• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application study of the awning measure to obstruct solar radiation in permafrost regions on the Qinghai-Tibet Plateau

    2012-12-09 09:36:58WenJieFengZhiZhongSunZhiWenGuoYuLiZeZhangWenBingYu
    Sciences in Cold and Arid Regions 2012年2期

    WenJie Feng , ZhiZhong Sun, Zhi Wen, GuoYu Li, Ze Zhang, WenBing Yu

    State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental Engineering Research Institute, Chinese

    Academy of Sciences, Lanzhou, Gansu 730000, China

    Application study of the awning measure to obstruct solar radiation in permafrost regions on the Qinghai-Tibet Plateau

    WenJie Feng*, ZhiZhong Sun, Zhi Wen, GuoYu Li, Ze Zhang, WenBing Yu

    State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental Engineering Research Institute, Chinese

    Academy of Sciences, Lanzhou, Gansu 730000, China

    With globe warming, road safety will change dramatically, especially within the Qinghai-Tibet Plateau permafrost regions. Because of higher elevation and better atmospheric transparency, the Qinghai-Tibet Plateau has stronger radiation than other regions,which can change the daily variation of ground surface temperature on the Plateau. The awning measure (shading board) is one of the actively protected permafrost measures, which was adopted along the Qinghai-Tibet railway and highway and the Qing-Kang Highway in China. Field test results show that embankment surface month mean net radiation is 60-130 W/m2, but the value is below 20 W/m2under the shading board, and the reducing level of natural net radiation is 80%-90%. The shading board reduced the heat flow entering into the embankment by 80%-90% or more, with heat entering into the soil on the common embankment,but emitting from the embankment under the shading board. At the same time, ground surface temperature under the shading board is 6-8 °C lower than the exposed embankment. Test results show that the shading board measure can rapidly and effectively reduce net radiation and heat flow into the embankment, decrease embankment surface and interior temperature, effectively delay increase rate of soil temperature under globe warming, ensure stability and safety of the embankment, and guarantee unblocked road projects in cold and permafrost regions.

    permafrost; sunshading (awning) measure; embankment; net radiation; heat flow

    1. Introduction

    The permafrost area on the Qinghai-Tibet Plateau (QTP)is estimated to be about 1.5×106km2, accounting for 70% of the total permafrost area in China (Jinet al., 2000a, b; Zhouet al., 2000). This is the third largest permafrost region worldwide and also the one with the highest altitude (Zhouet al., 2000). During the recent ten years, with the influence of global warming, climate of the QTP has obviously changed, and this fact has also affected the distribution and extent of permafrost. With this background in mind, engineering stability is more significant in cold regions, and the methods and measures to protect permafrost become more important. The QTP is regarded as the "starter" and "amplifier" of global air temperature change and its warming range exceeds the global mean value (Cheng, 2003). Thus, air temperature will rise faster and get to a higher value than in other regions of the world. At the same time, because of high altitude and better atmospheric transmittance on the QTP, all the above reasons produce a higher intensity of sun radiation on the QTP than other places in China, causing stronger daily variations of ground surface temperature (Gonget al.,1997; Chou, 2008). Because the Qinghai-Tibet railway and highway embankment trends are mainly along a northeast-southwest direction, sun radiation is not symmetrical on the two side slopes. Thus, there is a distinct shady-sunny slope effect which may cause stress in the roadbed leading to instability and destruction. Almost 70%-80% of the aforementioned problems occur at those parts of the Qinghai-Tibet railway and highway where there is an obvious shady-sunny slope direction. 85% of the destruction initiates as longitudinal cracks at the sunny side slope, which eventually extend up to the road surface, leading to large scale damage of the road (Chenet al., 2006; Chou, 2008).

    The crack appearance probability increases on the south side slope. The main reason is asymmetric embankment soil temperature field, where soil temperature on the sunny side slope is higher than that on the shady side slope. This causes a stronger thawing of permafrost under the roadbed on the sunny side slope thus causing stretch cracks to appear on the sunny side slope embankment shoulder. Along the sunny side slope shoulder and below this side slope, soil temperature is higher than on the shady side slope, which sustains a longer thawing time. With other conditions being the same,the observed results show that side slope direction has more effect on embankment temperature in annual mean air temperature lower regions than in higher regions (Zhanget al.,2003). Huet al. (2002) has investigated the influence of solar radiation on the embankment surface thermal regime of the Qinghai-Tibet Railway. It is noted that when embankment direction is close to a north-south direction, the embankment side slope absorbs more solar radiation over a day, while absorbing less solar radiation when the direction is east-west; when the railway direction is 135°, the radiation difference is the maximum between the two embankment side slopes, namely the shady-sunny side slope effect reaches a maximum (Huet al., 2002, 2006). Kondratjev(1996) put forward a new method to strengthen roadbeds in ice-rich permafrost regions, and pointed out the advantage of adopting the sunshading (awning) measure to protect side slopes in permafrost regions. Because the awning prevents solar radiation from reaching the soil surface, and decreases the embankment side slope surface temperature, it will reduce the difference between the embankments of both side slopes when the awning measure is adopted on the sunny side slope. This creates a more uniform embankment temperature field, ensuring stability of the embankment and increased traffic security. The awning measure has been adopted on the Qinghai-Tibet Railway, the Qinghai-Tibet Highway and the Qing-Kang Highway, which produced an increased achievement in awning application (Fenget al.,2006, 2009a; K?mle and Feng, 2009).

