观看舔阴道视频| 欧美午夜高清在线| 99久久国产精品久久久| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频 | 精品国产一区二区三区四区第35| 久久精品成人免费网站| 亚洲国产欧美网| 考比视频在线观看| 精品国产乱码久久久久久小说| 欧美激情久久久久久爽电影 | 热99国产精品久久久久久7| 亚洲国产精品999| 十分钟在线观看高清视频www| 动漫黄色视频在线观看| 国产亚洲精品久久久久5区| 91大片在线观看| 亚洲成人免费av在线播放| 后天国语完整版免费观看| 欧美精品啪啪一区二区三区 | 一进一出抽搐动态| 老司机影院成人| 久久中文看片网| 狂野欧美激情性xxxx| 久久久久久久大尺度免费视频| 最近最新中文字幕大全免费视频| 日日夜夜操网爽| 久久天堂一区二区三区四区| 久久久精品国产亚洲av高清涩受| 亚洲精品第二区| 男女免费视频国产| 中文字幕av电影在线播放| 精品一品国产午夜福利视频| bbb黄色大片| 国产精品99久久99久久久不卡| 亚洲av日韩精品久久久久久密| 精品欧美一区二区三区在线| 亚洲精品中文字幕在线视频| 久久精品国产亚洲av高清一级| 久久 成人 亚洲| 91麻豆精品激情在线观看国产 | 欧美成狂野欧美在线观看| 亚洲欧美清纯卡通| 欧美激情 高清一区二区三区| 可以免费在线观看a视频的电影网站| a在线观看视频网站| 国产极品粉嫩免费观看在线| 我要看黄色一级片免费的| 亚洲少妇的诱惑av| 美女脱内裤让男人舔精品视频| 久久久久国产一级毛片高清牌| 下体分泌物呈黄色| 国产一区二区三区综合在线观看| 国产成人免费观看mmmm| 国产一级毛片在线| 电影成人av| 王馨瑶露胸无遮挡在线观看| 精品人妻在线不人妻| 国产成人免费观看mmmm| 美女视频免费永久观看网站| 51午夜福利影视在线观看| 亚洲精品av麻豆狂野| 午夜免费观看性视频| 人人妻人人澡人人看| 亚洲欧美激情在线| 黄频高清免费视频| 一级毛片精品| 精品少妇黑人巨大在线播放| 久久青草综合色| 午夜影院在线不卡| 99久久国产精品久久久| 亚洲精品成人av观看孕妇| 久久人妻福利社区极品人妻图片| 丰满迷人的少妇在线观看| 国产淫语在线视频| 美女主播在线视频| 黄网站色视频无遮挡免费观看| 69av精品久久久久久 | 色视频在线一区二区三区| 欧美午夜高清在线| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| 亚洲av国产av综合av卡| 美女国产高潮福利片在线看| 国产欧美亚洲国产| 午夜成年电影在线免费观看| www.自偷自拍.com| 亚洲美女黄色视频免费看| 久久国产精品影院| 狠狠狠狠99中文字幕| 国产在视频线精品| 久久国产精品大桥未久av| 亚洲国产欧美网| av有码第一页| 丁香六月欧美| 亚洲av美国av| 久久午夜综合久久蜜桃| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 极品少妇高潮喷水抽搐| 久久久精品国产亚洲av高清涩受| 午夜精品国产一区二区电影| 亚洲一区二区三区欧美精品| 日韩 亚洲 欧美在线| 亚洲国产欧美一区二区综合| 岛国在线观看网站| 欧美xxⅹ黑人| av电影中文网址| 天天添夜夜摸| 王馨瑶露胸无遮挡在线观看| av有码第一页| 啦啦啦在线免费观看视频4| 精品少妇黑人巨大在线播放| 久久国产精品人妻蜜桃| a级片在线免费高清观看视频| www.精华液| 久久狼人影院| 国产成人啪精品午夜网站| 日韩精品免费视频一区二区三区| 久久久久久亚洲精品国产蜜桃av| 自线自在国产av| 日本一区二区免费在线视频| 999久久久国产精品视频| 99香蕉大伊视频| 999精品在线视频| 永久免费av网站大全| 精品国内亚洲2022精品成人 | 精品福利永久在线观看| 在线十欧美十亚洲十日本专区| 天堂中文最新版在线下载| 欧美激情久久久久久爽电影 | 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美精品永久| 男人添女人高潮全过程视频| 热99re8久久精品国产| 99久久人妻综合| 国产麻豆69| 国产亚洲av片在线观看秒播厂| 国产一区二区在线观看av| 99国产极品粉嫩在线观看| 国产成人一区二区三区免费视频网站| 热re99久久精品国产66热6| 男女边摸边吃奶| 久久久精品区二区三区| 麻豆av在线久日| 99热全是精品| 国产精品 国内视频| 少妇 在线观看| 欧美亚洲 丝袜 人妻 在线| 韩国高清视频一区二区三区| 嫁个100分男人电影在线观看| 韩国高清视频一区二区三区| 亚洲人成电影观看| 午夜两性在线视频| 欧美精品一区二区免费开放| 久久久精品区二区三区| 国产黄色免费在线视频| 欧美日韩黄片免| 久久香蕉激情| 999久久久国产精品视频| bbb黄色大片| 自线自在国产av| 亚洲伊人久久精品综合| 欧美日韩亚洲高清精品| 女警被强在线播放| 久久久久久久大尺度免费视频| 久久香蕉激情| www.自偷自拍.com| 夜夜夜夜夜久久久久| 波多野结衣av一区二区av| 成人三级做爰电影| 国产成人系列免费观看| 欧美一级毛片孕妇| 久热这里只有精品99| 亚洲avbb在线观看| 国产欧美日韩一区二区三 | 欧美日韩精品网址| 久久精品成人免费网站| 黄网站色视频无遮挡免费观看| 国产精品成人在线| 国产高清视频在线播放一区 | 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 999久久久国产精品视频| e午夜精品久久久久久久| 日本五十路高清| 熟女少妇亚洲综合色aaa.| 欧美变态另类bdsm刘玥| 青春草亚洲视频在线观看| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 91av网站免费观看| 欧美国产精品va在线观看不卡| 国产成人精品久久二区二区91| 精品福利观看| 久久九九热精品免费| 18禁观看日本| 国产精品亚洲av一区麻豆| 日韩 欧美 亚洲 中文字幕| 国产精品 欧美亚洲| 18禁国产床啪视频网站| 精品国内亚洲2022精品成人 | 2018国产大陆天天弄谢| av欧美777| 淫妇啪啪啪对白视频 | 色婷婷av一区二区三区视频| 国产一区有黄有色的免费视频| 亚洲国产中文字幕在线视频| 久久久欧美国产精品| xxxhd国产人妻xxx| 久久精品人人爽人人爽视色| 欧美国产精品va在线观看不卡| 亚洲精华国产精华精|