• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Nonsmooth Iterative Algorithm for Solving Obstacle Problems

    2012-11-14 07:40:25MAGuochun
    關(guān)鍵詞:差分法文末牛頓

    MA Guo-chun

    (College of Science, Hangzhou Normal University, Hangzhou 310036, China)

    A Nonsmooth Iterative Algorithm for Solving Obstacle Problems

    MA Guo-chun

    (College of Science, Hangzhou Normal University, Hangzhou 310036, China)

    This paper discussed a numerical method for solving obstacle problems. Discrete problem were obtained by the finite difference method, and an iterative algorithm, which comes from the nonsmooth Newton method with a special choice of generalized Jacobian, for solving the problems was presented. The algorithm is monotonic and will stop in finite steps. The numerical results were listed at the end of the paper.

    nonsmooth Newton method; obstacle problem; monotonic algorithm; finite difference method

    1 Introduction

    Let Ω?R2. Consider the obstacle problem: findu∈Ksuch that

    (1)

    where

    (2)

    and the obstacle functionψsatisfies the conditionψ∈H1(Ω)∩C(Ω), hereψ≤0 on ?Ω, the boundary of the domain Ω.

    Problem (1)-(2) describes the equilibrium positionuof an elastic membrane constrained to lie above a given obstacleψu(yù)nder an external forcef∈L2(Ω). This obstacle problem is also called as the lower obstacle problem.

    If the solution is smooth enough, then the obstacle problem (1)-(2) is equivalent to the following free boundary problem[1]:

    -Δu-f≥0,in Ω1and -Δu-f=0,in Ω2,

    (3)

    where Ω1={x∈Ω|u(x)=ψ(x)},Ω2={x∈Ω|u(x)>ψ(x)},or equivalently, the complementarity problem:

    u-ψ≥0,-Δu-f≥0,(u-ψ)(-Δu-f)=0 in Ω,

    (4)

    where Ω=Ω1∪Ω2and Ω1∩Ω2=?. As usual, Ω1is called the region of contact and Ω2is called the region of non-contact. These two regions in Ω are both unknown.

    There are papers solving the obstacle problem by various methods, such as the relaxation projection method[2], the multilevel projection method[3], the multigrid method[4-6], the moving mesh method[7], etc.

    For treating the discrete system obtained by the finite element method or the difference method, some algorithms are discussed, see[1,8-10]. Among them, the active set methods are attractive. The active set strategies can be implemented by the multigrid or multilevel techniques[8].

    As Gr?ser[4]said, recently new interest was stimulated by a reinterpretation of the active set approach in terms of nonsmooth Newton methods. M. Hintermüller, V. Kovtunenko, K. Kunisch[11]pointed out a relation between a nonsmooth Newton method and an active set algorithm when they study a kind of constrained quadratic programming problem.

    The discretization method we used in the paper is the finite difference method. In the following, for simplicity, we suppose that the domain Ω be a square region and be divided into equalN×Nparts with the step-sizeh=1/Nand nodes (xi,yj),xi=ih,yj=jh,i,j=0,1,2,…,N. Letn=(N-1)2and denote all the inner nodes (x1,y1), (x2,y1), …, (xN-1,y1), (x1,y2), …, (xN-1,y2), …, (xN-1,yN-1) bys1,s2,…,sN-1,sN,…,s2(N-1),…,sn, respectively, following the natural rowwise ordering. If we use the finite difference method with the 5-point scheme to solve the problem (4), then the following generalized complementarity problem is obtained[12]: findU=(U1,U2,…,Un)T∈Rnsuch that

    U-Ψ≥0,AU-F≥0, (U-Ψ)T(AU-F)=0,

    (5)

    where

    Ui?u(si),i.e.,Uiis an approximation ofu(si),i=1,…,n,

    Ψ=(ψ(s1),ψ(s2),…,ψ(sn))T,

    F=(f(s1)h2,f(s2)h2,…,f(sn)h2)T,

    A is the matrix obtained by the finite difference method with the 5-point scheme,

    (6)

    andEis the (N-1)×(N-1) identity matrix.