    The awning measure on the embankment side slope is an effective engineering measure to protect permafrost in cold regions, but there are numerous gaps in mechanism research.Although we have performed some studies on awning structure mechanics (Shiet al., 2007) and wind speed below the awning (Fenget al., 2009b, 2011), we do not know the capability of awning elimination of solar radiation and are unaware of how high solar net radiation and heat flow into embankment soil can go. Thus, we would like to clarify these questions by a field test, and discuss the awning measure advantage in terms of quantitative values.

    2. Field test design

    The field test lies in the southern part of the Beiluhe Basin between the Kekexili and Fenghuoshan basins on the QTP which belongs to the Beiluhe alluvial-proluvial high plain landform. The terrain is open and slightly undulating,and the surface is covered by vegetation to an extent of 10%-50%. The test section is located 500 m west of the Qinghai-Tibet Highway (QTH) which lies in the QTP dry regions where is cold and arid, and the four seasons are not clearly separated there. The air is rarefied, the air pressure is low, the frozen period is 7-8 months long, and evaporation is higher than rainfall. Based on data from the Beiluhe automatic weather station, annual mean air temperature is -3.8°C at the Beiluhe region.

    Based on the test section permafrost type and distribution characteristic, the permafrost table judge method is used to analyze the drilling core, thick-layer subsurface ice and frozen soil structure. According to the aforementioned method, the test section natural permafrost table is 1.6-2.4 m and annual mean ground temperature is from -1.41 °C to-1.68 °C at the 15-m depth, which belong to the lower temperature basic stable permafrost regions.

    The embankment trend is 230°, nearly a northeast-southwest direction, and the embankment side slope gradient is 31.5°. The test section embankment side slope shading board (awning) measure adopts two high quality block board combination. We applied three layers of green paint on the board surface to prevent water uptake and production of moisture. The block board was fixed to a steel tube frame, and the board is parallel with the side slope from the embankment surface 40-cm away. The awning measure was finished at the end of July 2010, after which we began the monitor system and data retrieval.

    The position of the different sensors on the embankment side slope is illustrated in Figure 1. Two net radiometers are installed side by side: one is below the awning board and the second is at the same height above the common embankment. They measure both long-wave and short-wave radiation in both directions, from which net radiation entering the soil can be derived.

    In addition, air temperature near the soil surface, heat flow entering the soil, and superficial soil temperature are measured. The temperature probes interval is 5 cm under the side slope surface, and the air temperature probes lie in 20-cm and 40-cm distance to the surface. The net radiometer sensor is 20-cm high above the side slope ground surface, and heat flow plates lie at 5 cm and 10 cm under the soil surface, as shown in Figure 1. All data were obtained by the DT500 data-taker, and were automatically taken once per 20 min.

    Both the awning measure test section and the common embankment test section are composed of general sand-gravel soil. The temperature probe is a thermistor manufactured by the State Key Laboratory of Frozen Soil Engineering, CAS, China. The thermistor precision is ±0.05°C, and when data is automatically taken, the temperature precision is ±0.01 °C by calculation. The net radiometer is a CNR4 four components radiometer manufactured by Kipp& Zonen Company, Netherlands, its short wave detector sensitivity is 7-20 (μV·m2)/W, the long wave sensitivity is 5-10 (μV·m2)/W, its operating temperature range is from-40 to 80 °C, and the temperature sensitivity is less than 5%.The heat flow monitor contains the HFP01 thermal sensors manufactured by Hukseflux Company, Netherlands, its sensitivity is ±0.02 W/m2and the operating temperature range is from -30 to 70 °C, with temperature dependence less than 0.1%/degree. The heat flow monitor range is ±2,000 W/m2.In this paper, the analysis data time range is from July 27,2010 to April 4, 2011, including altogether eight months of complete data.

    Figure 1 Embankment side slope monitoring schemes

    3. Data analysis

    3.1. Air temperature analysis

    Because air temperature is monitored 20-cm above the ground, air ventilation is unobstructed, despite the awning shadow effect. We found that air temperature difference is not large between the awning’s inner and outer sides, and there is only a slight difference at the 40-cm awning height.Figure 2 shows the air temperature curves.

