• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis on mechanisms of anomalous variations of tropopause pressure over the Tibetan Plateau during summer in Northern Hemisphere

    2012-12-09 09:36:58BaoLinZhuChuHanLuZhaoYongGuanZhiChengWenJunLiu
    Sciences in Cold and Arid Regions 2012年2期

    BaoLin Zhu , ChuHan Lu , ZhaoYong Guan , Zhi Cheng , WenJun Liu

    1. Meteorological Service Center of Yunnan, Kunming 650034, China

    2. Key Laboratory of Meteorological Disaster of Ministry of Education, Institute of Atmospheric Sciences, Nanjing University of Information Sciences & Technology, Nanjing 210044, China

    3. Anhui Climate Center, Hefei 230031, China

    4. Haidian District Meteorological Bureau, Beijing 100080, China

    Analysis on mechanisms of anomalous variations of tropopause pressure over the Tibetan Plateau during summer in Northern Hemisphere

    BaoLin Zhu1*, ChuHan Lu2, ZhaoYong Guan2, Zhi Cheng3, WenJun Liu4

    1. Meteorological Service Center of Yunnan, Kunming 650034, China

    2. Key Laboratory of Meteorological Disaster of Ministry of Education, Institute of Atmospheric Sciences, Nanjing University of Information Sciences & Technology, Nanjing 210044, China

    3. Anhui Climate Center, Hefei 230031, China

    4. Haidian District Meteorological Bureau, Beijing 100080, China

    Using the monthly mean data from NCEP-NCAR reanalysis, through building tropopause pressure index, we investigated the mechanisms of anomalous variations of tropopause pressure over the Tibetan Plateau during summer in Northern Hemisphere. For comparative analysis we selected representative years of 1992 and 1998 to study, and they were respectively the highest and the lowest year of tropopause pressure anomaly over the Tibetan Plateau. The results are summarized as follows: (1) Over the Tibetan Plateau, the variations of tropopause pressure are well correlated respectively with anomalous temperature and geopotential height in both troposphere and stratosphere. Besides, the anomalous tropopause pressure has also close relation with anomalous surface temperature in the Tibetan Plateau. In 1992, the surface temperature was anomalously low, correspondingly, the tropopause pressure over the Tibetan Plateau was anomalously high; but in 1998, the opposite was the case. (2) Over the Tibetan Plateau, the correlation of tropopause pressure and OLR (Outgoing Longwave Radiation) is found to be positive. Furthermore, by further diagnosing the circulation fields between 850 hPa and 200 hPa levels and the whole troposphere vapour field, we found out that the anomalously high tropopause pressure in 1992 corresponded to the anticyclonic divergence of low level wind fields and the cyclonic convergence of high level wind fields, and coupled with divergence of the whole troposphere vapour fields along with the South Asian High weakened at the same time. While in 1998, the case was opposite to that in 1992. These facts indicated that the anomalous convection resulted in the significant difference of tropopause pressure in 1992 and 1998 over the Tibetan Plateau. (3)The vertically integrated heat budget anomalies were responsible for explaining tropopause pressure anomalies in 1992 and 1998 over the Tibetan Plateau.

    Tibetan Plateau; tropopause pressure; anomalous variations; mechanisms; convection anomaly

    1. Introduction

    The tropopause represents the boundary between the troposphere and stratosphere, and is marked by large changes in convective activity, thermal, dynamic, and chemical structure of the atmosphere. The vertical structure and its change of the tropopause bring about important impacts on stratosphere-troposphere exchange and chemical balance,and also act as a sensitive indicator of anthropogenic forcing climate change (Santeret al., 2003; Bian, 2009). Increased attention has been paid on the large-scale and regional changes of the tropopause, including associated environmental and climatic changes (Thuburn and Craig, 2000,2002). The climatic feature of the tropopause is influenced by the interaction of the Earth system (Maxobep, 1988),whose inner dynamics, external forcing, feedback mechanism and instability lead to its variability. Comprehensively and precisely understanding regional variations of the tropopause is important for understanding the coupling between the stratosphere and the troposphere (Holtonet al.,1995; Shepherd, 2000).

    The Tibetan Plateau (hereafter noted as TP), with its large extent and height, greatly impacts the general circulation, climate and severe weather of eastern Asia, with both dynamic and heating effects (Liu, 1999; Daoet al., 2006; Li and Liu, 2006). Holtonet al. (1995) pointed out that the TP is the key region of troposphere-stratosphere mass and energy exchange, and these exchanges are mainly induced by synoptic scale processes like tropopause folding. Linked with dynamic and heating processes of the TP, notable low ozone valley formed in this region (Zhouet al., 1995; Wanget al., 2008), which may be indicated by height of the tropopause (Hoinkaet al., 1996; Wanget al., 2010). Therefore,it is worth investigating the pressure variation and its mechanism of the TP.

    The data and index definition representing the strength of pressure over the TP tropopause are described more fully in section 2. The main analyses of the linkage between the pressure variation of the TP tropopause and the stratospheric temperature and geopotential height anomalies are described in section 3. In section 4, we discuss the convective-activity induced mechanism to tropopause-pressure variation over the TP. The results are summarized and discussed in section 5.