    This paper aims to solve (5) by solving its equivalent form:

    G(U)=max{-AU+F,-U+Ψ}=0,

    (7)

    where the operator “max” is the componentwise maximum.

    In the paper, starting from the nonsmooth Newton method with a special choice of the Jacobian, we deduce an algorithm where the active set strategy is also used for solving the discretized lower obstacle problem (1)-(2). We also give a relation between an active set method and a Newton type method. It is interesting that the algorithm we get is a globally convergent and monotonic algorithm, which has the locally super-linearly convergency and the finite terminating property.

    The rest of this paper is organized as follows. In section 2, we will deduce the monotonic algorithm for solving (7) and give the main results of the paper. In section 3, we will prove the main results. In section 4, we will present some numerical results.

    2 Algorithms and Main Results

    For solving (7), we adapt the following iterative scheme:

    (8)

    whereU0∈Rnis a suitable initial point and thei-th row vector (Vk)iofVkis computed by

    (9)

    for eachi=1,2,…,n.

    Above iterative method mainly comes from Qi and Sun’s method[13-14], which is called the nonsmooth Newton’s method, and our method computing an element of generalized jacobian of a nonsmooth function[15].

    For the iterative scheme (8), we have

    Theorem1

    1) For any initial pointU0,Vkcomputed by (9) is always nonsingular for eachk≥0, that is to say that each iteration step in (8) is well defined.

    2) Supposing thatU*is a solution of (7), the iterative method (8) is locally super-linearly convergent toU*from a suitable pointU0in a neighborhood ofU*.

    3) The iterative sequence generalized by (8) is the same as the one generated by the following Algorithm 1, if they use the same initial point.

    Algorithm1

    Step 0: ChooseU0∈Rnarbitrarily, setk=0.

    Step 1: Solve the following equations to getUk+1:

    (10)

    where

    Ik={i|(-Uk+Ψ)i>(-AUk+F)i}∪{i|(-Uk+Ψ)i=(-AUk+F)i,i≠1},
    Jk={i|(-Uk+Ψ)i<(-AUk+F)i}∪{i|(-Uk+Ψ)i=(-AUk+F)i,i=1}={1,2,…,n}Ik,k≥0.

    (11)

    Step 2: Setk=k+1 and turn to Step 1.

    Remark1For eachk≥0, although the form of (10) is much simpler than that of (8), we suppose solving the following equivalent form of (10):

    (12)

    instead of solving (10) directly. The computational cost of solving (12) is lower than that of solving (8) since the scale of the matrixAJk,Jkis smaller than that ofA. As each of the leading principal minors ofAJk,Jkis a principal minor of the positive definite and sparse matrixA[16], so each of the leading principal minors ofAJk,Jkis positive, thereforeAJk,Jkis also positive definite and sparse. Many methods, such as the conjugate gradient method, the pre-conditional conjugate gradient method and the Lanczos method, can be used[17-18]. In the numerical implementation of Algorithm 1, we use the pre-conditional conjugate gradient method[17].

    For the convergence of Algorithm 1, we have

    Theorem2For eachU0∈Rnchosen arbitrarily, we have

    1) Algorithm 1 is always well defined.

    2) Algorithm 1 converges locally super-linearly.

    3) Algorithm 1 converges globally and monotonically to the solution of (7) and it stops ifIk=Ik+1orUk=Uk+1.

    3 Proofs

    We need some lemmas first.

    Lemma1(The discrete maximum principle, [16]) IfAU≥0, thenU≥0, whereAis defined by (6) andU={U1,U2,…,Un}T∈Rn.

    Lemma2LetU={U1,U2,…,Un}T∈RnandA=(aij)n×n∈Rn×nbe a matrix defined by (6). If there exists two disjoint setsIandJsatisfyingI∪J={1,2,…,n}, we have

    1) IfUi≥0,?i∈Iand(AU)i≥0,?i∈J, thenU≥0.