    Figure 2 Air temperature curves at 40 cm above the embankment side slope surface

    From Figure 2 we find that the awning inner air temperature is lower than the outer and that in the region without an awning, the difference is more evident in the higher temperature season. In July and August it can be as large as 2-4 °C. With the approach of winter, air temperature decreases day by day, and the temperature difference among the three regions reduces gradually, reaching about 1.0-1.5°C in November. This shows that the awning measure significantly reduces air temperature during the summer, but the effect is distinctly weaker in winter.

    3.2. Embankment temperature analysis

    Ground temperature difference can directly reflect the cooling effect of the shading measure. In particular, surface temperature difference is the best evidence for awning affect. Figure 3 shows a comparison of ground surface temperature curves under the awning and outside the shadowed region.

    During the high temperature season, because the sun’s radiation is relatively intense, and the awning blocks direct solar radiation from reaching the ground surface, a remarkable temperature difference can be observed. From Figure 3 we can see that the awning inner ground surface temperature is lowered by 6-8 °C compared to the natural ground temperature in the high temperature season. With the change of seasons, when entering autumn and winter seasons, the sun’s radiation declines gradually and the awning effect becomes less important. The ground surface temperature difference between the shadowed and open regions decreases gradually and both regions reach almost the same temperature during the winter season. As shown in Figure 3, in November the temperature curves begin to overlap gradually, which shows that the embankment side slope shading board (awning)measure is most effective during the high summer season.When spring arrives, the air temperature diversity begins to change day by day, just like in February and March, 2011 as shown in Figure 3.

    Figure 3 The ground surface temperature curves

    3.3. Heat flux and radiation influence analysis

    The main reason for the observed ground surface temperature difference between the shadowed and open region is the awning blocks solar radiation from reaching the ground surface. This leads to different heat flows entering into the embankment, creating different soil temperatures.Figures 4 and 5 show the month mean net heat flux under the side slope surface 5 cm and 10 cm on the shadowed section and open embankment, respectively. Figure 6 shows the entire embankment side slope ground surface month mean net radiation (positive value means heat entering the embankment soil, negative value means heat diffusing from the embankment soil towards the surface).

    Figure 4 The month mean net heat flux under the side slope surface 5 cm

    From Figures 4 and 5, we can obviously find that under the protection of the side slope awning measures, the month mean net heat flux values in a depth of 5 cm and 10 cm below the surface are by far smaller under the awning embankment than under the natural embankment. On the common embankment, the net heat flux mainly enters into the embankment, at the two different depths the month mean net heat flux is higher than the awning section, respectively. As for the awning measure embankment, the net heat flux is much smaller than the natural one. The shading board reduces the heat flow entering into the embankment by 80%-90% or more. The results show that the awning measure can effectively reduce embankment surface and soil temperature and ensure the stability of the embankment.

    From Figure 6, we can find that the embankment soil month mean net radiation at the natural embankment is more than the awning section. At the natural section, the month mean net radiation is from 60 to 130 W/m2, but at the awning section, because of the awning shelter, a good portion of solar radiation cannot reach the embankment surface and enter into the soil. Thus, the month mean net radiation is below 20 W/m2, the embankment emits heat flow in November and December 2010 and January 2011 (as shown in Figure 6), and the reducing level of natural net radiation reached 80%-90%.

    Figure 5 The month mean met heat flux under the side slope surface 10 cm

    Figure 6 The month mean net radiation of the side slope surface

    4. Conclusions

    The observation results show that the shading board(awning) measure is very effective for blocking solar radiation energy from the embankment side slope surface. It can significantly reduce the month mean net radiation entering into the embankment soil. The month mean heat flux enters into the natural section of the embankment soil, but is emitted from the embankment soil at the awning section embankment, and the month mean net radiation at the natural embankment is more than at the awning section embankment. At the same time, ground surface temperature under the shading board is lowered by 6-8 °C compared to the natural embankment.

    Field test results show that the common embankment surface month mean net radiation is 60-130 W/m2, but the value is below 20 W/m2under the shading board, and the reducing level of natural net radiation is 80%-90%. The shading board reduces heat flow entering into the embankment by 80%-90% or more. Heat enters into the soil on the common embankment, but is emitted from the embankment under the shading board. These test results show that the awning measure can rapidly and effectively reduce net radiation and heat flow into the embankment, decrease embankment surface and interior temperature, effectively delay the rise in soil temperature under globe warming, ensure stability and safety of the embankment, and guarantee unblocked road projects in cold and permafrost regions.

    The currently available data record is only restricted to a period of eight months. A more detailed analysis of the awning measure effect can only be given after a longer series of data (at least over one freezing-thawing cycle, best over several years) have been collected.

    This project was supported by the Funds of the State Key Laboratory of Frozen Soils Engineering, CAS (Grant No.SKLFSE-ZY-03), the National Key Natural Science Foundation of China (Grant No. 50534040), the National Natural Science Foundation of China (Grant Nos. 40821001,40801022, 40801024, 40801026, 50976120, 41001041),and the Western Project Program of the Chinese Academy of Sciences (Grant No. KZCX2-XB2-10).