    2. Data and intensity index of TP tropopause pressure

    The observed data used in this study are obtained from the monthly mean reanalysis dataset of the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) for the 22-summer(June-July-August mean) period from 1979 to 2000 (Kistleret al., 2001). The resolution of the NCEP-NCAR reanalysis data is 2.5° in latitude and longitude along with the 17 pressure levels from 1,000 hPa to 10 hPa. The speci fi c variables we used from the NCEP reanalysis are, zonal and meridional wind, air temperature, geopotential height from all the 17 pressure levels, specific humidity (top level: 300 hPa), pressure velocity (top level: 100 hPa) and surface air temperature. Tropopause pressure values are especially relevant to this study. Outgoing Longwave Radiation (OLR) data from NOAA are also used to investigate convective activity near the TP.

    As seen in Figure 1, the multi-year mean of tropopause pressure over the TP and its surrounding area exhibit the lowest value in the world. Based on spatially coherent pressure variation over the TP, intensity index of TP tropopause pressure (hereafter shown asITT) is defined as standardized box-average (40°-150°E, 20°-35°N) pressure, which can be written as:

    where∑ is the region area within 20°-35°N and 40°-150°E,Mis the multi-year mean ofMt.

    As shown in Figure 2, notable inter-annual variability ofITTis evident. In summer of 1992,ITTwas up to a 3.6 standard deviation anomaly, indicating remarkably high pressure over the TP. A distinct opposite situation occurred in 1998,whoseITTwas about -1.5 standard deviation. In fact, the geographic distribution of tropopause pressure anomalies over the TP in 1992 was 9 hPa higher than that in 1998,demonstrating thatITTcan be a proxy of variability of tropopause pressure over the TP. To assess what factors contribute to tropopause pressure over the TP variation, further comparison in 1992 and 1998 will be taken.

    Figure 1 Patterns of multi-year mean global tropopause pressure (unit: hPa)

    Figure 2 Histogram of summer tropopause pressure index changing with time over the Tibetan Plateau

    3. Relationship between tropopause pressure and circulation over the TP

    The opposition of vertical structures of air temperature and geopotential height over the TP in 1992 and 1998 is striking (Figure 3). As shown in Figures 3a and 3c, in summer of 1992, the air temperature throughout the depth of troposphere (stratosphere) emerged as notable cooling(heating), leading to air column shrinking (expanding).Hence the associated tropopause pressure descended sharply.An opposite scenario occurred in summer of 1998 (Figures 3b and 3d), which exhibited pronounced lower pressure over the TP tropopause, with positive (negative) anomalous values of air temperature and geopotential height in the troposphere (stratosphere). It is interesting that the vertical distributions of air temperature and geopotential height fields throughout the entire air column were nearly out of phase in 1992 comparing with in 1998. In 1992, the air temperature anomaly change from the bottom up showed as a "- + -"pattern, and the geopotential height anomaly was "-" in troposphere and "+" in stratosphere. In 1998, the distributions were in opposite case.

    Figure 3 Longitude-pressure cross-sections of summer temperature anomaly (a: 1992, b: 1998) and geopotential height anomaly (c: 1992, d: 1998) along 20°N-35°N over the Tibetan Plateau

    To further explore the difference of air temperature anomaly field between in low-pressure and in high-pressure tropopause, we show in Figure 4 the spatial distributions of anomalous surface air temperature in 1992 and 1998. Consistent with demonstrations in Figures 3a and 3b, the surface air temperature anomaly over the TP in 1992 was marked by big negative values, reflecting very cold weather (Figure 4a), and the case was opposite in 1998 (Figure 4b). Opposite features between in 1992 and in 1998 were also evident on zonal variation of the surface air temperature anomaly over the TP (Figure 4c), generally showing negative anomaly in 1992 and positive anomaly in 1998. Sausen and Senter (2003) pointed out that the mean height of the Global mean tropopause has been rising since 1979, and considered its change consistent with variations of surface temperature, vertical temperature profile and ocean heat storage. The tropopause height over the TP has positive correlation with surface air temperature anomaly and the tropopause pressure has negative correlation with surface air temperature anomaly. The anomalous low surface air temperature on TP in 1992 corresponded to the anomalous high tropopause pressure; the anomalous high surface air temperature in 1992 corresponded to the anomalous low tropopause pressure in 1998.

    Figure 4 Ground surface temperature anomaly over the Tibetan Plateau in summer (a: 1992, b: 1998) and its longitudinal cross-section along 20°N-35°N (c)

    4. Mechanism of pressure variation over the TP tropopause

    4.1. Convective activity influence

    To explore the connection of convective activity between circulations in lower and upper troposphere, we examine the correlation between intensity index of TP tropopause pressure (ITT) and Outgoing Longwave Radiation(OLR) over Asian summer monsoon region. As shown in Figure 5a, a positive correlation is identified over the TP,especially significance test proves that the positive correlation in southeastern India and southwestern China surpasses 90% confidence level. The convection intensity between circulations in lower and upper troposphere becomes weak when the pressure over the TP tropopause rises and the OLR increases, in contrary, the convection intensity becomes strengthened when TP tropopause pressure drops and the OLR decreases. Furthermore, the spatial distributions of OLR anomaly in 1992 and 1998 all show agreement to the above-mentioned positive correlation (Figures 5b and 5c). In 1992, the distribution of OLR anomaly differentiated over the TP and its surrounding areas: OLR in north of the Bengal Bay and southwest of China are up to 3 W/m2higher than the multi-year mean, and slightly lower than the mean over other regions (Figure 5b), indicating more longwave radiation loss from ground surface of TP as a whole, consequently resulting in low air temperature in TP. In comparison,the overall spatial pattern of OLR anomaly in 1998 displayed an opposite layout (Figure 5c), which implied stronger convection and more cloud cover over the TP. These results indicate that convection activity over the TP plays an important role in tropopause-pressure variation. In the followed section, we will further discuss the relationship of anomalous convection with circulation anomaly in lower and upper air, water vapor flux convergence, and the anomaly of the South Asian High (SAH).