    2) IfU≠0,J≠?,Ui=0,?i∈I,(AU)i≥0,?i∈J, thenUi=0,?i∈IandUi>0,?i∈J.

    Proof1) IfJ=?, 1) holds obviously. IfI=?, 1) is also true by Lemma 1.

    2) SinceUi≥0 is proved for eachi∈Jby 1), it is only needed for us to showUi≠0,?i∈J.LetJ′={i∈J|Ui>0}, we knowJ′≠? becauseU≠0 andUi=0 for alli∈I. Assuming thatJJ′={i∈J|Ui=0}≠?, there must existk∈JJ′ such thatUk=0 and one of the following inequalities is true: 0

    A matrixB=(bij)n×nis called anM-matrix([16]) if

    bii>0,?i=1,2,…,n,bij≥0,?i≠j,Bis nonsingular andB-1≥0.

    (13)

    Lemma3(Lemma 4.3.17 in [16]) LetBandCbeM-matrices withC≥B. Then it holds 0≤C-1≤B-1and ||C-1||∞≤||B-1||∞.

    Lemma4Let the matrixAbe defined by (6) andEbe then×nidentity matrix. For any two setsIandJsatisfyingI∩J=?,I∪J={1,2,…,n}, if thei-th row of matrixVI,αis computed by

    (VI,α)i=αEi, ifi∈Iand (VI,α)i=Ai, ifi∈J,

    (14)

    ProofBy Theorem 4.4.1 of [16], the matrixAwith the form (6) is positive definite. IfI=? orJ=?, thenVI,α=-AorVI,α=-E, 1) and 2) hold obviously.

    TheproofofTheorem11) For eachk≥0, thenVk=-VIk,1according to the construction ofVkin (8) and the definition ofVIk,αin (4). So,Vkis nonsingular for eachk≥0 by Lemma 4 and the nonsmooth Newton method (8) is always well defined.

    by the properties of semismooth operator, that is to say, the iterative method (8) is locally super-linearly convergent toU*if a suitable pointU0is chosen in a neighborhood ofU*.

    3) For eachk≥0, by (9) and the definition of setsIkandJkin (11), the Newton iterative step (8) is equivalent to the following system of equations:

    (15)

    which is equivalent to (10). 3) is proved, which completes the proof of the theorem.

    Lemma5For eachU0∈Rnchosen arbitrarily, if the sequence {Uk}k≥0is generated by (8) or by Algorithm 1 andIkandJkare defined by (11) for eachk≥0, then the following hold:

    1) The sequence {Uk}k≥1increases monotonically, that is,Uk+1≥Uk,?k≥1.

    2) The sequence {Uk}k≥2is bounded below byΨ, that is,Uk≥Ψ,?k≥2.

    5) For eachk≥2, ifIk≠Ik+1, thenIkIk+1.

    Lemma 5 can be proved based on the discrete maximum principle. Now, let’s give

    TheproofofTheorem21) and 2) are the same as the proof of Theorem 1. So to prove the theorem we just need to prove 3).

    For eachk≥2, by 5) in Lemma 5, for eachU0∈Rn, we haveI2?I3?…?Ik?Ik+1?…. Since |I2|≤n<+∞, there must exist a numberk, the smallest integer satisfying 2≤k≤|I2|+1≤n+1 such thatIk=Ik+1, by the drawer principle, which deducesUk+1=Uk+2by (10). SinceVk+1(Uk+2-Uk+1)=-G(Uk+1) andVk+1is nonsingular by Theorem 1, we haveG(Uk+1)=0, which means thatUk+1is the solution of (7) and Algorithm 1 stops at thek+1-th step withIk=Ik+1andUk=Uk+1. The arbitration ofU0means that the algorithm is globally. By 1) in Lemma 5, Algorithm 1 is monotonic. 3) is proved.

    The proof of the theorem is completed.