    Chen J, Hu ZY, Dou S, Qian ZY, 2006, Yin-Yang Slope problem along Qinghai-Tibetan Lines and its radiation mechanism. Cold Regions Science and Technology, (44): 217-224.

    Cheng GD, 2003. The impact of local factors on permafrost distribution and its inspiring for design Qinghai-Xizang Railway. Science in China (Series D), 33(6): 602-607.

    Chou YL, 2008. Study on Shady-Sunny Effect and the Forming Mechanism of the Longitudinal Embankment Crack in Permafrost. Ph.D. Thesis,Graduate School of the Chinese Academy of Sciences Dissertation.

    Feng WJ, K?mle NI, Niu YH, Sun ZZ, Li GY, Yu WB, 2011. Numerical analysis of wind speed variation under awning boards covering embankment side slopes. Cold Regions Science and Technology, 68:162-172.

    Feng WJ, Ma W, Li DQ, Zhang LX, 2006. Application investigation of awning to roadway engineering on Qinghai-Tibet Plateau. Cold Regions Science and Technology, (45): 51-58.

    Feng WJ, Ma W, Niu YH, 2009b. Simulate analysis of the wind speed variation under the awning. Journal of Glaciology and Geocryology, 31(1):106-112.

    Feng WJ, Wen Z, Sun ZZ, Wu JJ, 2009a. Application and effect analysis of the awning measure on cold regions. Recent Development of Research on Permafrost Engineering and Cold Region Environment. Proceedings of the Eighth International Symposium on Permafrost Engineering,15-17 October, Xi’an, China, pp. 148-153.

    Gong YY, Duan TY, Chen LX, Li WL, Di Y, Gu CD, ZuoTeng W, 1997.Outline of observational study of Sino-Japan cooperative program on asian monsoon over Tibetan Plateau. Journal of Chengdu Institute of Meteorology, (1): 18-27.

    Hu ZY, Cheng GD, Gu LL, Li MS, Ma YM, 2006. Calculating method of global radiation and temperature on the roadbed surface of Qinghai-Xizang Railway. Advances in Earth Science, 21(12): 1304-1313.

    Hu ZY, Qian ZY, Cheng GD, Wang JM, 2002. Influence of solar radiation on embankment surface thermal regime of the Qinghai-Xizang Railway.Journal of Glaciology and Geocryology, 24(2):121-128.

    Jin HJ, Li SX, Chen GD, Wang SL, Li X, 2000a. Permafrost and climatic change in China. Global and Planetary Change, 26: 387-404.

    Jin HJ, Li SX, Wang SL, Zhao L, 2000b. Impacts of climatic change on permafrost and cold regions environments in China. Acta Geographica Sinica, 55(2): 161-173.

    K?mle NI, Feng WJ, 2009. Variation of the Frost Boundary below Road and Railway Embankments in Permafrost Regions in Response to Solar Irradiation and Winds. Comsol Conference 2009, Milan, Italy, October, pp.14-16.

    Kondratjev VG, 1996. Strengthening railroad bass constructed on icy permafrost soil. Proceedings of the Eighth International Conference on Cold Region Engineering, Fairbanks, pp. 688-699.

    Shi L, Li N, Li GY, Bi GQ, 2007. Stability analysis of the awning in road engineering in permafrost regions. Journal of Glaciology and Geocryology, 29(6): 986-991.

    Zhang LX, Yuan SC, Yang YP, 2003. Mechanism and prevention of deformation cracks of embankments in the permafrost region along Qinghai-Xizang Railway. Quaternary Sciences, 23(6): 604-610.

    Zhou YW, Guo DX, Qiu GQ, Chen GD, 2000. Geocryology in China. Science Press, Beijing.

    10.3724/SP.J.1226.2012.00121

    *Correspondence to: Dr. WenJie Feng, Associate Professor of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. No. 326, West Donggang Road, Lanzhou, Gansu 730000, China. Tel:+86-931-4967460; Email: wenjief@lzb.ac.cn