    Figure 5 Correlation between tropopause pressure index and OLR anomaly (a) over the Tibetan Plateau (areas where the confidence level is higher than 90% are shaded) and spatial patterns of OLR anomaly (b: 1992, c: 1998) (unit: W/m2)

    4.1.1 Anomalous circulation features in the troposphere

    Figures 6 and 7 demonstrated circulations in lower and upper troposphere over Asian summer monsoon region in 1992 and 1998. In 1992, anticyclone-like and divergent circulation was identified over the TP and surrounding areas at lower troposphere of 850 hPa (Figures 6a and 6c);while cyclone-like and convergent circulation occurred at upper troposphere of 200 hPa (Figures 6b and 6d). This pattern favored air descending in the troposphere and restrained the development of convection over the TP, contributing to lower geopotential height and tropopause higher pressure. In contrast, the circulation pattern was the opposite case in 1998 (Figure 7). This pattern was helpful for air evidently ascending in the trpoposphere and favored the development of convection over the TP, contributing to higher geopotential height and tropopause lower pressure.It is worthwhile to note that the anomalous variations of troposphere pressure over the TP correspond to the anomalous wind fields occurrence at east and south sides of TP,indicating that TP high pressure, as an important component of Asian Monsoon System, has close relation with the eastern Asian summer monsoon (EASM) activities in tropopause pressure variations over the TP.

    Figure 6 Tropospheric stream function anomaly (unit: ×106 m2/s) and its rotational wind field anomaly (unit: m/s) as well as tropospheric velocity potential function anomaly (unit: ×106 m2/s) and its divergent wind field anomaly (unit: m/s)over Aisan monsoon region in summer of 1992 (a, c: 850 hPa; b, d: 200 hPa)

    Figure 7 Tropospheric stream function anomaly (unit: ×106 m2/s) and its rotational wind field anomaly (unit: m/s) as well as tropospheric velocity potential function anomaly (unit: ×106 m2/s) and its divergent wind field anomaly (unit: m/s)over Aisan monsoon region in summer of 1998 (a, c: 850 hPa; b, d: 200 hPa)

    4.1.2 Water vapor flux

    The features of total column water vapor flux over the TP and surrounding areas accord with anomalous tropospheric wind field (Figure 8). Specially, negative vapor velocity potential anomalies dominated over the Asian region in 1992, with a pronounced divergence center in the southeast of TP, suggesting drier conditions in this region (Figure 8a). Correspondingly, the convection was weak, resulting in positive pressure anomalies over the TP tropopause. An opposite scenario occurred in 1998, during which positive anomalies prevailed over most of the Asian region, with notable convergence near TP (Figure 8b). These facts proved that the convergence or divergence of total water vapor flux might cause anomalous convection over the TP, resulting in troposphere pressure anomaly over the TP.

    Figure 8 Patterns of moisture flux potential function anomaly (unit: kg/s) and divergent wind field anomaly (unit: kg/(m·s))integrated from 1,000 hPa to 300 hPa over Asia area (a: 1992, b: 1998)

    4.1.3 200 hPa South Asian High

    The South Asian High (SAH) as the strongest and steadiest pressure system in the upper troposphere occurs near TP and its surrounding area in summer (Ye and Gao, 1979; Zhuet al., 1980; Tanget al., 1982; Kang and Wu, 1990). The SAH clearly shows close connection with tropopause pressure variability over the TP (Figure 9a). The significant negative correlations display predominantly over the TP and its surrounding area, with the maximum negative coefficient of-0.6 and the mean of -0.49 at 22 samples, and the confidence levels exceed 95%. This negative relation clearly suggests that the TP tropopause pressure will reduce as the SAH strengthens, andvice versa.

    Ma (2003) reported that there is positive correlation between the SAH geopotential high and the summer monsoon intensity over the TP. In summer of 1992, negative geopotential high values prevailed in the Asian regions at 200 hPa, indicating weak summer monsoon intensity and weak convection activity over the TP, thereby contributing to positive abnormal tropopause pressure (Figure 9b). In contrast, positive geopotential high values dominated over the Asian regions at 200 hPa in summer of 1998, suggesting vigorous summer monsoon intensity and strong convection over the TP, leading to negative abnormal tropopause pressure (Figure 9c).

    Figure 9 Distribution of correlation coefficient between summer 200-hPa geopotential height anomaly over Northern Hemisphere and tropopause pressure index over Tibetan Plateau (a) (areas where the confidence level is higher than 0.05 are shaded),and patterns of geopotential height anomaly over Northern Hemisphere at 200 hPa in 1992 (b) and 1998 (c).