    4 Numerical Results

    In this section, we present a numerical example to show the computational performance of Algorithm 1. All the computations here are performed by MATLAB 7.13. All the programs have been tested at a Dell PowerEdge R71 machine with Intel(R) Xeon(TM) CPU 1.87GHz ×2 and memory 4G. We use the pre-conditional conjunction gradient method[17]to solve each linear system in each iterative step of the algorithm.

    In the example, we choose 0 as the initial pointU0for Algorithm 1, though it can be chosen arbitrarily. In the programs, we use Dawson’s technique[19], which may be the better technique (see also [15]), to check if two real numbers are equal.

    Example1[3,9]Let Ω=(0,1)×(0,1), the forcef=-50, the obstacle be a planez=-0.5. Figure 1 shows the approximate solution when the step sizeh=1/64. The interior flat region is the contact region. The numbers of iteration steps are listed in Table 1 for eachh=1/8,1/16,1/32,1/64,1/128,1/256.

    Fig.1 The solution surface of Example 1 with h=1/64.

    h=1/NIterationnumber1/821/1651/3261/64101/128181/25634

    Acknowledgements

    Thanks Prof. Cheng Xiaoliang and Prof. Huang Zhengda for their help in my researching this work and preparing this paper.

    [1] Herbin R. A monotonic method for the numerical solution of some free boundary value problems[J]. SIAM Journal of Numeric Analysis,2002,40:2292-2310.

    [2] Glowinski R. Numerical methods for nonlinear variational problems[C]//Springer Series in Computational Physics. New York: Springer-Verlag,1984.

    [3] Zhang Yongmin. Multilevel projection algorithm for solving obstacle problems[J]. Computers and Mathematics with Applications,2011,41:1505-1513.

    [4] Gr?ser C, Kornhuber R. Multigrid methods for obstacle problems[J]. Journal of Computational Mathematics,2009,27:1-44.

    [5] Hoppe R H W. Multigrid algorithms for variational inequalities[J]. SIAM Journal of Numerical Analysis,1987,24:1046-1065.

    [6] Imoro B. Discretized obstacle problems with penalties on nested grids[J]. Applied Numerical Mathematics,2000,32:21-34.

    [7] Li Ruo, Liu Wenbin, Ma Heping. Moving mesh method with error-estimator-based monitor and its applications to static obstacle problem[J]. Journal of Scientific Computing,2004,21(1):31-55.

    [8] K?rkk?inen T, Kunisch K, Tarvainen P. Augmented lagrangian active set methods for obstacle problems[J]. Journal of Optimization Theory and Applications,2003,119(3):499-533.

    [9] Xue Lian, Cheng Xiaoliang. An algorithm for solving the obstacle problems[J]. Computers and Mathematics with Applications,2004,48:1651-1657.

    [10] Lian Xiaopen, Cen Zhongdi, Cheng Xiaoliang. Some iterative algorithms for the obstacle problems[J]. International Journal of Computer Mathematics,2010,87(11):2493-2502.

    [11] Hintermüller M, Kovtunenko V, Kunisch K. Semi-smooth Newton methods for a class of unilaterally constrained variational problems[J]. Advanced in Mathematical Sciences and Applications,2004,14:513-535.

    [12] Cheng Xiaoliang, Xue Lian. On the error estimate of finite difference method for the obstacle problem[J]. Applied Mathematics and Computation,2006,183:416-422.

    [13] Qi Liqun. Convergence analysis of some algorithms for solving nonsmooth equations[J]. Mathematics of Operations Research,1993,18 (1):227-244.

    [14] Qi Liqun, Sun Jie. A nonsmooth version of Newton’s method[J]. Mathematical Programming,1993,58:353-367.

    [15] Huang Zhengda, Ma Guochun. On the computation of an element of clarke generalized jacobian for a vector-valued max function[J]. Nonlinear Analysis: Theory, Methods & Applications,2010,72:998-1009.

    [16] Hackbusch W. Elliptic differential equations: theory and numerical treatment[M]. Berlin Heidelberg: Springer-Verlag,1992.