    August 12, 2011 Accepted: November 23, 2011

    免费在线观看成人毛片| 日韩电影二区| 高清欧美精品videossex| 91精品国产国语对白视频| 亚洲精品色激情综合| 日韩不卡一区二区三区视频在线| 日本vs欧美在线观看视频 | 91久久精品国产一区二区成人| 久久午夜综合久久蜜桃| 中国国产av一级| 免费久久久久久久精品成人欧美视频 | 国产色婷婷99| 免费看av在线观看网站| 国产精品伦人一区二区| 久久99热6这里只有精品| 麻豆精品久久久久久蜜桃| 国产视频内射| 国产成人aa在线观看| 国产精品嫩草影院av在线观看| 高清欧美精品videossex| 国内精品宾馆在线| 最后的刺客免费高清国语| 久久精品久久精品一区二区三区| 国产高清有码在线观看视频| 一级毛片电影观看| 伦理电影免费视频| 一级毛片 在线播放| 国产成人91sexporn| 少妇人妻 视频| 亚洲精品日韩av片在线观看| 男女边摸边吃奶| 人体艺术视频欧美日本| 欧美日本中文国产一区发布| 国产淫语在线视频| 成年av动漫网址| 热re99久久精品国产66热6| 男男h啪啪无遮挡| 国产综合精华液| 9色porny在线观看| 国产精品欧美亚洲77777| 九色成人免费人妻av| 国产精品国产三级国产av玫瑰| av福利片在线| 国产精品偷伦视频观看了| 91aial.com中文字幕在线观看| 日本与韩国留学比较| 欧美日韩视频精品一区| 亚洲av中文av极速乱| 伊人亚洲综合成人网| 中文欧美无线码| 免费观看a级毛片全部| 一区在线观看完整版| 亚洲欧洲国产日韩| 九九在线视频观看精品| 欧美三级亚洲精品| 日韩欧美一区视频在线观看 | 久久国产乱子免费精品| 这个男人来自地球电影免费观看 | 中文字幕制服av| 久久久久久久国产电影| 丝瓜视频免费看黄片| 亚洲国产成人一精品久久久| 国产日韩欧美亚洲二区| 女的被弄到高潮叫床怎么办| 久热久热在线精品观看| 乱人伦中国视频| 欧美97在线视频| 日日摸夜夜添夜夜添av毛片| av有码第一页| 亚洲第一区二区三区不卡| 日韩av不卡免费在线播放| 亚洲av国产av综合av卡| 亚洲天堂av无毛| 我的女老师完整版在线观看| 久久ye,这里只有精品| 国产av国产精品国产| 久久国内精品自在自线图片| 春色校园在线视频观看| a级毛色黄片| 久久久久久久大尺度免费视频| tube8黄色片| 两个人免费观看高清视频 | 一级毛片电影观看| 高清不卡的av网站| 日韩欧美精品免费久久| 在现免费观看毛片| 丰满饥渴人妻一区二区三| 中文在线观看免费www的网站| 少妇的逼水好多| 国产白丝娇喘喷水9色精品| 国产女主播在线喷水免费视频网站| 国产精品偷伦视频观看了| 桃花免费在线播放| 免费大片18禁| 色婷婷久久久亚洲欧美| 超碰97精品在线观看| 一级爰片在线观看| 欧美激情国产日韩精品一区| 肉色欧美久久久久久久蜜桃| 日韩人妻高清精品专区| 少妇被粗大猛烈的视频| 免费av不卡在线播放| 亚洲国产成人一精品久久久| 久久久亚洲精品成人影院| 欧美日韩一区二区视频在线观看视频在线| 男人爽女人下面视频在线观看| 在线免费观看不下载黄p国产| av不卡在线播放| 麻豆精品久久久久久蜜桃| 十八禁高潮呻吟视频 | 亚洲精品一二三| 久久狼人影院| 99精国产麻豆久久婷婷| 99久久中文字幕三级久久日本| 日韩成人av中文字幕在线观看| 一本大道久久a久久精品| 国产成人a∨麻豆精品| xxx大片免费视频| 一区在线观看完整版| 久久99一区二区三区| 蜜桃在线观看..| 午夜影院在线不卡| 日本午夜av视频| 哪个播放器可以免费观看大片| 伦精品一区二区三区| 成人美女网站在线观看视频| 色视频www国产| 一区二区三区四区激情视频| av天堂中文字幕网| 国产在线视频一区二区| 新久久久久国产一级毛片| 内地一区二区视频在线| 国产无遮挡羞羞视频在线观看| 最近手机中文字幕大全| av一本久久久久| 亚洲av中文av极速乱| 国产日韩欧美在线精品| 妹子高潮喷水视频| 精品少妇内射三级| 亚洲精品乱久久久久久| 久久国产乱子免费精品| 国产男女超爽视频在线观看| 久久久精品免费免费高清| 妹子高潮喷水视频| 99久国产av精品国产电影| 久久久精品94久久精品| 哪个播放器可以免费观看大片| 欧美三级亚洲精品| 人妻一区二区av| 内地一区二区视频在线| 简卡轻食公司| 欧美少妇被猛烈插入视频| 精品久久久久久久久亚洲| 日本-黄色视频高清免费观看| 久久久久久久久久久丰满| 日韩强制内射视频| 亚洲三级黄色毛片| 综合色丁香网| 