    4.2. Heat budget anomalies

    To further explore the mechanism of tropopause pressure variation, we referred the research results of Rodwell and Hoskins (1996) and Guan and Yamagata (2003) to examine the vertical integration of heating budget. The thermodynamic equation is expressed as:

    The non-adiabatic heating over the TP and its surrounding area in 1992 and 1998 were identified as two opposite scenarios (Figure 10). Particularly, in summer of 1992,anomalous non-adiabatic cooling displayed over the TP with center in its eastern part, leading to temperature dropping in entire troposphere and air condensing; more air moved from the stratosphere to the troposphere, resulting in tropopause height descended (Figure 10a). In summer of 1998, anomalous non-adiabatic heating occurred predominantly over the TP with center located in its middle-west part, contributing to air expansion and tropopause height uplifting over the TP(Figure 10b). Therefore, the significant difference of total air column non-adiabatic heating and its corresponding anomalous convection are the main causes resulting in important difference of tropopause pressure anomaly over the TP.

    Figure 10 Total air column anomalous non-adiabatic heating rate (unit: °C/d) averaged from surface to 100 hPa over Tibetian Plateau in summer (a: 1992, b: 1998)

    5. Conclusion and discussions

    The monthly mean data from NCEP-NCAR reanalysis were used to investigate the mechanisms of anomalous variations of tropopause pressure over the TP during summer of Northern Hemisphere. The highest tropopause pressure anomaly occurred in year 1992, and the lowest tropopause pressure anomaly happened in 1998 over the TP. Some comparative research results have been obtained:

    (1) The variations of tropopause pressure are well correlated respectively with anomalous temperature and geopotential height in both troposphere and stratosphere. Anomalous tropopause pressure also correlates well with anomalous surface temperature in TP. In 1992, the surface temperature was anomalously low, correspondingly, the tropopause pressure over the Tibetan Plateau was anomalously high; but in 1998, the opposite was the case.

    (2) The correlation between tropopause pressure and OLR is found to be positive. Further diagnosing the circulation fields between 850 hPa and 200 hPa levels and the whole troposphere vapour field, we found that the anomalously high tropopause pressure in 1992 corresponds to the anticyclonic divergence of low level wind fields and the cyclonic convergence of high level wind fields, and coupled with divergence of the whole troposphere vapour fields as the South Asian High weakened at the same time. While in 1998, the case was opposite to 1992. The anomalous convection has resulted in the significant difference of tropopause pressure in 1992 and 1998.

    (3) The vertically integrated heat budget anomalies are responsible for explaining tropopause pressure anomalies in 1992 and 1998.

    The relationship between tropopause pressure variability over the TP and circulation anomalies has been principally disclosed in this paper, and it is found out that non-adiabatic heating and the corresponding anomalous convection are the possible physical mechanism of anomalous tropopause pressure variability. However, our diagnostic results still need further reanalysis due to TP’s unique geography and complicated climatic influencing factors. Moreover, we need to further study how tropopause pressure variation over the TP be an indicator for regional climate change in China, and try to use it in short term climate prediction.

    This work is supported jointly by the National Basic Research Program of China (2010CB428602) and the National Natural Science Foundation of China (41005046,40675025).

    Bian JC, 2009. Recent advances in the study of atmospheric vertical structures upper troposphere and lower stratosphere. Advances in Earth Sciences, 24(3): 262-271.

    Dao XY, Guo ZY, Wu JP, Wang Q, Lin H, 2006. A study on the features of dynamical field influencing MCS trajectories over the Tibetan Plateau in summer. Journal of Tropical Meteorology, 22(6): 600-604.

    Guan ZY, Yamagata T, 2003. The unusual summer of 1994 in East Asia:IOD teleconnections. Geophys. Res. Lett., 30(10): 1544. DOI:10.1029/2002GL016831.

    Hoinka KP, Claude H, Khler U, 1996. On the correlation between tropopause pressure and ozone above Central Europe. Geophysical Research Letters, 23(14): 1753-1756.

    Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L,1995. Stratosphere Troposphere exchange. Reviews of Geophysics,33(4): 403-440.

    Kang SF, Wu MJ, 1990. The climatic characters of OLR field over Qinghai-Xizang Plateau. Plateau Meteorology, 9(1): 98-103.

    Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M,Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R,Fiorino M, 2001. The NCEP-NCAR 40-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82(2): 247-267.

    Li GP, Liu HW, 2006. A dynamical study of the role of surface heating on the Tibetan Plateau vortices. Journal of Tropical Meteorology, 22(6):632-637.

    Liu XD, 1999. Influences of Tibetan Plateau uplift on the atmospheric circulation, global climate and environment changes. Plateau Meteorology,18(3): 321-332.

    Ma ZF, 2003. Impact of strong/weak Plateau summer monsoon on South Asia high activity. Plateau Meteorology, 22(2): 143-146.

    Maxobep M, 1988. Tropopause Climatology. Translated by Zhang GY, Liao SF. China Meteorological Press, Beijing.

    Rodwell MJ, Hoskins BJ, 1996. Monsoons and the dynamics of deserts.Quarterly Journal of the Royal Meteorol. Soc., 122: 1385-1404.

    Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE,Ammann C, Arblaster J, Washington WM, Boylel JS, Brüggemann W,2003. Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301: 479-483.

    Sausen R, Santer BD, 2003. Use of changes in tropopause height to detect human influences on climate. Meteorol. Z., 12: 131-136.

    Shepherd TG, 2000. The middle atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 62: 1587-1601.

    Tang MC, Xu MC, Li DM, 1982. Discuss on the analysis methods of surface weather chart over Tibetan Plateau. Plateau Meteorology, 1(3): 52-62.