    [17] Barrett R, Berry M, Chan T F,etal. Templates for the solution of linear systems: building blocks for iterative methods[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM),1994.

    [18] Saad Y. Iterative methods for sparse linear systems[M]. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,2003.

    [19] Dawson B. Comparing floating point numbers[EB/OL]. (2012-03-20)http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.

    一個(gè)求解障礙問(wèn)題的非光滑迭代算法

    馬國(guó)春

    (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

    討論了一種求解障礙問(wèn)題的數(shù)值方法.通過(guò)有限差分方法得到離散問(wèn)題,提出了一種源于取一個(gè)特殊廣義雅可比的非光滑牛頓法的迭代算法.該算法具有單調(diào)性和有限步終止性.在文末給出了數(shù)值實(shí)驗(yàn).

    非光滑牛頓法;障礙問(wèn)題;單調(diào)算法;有限差分法

    date:2011-11-30

    Supported by NSFC(10731060).

    Biography:MA Guo-chun(1973—), male, Lecturer, Ph. D., majored in numerical optimization and algorithm analysis. E-mail: maguochun@hznu.edu.cn

    10.3969/j.issn.1674-232X.2012.04.002

    O241.7MSC201065N06;65F10;65N22;65N12;90C33ArticlecharacterA

    1674-232X(2012)04-295-07

    猜你喜歡
    差分法文末牛頓
    二維粘彈性棒和板問(wèn)題ADI有限差分法
    牛頓忘食
    文末點(diǎn)題太直接
    老師的批語(yǔ)
    風(fēng)中的牛頓
    失信的牛頓
    勇于探索的牛頓
    基于SQMR方法的三維CSAMT有限差分法數(shù)值模擬
    有限差分法模擬電梯懸掛系統(tǒng)橫向受迫振動(dòng)
    三參數(shù)彈性地基梁的有限差分法
    国产精品永久免费网站| 蜜桃久久精品国产亚洲av| av在线天堂中文字幕| 久久久久久伊人网av| 久久人人精品亚洲av| 天天躁夜夜躁狠狠久久av| 一区二区三区高清视频在线| 精品不卡国产一区二区三区| 亚洲经典国产精华液单| 1000部很黄的大片| 欧美日韩在线观看h| 18禁黄网站禁片免费观看直播| 精品人妻视频免费看| 国产三级中文精品| 久久精品人妻少妇| 亚洲精品成人久久久久久| 久久99热这里只有精品18| 99久久中文字幕三级久久日本| 免费观看a级毛片全部| 在线观看一区二区三区| 99热网站在线观看| 久久久久久国产a免费观看| 欧美性猛交╳xxx乱大交人| 国产精品精品国产色婷婷| 成人午夜高清在线视频| 国产片特级美女逼逼视频| 午夜老司机福利剧场| 在线免费十八禁| 成熟少妇高潮喷水视频| 直男gayav资源| 日本一本二区三区精品| 波野结衣二区三区在线| 国产亚洲5aaaaa淫片| avwww免费| 99久久中文字幕三级久久日本| 69av精品久久久久久| 亚洲va在线va天堂va国产| 久久久国产成人免费| 简卡轻食公司| 级片在线观看| 亚洲在久久综合| 美女脱内裤让男人舔精品视频 | 尾随美女入室| 国产成人精品久久久久久| 91午夜精品亚洲一区二区三区| 久久国产乱子免费精品| 丰满的人妻完整版| 亚洲18禁久久av| 我要看日韩黄色一级片| 99久久精品国产国产毛片| 在线观看午夜福利视频| 免费在线观看成人毛片| 日韩欧美国产在线观看| 亚洲人成网站在线观看播放| 九九在线视频观看精品| 亚洲欧美精品专区久久| 亚洲av男天堂| 亚洲av第一区精品v没综合| 一夜夜www| 精品无人区乱码1区二区| 亚洲av电影不卡..