伦理电影大哥的女人| 欧美 日韩 精品 国产| 久久综合国产亚洲精品| 老女人水多毛片| 国产亚洲91精品色在线| 日韩欧美 国产精品| 亚洲欧洲精品一区二区精品久久久 | 内地一区二区视频在线| 久久精品国产亚洲av天美| 极品少妇高潮喷水抽搐| 中文在线观看免费www的网站| 日韩成人伦理影院| 日韩人妻高清精品专区| 伦理电影免费视频| 亚洲欧美日韩另类电影网站| 久久久欧美国产精品| 国产熟女午夜一区二区三区 | 黑人猛操日本美女一级片| 插阴视频在线观看视频| 亚洲精品乱码久久久v下载方式| 国产探花极品一区二区| 观看av在线不卡| 99九九线精品视频在线观看视频| 国产精品久久久久久精品电影小说| 日本91视频免费播放| 久久久久久久久久久免费av| 中国三级夫妇交换| 久久99热6这里只有精品| 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看 | 少妇丰满av| 精品久久久精品久久久| 97在线人人人人妻| av福利片在线观看| 日本vs欧美在线观看视频 | 欧美老熟妇乱子伦牲交| 国产免费福利视频在线观看| 永久网站在线| 久久6这里有精品| 午夜影院在线不卡| 在线天堂最新版资源| 色吧在线观看| 精品卡一卡二卡四卡免费| 99久国产av精品国产电影| 亚洲av综合色区一区| 99视频精品全部免费 在线| 久久久久精品久久久久真实原创| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放 | 亚洲av福利一区| 亚洲色图综合在线观看| 超碰97精品在线观看| 亚洲在久久综合| 天天躁夜夜躁狠狠久久av| 爱豆传媒免费全集在线观看| 日本黄色片子视频| 伦理电影大哥的女人| 少妇人妻久久综合中文| 最近的中文字幕免费完整| 欧美成人午夜免费资源| .国产精品久久| 黄片无遮挡物在线观看| 18禁在线播放成人免费| 精品99又大又爽又粗少妇毛片| 久久精品国产亚洲av涩爱| 久久久亚洲精品成人影院| av在线播放精品| 内地一区二区视频在线| 欧美xxⅹ黑人| 丰满乱子伦码专区| 在线观看人妻少妇| 亚洲精品视频女| 亚洲伊人久久精品综合| 乱系列少妇在线播放| 亚洲三级黄色毛片| 欧美精品一区二区大全| 精品久久久久久久久av| 简卡轻食公司| 岛国毛片在线播放| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产三级国产专区5o| 精品一品国产午夜福利视频| 欧美精品一区二区大全| 一区在线观看完整版| 国产片特级美女逼逼视频| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 免费播放大片免费观看视频在线观看| 欧美丝袜亚洲另类| 欧美高清成人免费视频www| 99热这里只有是精品在线观看| 久久国产乱子免费精品| 国产深夜福利视频在线观看| 午夜av观看不卡| 伦精品一区二区三区| 午夜91福利影院| 亚洲真实伦在线观看| 国产免费福利视频在线观看| 在线精品无人区一区二区三| 秋霞在线观看毛片| 日韩av在线免费看完整版不卡| 午夜福利在线观看免费完整高清在| 插逼视频在线观看| 免费观看av网站的网址| 天天躁夜夜躁狠狠久久av| xxx大片免费视频| 国精品久久久久久国模美| 九色成人免费人妻av| 国产视频首页在线观看| 最新中文字幕久久久久| 99国产精品免费福利视频| 日日摸夜夜添夜夜添av毛片| 中国美白少妇内射xxxbb| 国产成人精品福利久久| av福利片在线观看| 亚洲av欧美aⅴ国产| 2022亚洲国产成人精品| 精品久久久久久电影网| 多毛熟女@视频| 亚洲欧洲日产国产| 热re99久久国产66热| 水蜜桃什么品种好| 日韩欧美精品免费久久| 在线观看www视频免费| 国产免费又黄又爽又色| 久久精品国产亚洲av涩爱| 色94色欧美一区二区| 久久精品久久久久久噜噜老黄| 欧美国产精品一级二级三级 | 国产欧美日韩一区二区三区在线 | 欧美老熟妇乱子伦牲交| 久久久久视频综合| 久久久久久久国产电影| 欧美亚洲 丝袜 人妻 在线| 热99国产精品久久久久久7| 人人妻人人看人人澡| 国产成人精品婷婷| 性色av一级| 国产成人精品福利久久| 有码 亚洲区| 伊人久久国产一区二区| 伊人亚洲综合成人网| 多毛熟女@视频| 欧美成人精品欧美一级黄| 97超碰精品成人国产| 18禁裸乳无遮挡动漫免费视频| 最近的中文字幕免费完整| 国产在线视频一区二区| 日韩三级伦理在线观看| 亚洲精品成人av观看孕妇| av有码第一页| 日本vs欧美在线观看视频 | 久久热精品热| 久久午夜福利片| 高清视频免费观看一区二区| 亚洲av.av天堂| 在线免费观看不下载黄p国产| 黄色一级大片看看| 丰满人妻一区二区三区视频av| 国产91av在线免费观看| 成人毛片60女人毛片免费| 免费久久久久久久精品成人欧美视频 | 久久久久视频综合| 成人二区视频| 国产女主播在线喷水免费视频网站| √禁漫天堂资源中文www| 内地一区二区视频在线| 亚洲精品aⅴ在线观看| 久久99热这里只频精品6学生| kizo精华| 亚洲av成人精品一二三区| 亚洲国产色片| 精品酒店卫生间| 日本vs欧美在线观看视频 | 岛国毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| 免费看日本二区| h日本视频在线播放| 日韩av免费高清视频| 亚洲精品成人av观看孕妇| 一个人看视频在线观看www免费| 美女国产视频在线观看| 热re99久久精品国产66热6| 亚洲国产日韩一区二区| 国产亚洲最大av| 亚洲国产欧美日韩在线播放 | 热99国产精品久久久久久7| 精品一区二区三卡| 两个人的视频大全免费| 久久午夜福利片| 久久毛片免费看一区二区三区| 久久久国产一区二区| 超碰97精品在线观看| 国产黄频视频在线观看| 一本一本综合久久| 国产毛片在线视频| 青青草视频在线视频观看| 国产在线一区二区三区精| 亚洲精品视频女| 水蜜桃什么品种好| 欧美区成人在线视频| 亚洲精品国产色婷婷电影| 午夜精品国产一区二区电影| 一级,二级,三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产永久视频网站| 欧美xxxx性猛交bbbb| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| 校园人妻丝袜中文字幕| 久久精品国产a三级三级三级| 久久狼人影院| 肉色欧美久久久久久久蜜桃| 久久午夜综合久久蜜桃| 午夜老司机福利剧场| 欧美丝袜亚洲另类| 国产成人一区二区在线| av在线观看视频网站免费| 偷拍熟女少妇极品色| 性色av一级| 少妇的逼水好多| 交换朋友夫妻互换小说| 亚洲av.av天堂| 99久久综合免费| 欧美成人精品欧美一级黄| 大话2 男鬼变身卡| 亚洲精品色激情综合| 国产精品久久久久成人av| 日韩在线高清观看一区二区三区| 少妇人妻久久综合中文| 成人美女网站在线观看视频| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频 | 亚洲精品自拍成人| 美女cb高潮喷水在线观看| 久久久久久久久久成人| √禁漫天堂资源中文www| 亚洲精品乱码久久久v下载方式| 精品少妇黑人巨大在线播放| 人妻一区二区av| 国产亚洲欧美精品永久| 国产在线一区二区三区精| 免费高清在线观看视频在线观看| 国内精品宾馆在线| 伊人久久精品亚洲午夜| 我要看黄色一级片免费的| 少妇高潮的动态图| 最后的刺客免费高清国语| 成人亚洲欧美一区二区av| 人妻人人澡人人爽人人| 寂寞人妻少妇视频99o| 亚洲精品日本国产第一区| av天堂中文字幕网| 色婷婷久久久亚洲欧美| 黄色配什么色好看| av一本久久久久| 日韩视频在线欧美| 亚洲欧洲国产日韩| 在线观看www视频免费| 亚洲精品aⅴ在线观看| 国产免费一区二区三区四区乱码| 国产成人freesex在线| 国产熟女午夜一区二区三区 | 免费黄色在线免费观看| 九九在线视频观看精品| 人人澡人人妻人| 国产日韩欧美在线精品| 日韩中字成人| 日韩 亚洲 欧美在线| 夫妻性生交免费视频一级片| 亚洲精品久久午夜乱码| 人妻一区二区av| 色吧在线观看| 在线观看一区二区三区激情| 26uuu在线亚洲综合色| 国产精品熟女久久久久浪| kizo精华| 在线精品无人区一区二区三| 久久亚洲国产成人精品v| 国产免费一级a男人的天堂| 又大又黄又爽视频免费| 亚洲欧美日韩卡通动漫| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 视频区图区小说| 亚洲综合精品二区| 97在线人人人人妻| 午夜福利,免费看| 欧美xxⅹ黑人| 国产精品无大码| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 简卡轻食公司| 欧美一级a爱片免费观看看| 制服丝袜香蕉在线| 一级二级三级毛片免费看| 香蕉精品网在线| 一个人看视频在线观看www免费| 婷婷色综合大香蕉| 国产亚洲午夜精品一区二区久久| 