    Thuburn J, Craig GC, 2000. Stratospheric influence on tropopause height:The radiative constraint. Journal of the Atmospheric Sciences, 58(1):17-28.

    Thuburn J, Craig GC, 2002. On the temperature of the tropical substratosphere. Journal of Geophysical Research, 107(D2): 4017-4026.

    Wang TM, Wu GX, Wan RJ, 2008. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area. Plateau Meteorology, 27(1): 1-9.

    Wang WG, Liang JP, Wang HY, Fan WX, 2010. Comparative study on mass and ozone fluxes cross tropopause over Qinghai-Xizang Plateau and its surrounding areas. Plateau Meteorology, 29(3): 554-562.

    Ye DZ, Gao YX, 1979. The Tibetan Plateau Meteorology. Science Press,Beijing.

    Zhou XJ, Luo C, Li WL, Shi JN, 1995. The change of total ozone over China area and the Low value center over the Tibetan Plateau. Chinese Science Bulletin, 40(15): 1396-1398.

    Zhu FK, Lu LH, Chen XJ, Zhao W, 1980. The South Asia High. Science Press, Beijing.

    10.3724/SP.J.1226.2012.00154

    *Correspondence to: BaoLin Zhu, Meteorological Service Center of Yunnan. No. 77, Xichang Road, Kunming, Yunnan 650034,China. Email: zhubaolin2004@163.com

    September 21, 2011 Accepted: December 5, 2011

    亚洲一区二区三区色噜噜| 人人妻人人澡欧美一区二区| 成人三级黄色视频| 国产视频首页在线观看| 秋霞在线观看毛片| 亚洲三级黄色毛片| 全区人妻精品视频| 深夜精品福利| 国产淫片久久久久久久久| 国产v大片淫在线免费观看| av专区在线播放| 免费观看在线日韩| 美女国产视频在线观看| 国模一区二区三区四区视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品合色在线| 色噜噜av男人的天堂激情| 国产精品日韩av在线免费观看| 午夜精品在线福利| 亚洲丝袜综合中文字幕| 亚洲精品自拍成人| 乱人视频在线观看| 99热全是精品| 国产在线男女| 自拍偷自拍亚洲精品老妇| 国产一区二区亚洲精品在线观看| 午夜激情欧美在线| av在线亚洲专区| 亚洲精品自拍成人| 天美传媒精品一区二区| 亚洲精品456在线播放app| 国产亚洲精品av在线| 日韩欧美 国产精品| 精品国产三级普通话版| 亚洲精品久久国产高清桃花| 高清毛片免费看| 午夜视频国产福利| 亚洲真实伦在线观看| 久久久久久久午夜电影| 禁无遮挡网站| 成人综合一区亚洲| 欧美一区二区精品小视频在线| 变态另类丝袜制服| 老司机影院成人| 男女那种视频在线观看| 两个人的视频大全免费| 久久久久久大精品| 一进一出抽搐动态| a级一级毛片免费在线观看| 成人毛片60女人毛片免费| 亚州av有码| 高清毛片免费观看视频网站| 亚洲在线观看片| 你懂的网址亚洲精品在线观看 | 成年女人永久免费观看视频| 久久久久性生活片| 国产精品乱码一区二三区的特点| 久久国产乱子免费精品| 一个人免费在线观看电影| 久久99热6这里只有精品| 欧美高清成人免费视频www| 中文字幕av成人在线电影| 哪里可以看免费的av片| 韩国av在线不卡| 国产精品人妻久久久久久| 男人舔奶头视频| 亚洲无线在线观看| 午夜爱爱视频在线播放| 中国美白少妇内射xxxbb| 日本五十路高清| 国产一区二区三区在线臀色熟女| 国产一级毛片在线| 国内精品一区二区在线观看| 国产蜜桃级精品一区二区三区| 一边摸一边抽搐一进一小说| 亚洲三级黄色毛片| 2021天堂中文幕一二区在线观| 舔av片在线| 久久精品国产亚洲网站| 欧美高清成人免费视频www| 2021天堂中文幕一二区在线观| 日本免费a在线| 又爽又黄无遮挡网站| 伦精品一区二区三区| 免费看a级黄色片| 欧美一区二区亚洲| 亚洲av电影不卡..在线观看| 在线天堂最新版资源| 国产精品,欧美在线| 男插女下体视频免费在线播放| 观看免费一级毛片| 成年女人看的毛片在线观看| 国产精品日韩av在线免费观看| 国产中年淑女户外野战色| 在线国产一区二区在线| 最好的美女福利视频网| 超碰av人人做人人爽久久| 婷婷色av中文字幕| h日本视频在线播放| 99久久中文字幕三级久久日本| 99久国产av精品国产电影| 男女那种视频在线观看| 此物有八面人人有两片| 欧美激情在线99| 尤物成人国产欧美一区二区三区| 久久久久久九九精品二区国产| 欧美性猛交黑人性爽| a级毛色黄片| 国内精品一区二区在线观看| 国产一区亚洲一区在线观看| 久久久国产成人免费| 亚洲av中文字字幕乱码综合| 欧美日韩在线观看h| 亚洲七黄色美女视频| 99热这里只有精品一区| 色哟哟哟哟哟哟| 亚洲欧洲日产国产| 中出人妻视频一区二区| av福利片在线观看| 欧美精品国产亚洲| 久久久久性生活片| 国产亚洲精品久久久久久毛片| 国产亚洲91精品色在线| 日本黄色片子视频| 你懂的网址亚洲精品在线观看 | 国产麻豆成人av免费视频| 18+在线观看网站| 日本与韩国留学比较| 日韩av在线大香蕉| 久久久精品大字幕| 黄片无遮挡物在线观看| 高清毛片免费观看视频网站| 尾随美女入室| 美女国产视频在线观看| 韩国av在线不卡| 国产毛片a区久久久久| 免费av毛片视频| 午夜精品在线福利| 欧美+日韩+精品| avwww免费| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| 久久人人精品亚洲av| 国产高清有码在线观看视频| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 天天躁日日操中文字幕| av在线老鸭窝| 免费观看a级毛片全部| 亚洲五月天丁香| 青春草视频在线免费观看| 亚洲精品日韩在线中文字幕 | 久久精品91蜜桃| 精品久久久久久久久av| 午夜福利成人在线免费观看| 国产高潮美女av| 在线观看美女被高潮喷水网站| 成年av动漫网址| 日本黄色视频三级网站网址| 亚洲av一区综合| av黄色大香蕉| 久久99精品国语久久久| 一本久久中文字幕| 精品久久久噜噜| 蜜臀久久99精品久久宅男| 精品免费久久久久久久清纯| 天堂影院成人在线观看| av在线蜜桃| 美女xxoo啪啪120秒动态图| 内地一区二区视频在线| 午夜福利在线观看免费完整高清在 | 校园人妻丝袜中文字幕| 国产在线精品亚洲第一网站| 日日啪夜夜撸| 男人的好看免费观看在线视频| 18+在线观看网站| 久久精品国产自在天天线| 六月丁香七月| 联通29元200g的流量卡| avwww免费| 在线免费十八禁| 欧美激情国产日韩精品一区| 日韩欧美一区二区三区在线观看| 国产日本99.