国产成人a∨麻豆精品| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 少妇人妻久久综合中文| 中文字幕精品免费在线观看视频 | 韩国av在线不卡| 亚洲欧美成人精品一区二区| 91久久精品电影网| 日日爽夜夜爽网站| 大陆偷拍与自拍| 美女cb高潮喷水在线观看| 男女免费视频国产| 国产精品一二三区在线看| 免费大片18禁| 三级经典国产精品| 亚洲国产精品成人久久小说| 亚洲精品乱码久久久久久按摩| 人人澡人人妻人| 一级黄片播放器| 国产av国产精品国产| 亚洲精品国产av蜜桃| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 美女xxoo啪啪120秒动态图| 亚洲av不卡在线观看| 精品少妇黑人巨大在线播放| 女人精品久久久久毛片| 亚洲欧美日韩卡通动漫| 国产在线一区二区三区精| 全区人妻精品视频| 2018国产大陆天天弄谢| 国产老妇伦熟女老妇高清| 涩涩av久久男人的天堂| 国产精品一区二区在线观看99| 欧美亚洲 丝袜 人妻 在线| 成人特级av手机在线观看| 纯流量卡能插随身wifi吗| 两个人的视频大全免费| 国产在视频线精品| av有码第一页| 狂野欧美激情性xxxx在线观看| 久久久a久久爽久久v久久| 汤姆久久久久久久影院中文字幕| 国产一区二区三区av在线| 亚洲精品第二区| 岛国毛片在线播放| 色哟哟·www| av在线app专区| 久久久久精品久久久久真实原创| 国产精品伦人一区二区| 亚洲天堂av无毛| 国产69精品久久久久777片| 永久免费av网站大全| 最近手机中文字幕大全| 熟女电影av网| 人妻人人澡人人爽人人| 精品国产露脸久久av麻豆| 亚洲内射少妇av| 精品久久久噜噜| 极品人妻少妇av视频| 欧美丝袜亚洲另类| 国产午夜精品久久久久久一区二区三区| 国产精品一区www在线观看| 久久人妻熟女aⅴ| 精品久久久精品久久久| 黑丝袜美女国产一区| 久久97久久精品| 九草在线视频观看| 美女国产视频在线观看| 国产日韩欧美在线精品| 精品午夜福利在线看| 国产精品麻豆人妻色哟哟久久| 我的女老师完整版在线观看| 97在线人人人人妻| 精品一区二区免费观看| 精品亚洲成a人片在线观看| 日韩精品有码人妻一区| 国产欧美日韩一区二区三区在线 | 成人二区视频| 国产精品偷伦视频观看了| 99热这里只有是精品在线观看| 亚洲av国产av综合av卡| 99热6这里只有精品| 美女大奶头黄色视频| 下体分泌物呈黄色| 制服丝袜香蕉在线| 丝袜脚勾引网站| 交换朋友夫妻互换小说| 国产精品一区www在线观看| 看十八女毛片水多多多| 免费观看无遮挡的男女| 亚洲人成网站在线播| 国产成人精品无人区| 亚洲情色 制服丝袜| 亚洲av电影在线观看一区二区三区| 热99国产精品久久久久久7| 国产免费又黄又爽又色| 91aial.com中文字幕在线观看| 插阴视频在线观看视频| 国产精品嫩草影院av在线观看| 久久99热6这里只有精品| 色94色欧美一区二区| 高清av免费在线| 麻豆精品久久久久久蜜桃| 最近中文字幕2019免费版| 在线观看国产h片| 国产 精品1| 99久久人妻综合| 一级毛片黄色毛片免费观看视频| 搡老乐熟女国产| 丁香六月天网| 免费观看a级毛片全部| 大香蕉97超碰在线| 久久久久国产网址| 26uuu在线亚洲综合色| 熟女人妻精品中文字幕| 亚洲成色77777| 十分钟在线观看高清视频www | 91精品伊人久久大香线蕉| 亚洲第一区二区三区不卡| 极品教师在线视频| 国产精品欧美亚洲77777| 久久久久久久久久人人人人人人| 亚洲欧美日韩另类电影网站| 亚洲精品久久久久久婷婷小说| 老女人水多毛片| 久久久久久伊人网av| 99热这里只有是精品50| 一级a做视频免费观看| 欧美97在线视频| 精品久久久久久久久av| 国产精品不卡视频一区二区| 久久人人爽av亚洲精品天堂| 免费看光身美女| 日日摸夜夜添夜夜爱| 亚洲欧美日韩东京热| 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频 | 国产淫片久久久久久久久| 久久久久久久久久久久大奶| 午夜激情福利司机影院| 久久久午夜欧美精品| 建设人人有责人人尽责人人享有的| 成人黄色视频免费在线看| 久久久久久人妻| 搡女人真爽免费视频火全软件| 亚洲三级黄色毛片| 欧美少妇被猛烈插入视频| 青春草视频在线免费观看| 亚洲欧洲精品一区二区精品久久久 | 国产日韩欧美亚洲二区| av免费在线看不卡| 美女中出高潮动态图| av一本久久久久| 欧美日本中文国产一区发布| 高清不卡的av网站|