免费观看| 久久久久国产网址| 日韩欧美三级三区| 特大巨黑吊av在线直播| 午夜福利高清视频| 美女内射精品一级片tv| 一级毛片aaaaaa免费看小| 亚洲自拍偷在线| 最近手机中文字幕大全| 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 中文在线观看免费www的网站| 久久热精品热| 欧美成人一区二区免费高清观看| 久久这里有精品视频免费| 亚洲精品日韩av片在线观看| 三级毛片av免费| 欧美不卡视频在线免费观看| or卡值多少钱| 欧美最黄视频在线播放免费| 日韩制服骚丝袜av| 成人鲁丝片一二三区免费| 99视频精品全部免费 在线| 久久久久久久午夜电影| 别揉我奶头 嗯啊视频| 22中文网久久字幕| 日韩成人av中文字幕在线观看| 又爽又黄a免费视频| 只有这里有精品99| 亚洲欧美日韩高清专用| 精品不卡国产一区二区三区| 一个人免费在线观看电影| 国产在线精品亚洲第一网站| 深夜a级毛片| 久久久久网色| 三级男女做爰猛烈吃奶摸视频| 国国产精品蜜臀av免费| av在线老鸭窝| 久久婷婷人人爽人人干人人爱| 精品人妻熟女av久视频| 亚洲国产高清在线一区二区三| 听说在线观看完整版免费高清| 别揉我奶头 嗯啊视频| 亚洲精品久久久久久婷婷小说 | 久99久视频精品免费| 欧美激情久久久久久爽电影| 日韩强制内射视频| 成人美女网站在线观看视频| 久久精品久久久久久噜噜老黄 | 色5月婷婷丁香| 爱豆传媒免费全集在线观看| 极品教师在线视频| 国产精品久久久久久亚洲av鲁大| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 国产成人a∨麻豆精品| 在线国产一区二区在线| 少妇的逼好多水| 精品久久久久久成人av| 日本色播在线视频| 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 亚洲七黄色美女视频| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区久久| 日本在线视频免费播放| 最好的美女福利视频网| 午夜激情福利司机影院| 12—13女人毛片做爰片一| 卡戴珊不雅视频在线播放| av专区在线播放| 免费av毛片视频| 久久久国产成人精品二区| 91久久精品电影网| 亚洲婷婷狠狠爱综合网| 国产精品乱码一区二三区的特点| 欧美性感艳星| 亚洲成av人片在线播放无| 国产精品,欧美在线| 特大巨黑吊av在线直播| 黄片无遮挡物在线观看| 欧美色欧美亚洲另类二区| 精品一区二区三区人妻视频| 日韩欧美精品免费久久| 久久久久国产网址| 麻豆国产97在线/欧美| 亚洲成a人片在线一区二区| 国产精品国产高清国产av| 天堂√8在线中文| 久久这里只有精品中国| 九九久久精品国产亚洲av麻豆| 亚洲四区av| 18+在线观看网站| 人人妻人人澡欧美一区二区| 搡老妇女老女人老熟妇| 中出人妻视频一区二区| av福利片在线观看| АⅤ资源中文在线天堂| 午夜激情欧美在线| 亚洲成av人片在线播放无| 爱豆传媒免费全集在线观看| 亚洲不卡免费看| 国产亚洲5aaaaa淫片| 简卡轻食公司| 一级黄色大片毛片| 色播亚洲综合网| 成人永久免费在线观看视频| 日韩强制内射视频| 人人妻人人看人人澡| 欧美精品国产亚洲| 国内精品久久久久精免费| 亚洲欧洲国产日韩| 成熟少妇高潮喷水视频| 国产 一区精品| 久久久久性生活片| av天堂在线播放| 国产片特级美女逼逼视频| 九九在线视频观看精品| 性色avwww在线观看| 亚洲最大成人中文| 日本爱情动作片www.在线观看| 免费av观看视频| 国产成人精品婷婷| 亚洲在线自拍视频| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久 | av福利片在线观看| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| 久久综合国产亚洲精品| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清| 国产精品野战在线观看| 亚洲精品色激情综合| av黄色大香蕉| 亚洲欧美成人综合另类久久久 | 黄色配什么色好看| 日日摸夜夜添夜夜爱| 国产探花极品一区二区| av在线天堂中文字幕| 成人欧美大片| 99热只有精品国产| 十八禁国产超污无遮挡网站| 久久中文看片网| 亚洲人成网站在线播| 黄片无遮挡物在线观看| 嘟嘟电影网在线观看| 亚洲精品日韩在线中文字幕 | 国产不卡一卡二| 热99re8久久精品国产| 99久久久亚洲精品蜜臀av| 男插女下体视频免费在线播放| 91麻豆精品激情在线观看国产| 精品99又大又爽又粗少妇毛片| 亚洲乱码一区二区免费版| 51国产日韩欧美| ponron亚洲| 日本一二三区视频观看| 色哟哟哟哟哟哟| 亚洲四区av| 成年女人看的毛片在线观看| 老司机影院成人| 欧美日韩一区二区视频在线观看视频在线 | 晚上一个人看的免费电影| 久久久午夜欧美精品| 乱系列少妇在线播放| 91久久精品电影网| 美女 人体艺术 gogo| 亚洲激情五月婷婷啪啪| 午夜激情福利司机影院| 自拍偷自拍亚洲精品老妇| 麻豆精品久久久久久蜜桃| 日韩人妻高清精品专区| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 欧美色欧美亚洲另类二区| 国产高潮美女av| 简卡轻食公司| 国产爱豆传媒在线观看| 久久精品国产亚洲网站| 少妇人妻一区二区三区视频| 如何舔出高潮| 国产精品无大码| 久久99热6这里只有精品| 免费看a级黄色片| 夜夜夜夜夜久久久久| 亚洲激情五月婷婷啪啪| 久久99热6这里只有精品| 欧美日本亚洲视频在线播放| 日韩一区二区三区影片| 免费观看a级毛片全部| 国产精品蜜桃在线观看 | 亚洲成a人片在线一区二区| 只有这里有精品99| 特大巨黑吊av在线直播| 久久99热这里只有精品18| 级片在线观看| 在线免费观看的www视频| 国产大屁股一区二区在线视频| 丰满人妻一区二区三区视频av| 国产久久久一区二区三区| www.色视频.com| 国产乱人偷精品视频| 色综合亚洲欧美另类图片| 国产在视频线在精品| 美女黄网站色视频| 99热这里只有是精品50| 一边亲一边摸免费视频| 欧美最黄视频在线播放免费| 嫩草影院精品99| kizo精华| 黄色视频,在线免费观看| 亚洲国产日韩欧美精品在线观看| 91在线精品国自产拍蜜月| 亚洲欧美日韩东京热| а√天堂www在线а√下载| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人a∨麻豆精品| av天堂中文字幕网| 精品欧美国产一区二区三| 成人毛片a级毛片在线播放| 人妻少妇偷人精品九色| 神马国产精品三级电影在线观看| 成年免费大片在线观看| 一区福利在线观看| 亚洲天堂国产精品一区在线| 国产高清视频在线观看网站| 国产成人午夜福利电影在线观看| 免费大片18禁| 亚洲欧美日韩东京热| 国产精品久久久久久av不卡| 免费观看在线日韩| 少妇人妻精品综合一区二区 | 久久午夜亚洲精品久久| 亚洲av中文av极速乱| 日本撒尿小便嘘嘘汇集6| 国产午夜精品久久久久久一区二区三区| 欧美成人精品欧美一级黄| 亚洲美女视频黄频| 十八禁国产超污无遮挡网站| 丰满乱子伦码专区| 欧美人与善性xxx| 色播亚洲综合网| 美女脱内裤让男人舔精品视频 | 欧美区成人在线视频| 久久午夜亚洲精品久久| 亚洲精品久久久久久婷婷小说 | 亚洲在线自拍视频| 国产视频首页在线观看| www.av在线官网国产| 天天躁日日操中文字幕| 国产精品一区二区性色av| 在线免费观看不下载黄p国产| av在线观看视频网站免费| 晚上一个人看的免费电影| www.色视频.com| 日韩视频在线欧美| a级毛片a级免费在线| 91狼人影院| 校园人妻丝袜中文字幕| 99视频精品全部免费 在线| 国产淫片久久久久久久久| 久久精品人妻少妇| 国产单亲对白刺激| 91麻豆精品激情在线观看国产| 联通29元200g的流量卡| 少妇裸体淫交视频免费看高清| 国产白丝娇喘喷水9色精品| 欧美成人一区二区免费高清观看| 欧美一区二区精品小视频在线| 桃色一区二区三区在线观看| 男女下面进入的视频免费午夜| 99久久成人亚洲精品观看| 亚洲精品色激情综合| 国产午夜精品一二区理论片| 99国产精品一区二区蜜桃av| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线| 日韩欧美精品v在线| 日本在线视频免费播放| 九色成人免费人妻av| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 日韩强制内射视频| 久久久久久久久久久免费av| 国产淫片久久久久久久久| 最好的美女福利视频网| 九九爱精品视频在线观看| 亚洲国产欧美在线一区| 午夜免费男女啪啪视频观看| av在线播放精品| 亚洲国产高清在线一区二区三| 最近的中文字幕免费完整| 五月伊人婷婷丁香| 国产色爽女视频免费观看| 综合色av麻豆| 国产精品国产高清国产av| 久久九九热精品免费| 蜜臀久久99精品久久宅男| 欧美高清性xxxxhd video| 99热只有精品国产| 欧美日韩国产亚洲二区| 国产精品久久视频播放| 身体一侧抽搐| 久久草成人影院| 免费av毛片视频| 成人午夜精彩视频在线观看| 91在线精品国自产拍蜜月| 成年女人看的毛片在线观看| 夜夜夜夜夜久久久久| 精品一区二区免费观看| 国产午夜精品一二区理论片| 男女视频在线观看网站免费| 精品一区二区三区人妻视频| 免费看日本二区| 美女国产视频在线观看| 18+在线观看网站| 国产精品久久久久久av不卡| 22中文网久久字幕| 精品久久久久久成人av| 长腿黑丝高跟| 搞女人的毛片| 国产成人影院久久av| 午夜福利在线在线| 日本三级黄在线观看| 男女边吃奶边做爰视频| 久久久久久久久久久免费av| 熟女人妻精品中文字幕| 国产一区二区在线观看日韩| 亚洲在线观看片| 欧美性猛交╳xxx乱大交人| 国产白丝娇喘喷水9色精品| 亚洲国产精品成人久久小说 | 观看免费一级毛片| 久久综合国产亚洲精品| 精品熟女少妇av免费看| 一级av片app| 国产精品,欧美在线| 日韩成人伦理影院| 成人无遮挡网站| 99国产极品粉嫩在线观看| 成年av动漫网址| 国国产精品蜜臀av免费| 国产成人一区二区在线| 国产亚洲精品久久久com| 蜜臀久久99精品久久宅男| 国产乱人偷精品视频| 亚洲最大成人av| 在线观看免费视频日本深夜| 99热这里只有是精品在线观看| 日日撸夜夜添| 国产成人一区二区在线| 亚洲四区av| 18禁黄网站禁片免费观看直播| 欧美一级a爱片免费观看看| 亚洲av第一区精品v没综合| 夜夜看夜夜爽夜夜摸| 免费看av在线观看网站| 日韩欧美三级三区| 不卡视频在线观看欧美| 男人和女人高潮做爰伦理| 精华霜和精华液先用哪个| 99热精品在线国产| 卡戴珊不雅视频在线播放| 中文字幕av成人在线电影| 国产精品永久免费网站| 欧美性猛交黑人性爽| 欧美日韩综合久久久久久| 国产中年淑女户外野战色| 亚洲av.av天堂| 国产成人一区二区在线| 亚洲av免费高清在线观看| av国产免费在线观看| 欧美一级a爱片免费观看看| 成人午夜高清在线视频| 日韩av不卡免费在线播放| 高清在线视频一区二区三区 | 18禁裸乳无遮挡免费网站照片| 国产三级在线视频| 观看免费一级毛片| 我要看日韩黄色一级片| 国产午夜福利久久久久久| 男人狂女人下面高潮的视频| 亚洲内射少妇av| 99久久九九国产精品国产免费| 午夜激情欧美在线| 亚洲一级一片aⅴ在线观看| 国产成人一区二区在线| 99在线视频只有这里精品首页| 日韩精品有码人妻一区| 国产在线男女| 亚洲欧美清纯卡通| 亚洲欧美精品专区久久| 国产日韩欧美在线精品| 欧美在线一区亚洲| 日韩av不卡免费在线播放| 中文字幕人妻熟人妻熟丝袜美| 在线观看美女被高潮喷水网站| 1000部很黄的大片| 国产精品永久免费网站| 亚洲av一区综合| 成人毛片a级毛片在线播放| 久久久久久久久久久丰满| 免费看美女性在线毛片视频| 国产极品精品免费视频能看的| 蜜桃亚洲精品一区二区三区| 天堂√8在线中文| av福利片在线观看| 成人鲁丝片一二三区免费| 亚洲内射少妇av| 在线观看免费视频日本深夜| 国产一级毛片在线| 丰满乱子伦码专区| 欧美三级亚洲精品| 免费黄网站久久成人精品| 淫秽高清视频在线观看| 日本-黄色视频高清免费观看| 中出人妻视频一区二区| 欧美性猛交黑人性爽| 国产午夜福利久久久久久| 欧美高清性xxxxhd video| 偷拍熟女少妇极品色| 男的添女的下面高潮视频| 中文在线观看免费www的网站| 狠狠狠狠99中文字幕| 国产精品久久久久久亚洲av鲁大| 国产成人精品一,二区 | 22中文网久久字幕| 最近最新中文字幕大全电影3| 欧美zozozo另类| 国产三级在线视频|