在线观看| 成人美女网站在线观看视频| 国产精品.久久久| av.在线天堂| 在线观看av片永久免费下载| 久久精品国产自在天天线| 国产精品一及| 亚洲精品色激情综合| 亚洲最大成人av| 99久久无色码亚洲精品果冻| 简卡轻食公司| 老女人水多毛片| 免费观看精品视频网站| 欧美日韩国产亚洲二区| 欧美极品一区二区三区四区| 成人午夜精彩视频在线观看| 欧美三级亚洲精品| 精品一区二区免费观看| 最近中文字幕高清免费大全6| 亚洲av免费高清在线观看| 干丝袜人妻中文字幕| 国产亚洲av片在线观看秒播厂 | 亚洲18禁久久av| 欧美性感艳星| av女优亚洲男人天堂| 干丝袜人妻中文字幕| 精品久久久噜噜| 日韩国内少妇激情av| 亚洲欧美精品自产自拍| 91av网一区二区| 国产高清视频在线观看网站| 国产精品久久视频播放| 欧美成人精品欧美一级黄| 国产v大片淫在线免费观看| 日韩一区二区视频免费看| 免费无遮挡裸体视频| 亚洲精品自拍成人| 国产成人福利小说| 午夜免费激情av| 国产视频内射| 精品国内亚洲2022精品成人| 三级男女做爰猛烈吃奶摸视频| 亚洲激情五月婷婷啪啪| 黑人高潮一二区| 嫩草影院新地址| 久久久久网色| 国产乱人偷精品视频| 久久亚洲国产成人精品v| 一级黄色大片毛片| 亚洲精品成人久久久久久| 国产成人精品婷婷| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲网站| 国产精品电影一区二区三区| 国产精品久久久久久久电影| 亚洲欧美成人综合另类久久久 | 免费电影在线观看免费观看| 免费人成视频x8x8入口观看| 成人性生交大片免费视频hd| 青春草视频在线免费观看| 伊人久久精品亚洲午夜| 少妇人妻一区二区三区视频| 精品一区二区免费观看| 天美传媒精品一区二区| 国产69精品久久久久777片| 国产探花在线观看一区二区| 国产熟女欧美一区二区| 久久精品国产亚洲av香蕉五月| 我要看日韩黄色一级片| 一级黄片播放器| 国产综合懂色| 日本成人三级电影网站| 国产高清激情床上av| a级毛片a级免费在线| 亚洲婷婷狠狠爱综合网| 午夜福利成人在线免费观看| 欧美人与善性xxx| 精品久久久久久久人妻蜜臀av| 女同久久另类99精品国产91| 26uuu在线亚洲综合色| 成年女人永久免费观看视频| 久99久视频精品免费| 久久久久久久久久久丰满| 看黄色毛片网站| 白带黄色成豆腐渣| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 久久久久性生活片| 中文字幕人妻熟人妻熟丝袜美| 成人永久免费在线观看视频| 12—13女人毛片做爰片一| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| 久久久久国产网址| 97人妻精品一区二区三区麻豆| 99在线人妻在线中文字幕| 国产精品久久视频播放| 久久久久久久久久久丰满| 伦精品一区二区三区| 熟女电影av网| 国产精品,欧美在线| 卡戴珊不雅视频在线播放| 日韩亚洲欧美综合| 久久精品国产99精品国产亚洲性色| 国产单亲对白刺激| 久久久久久久久久黄片| 美女国产视频在线观看| 成人毛片60女人毛片免费| av在线播放精品| 亚洲美女视频黄频| 精华霜和精华液先用哪个| av又黄又爽大尺度在线免费看 | 又粗又硬又长又爽又黄的视频 | 三级经典国产精品| 日韩欧美国产在线观看| 校园春色视频在线观看| 中文在线观看免费www的网站| 日韩一区二区三区影片| 久久韩国三级中文字幕| 18禁在线播放成人免费| 丰满的人妻完整版| 亚洲自拍偷在线| 精品人妻视频免费看| 国产高清激情床上av| 在线免费观看的www视频| 国产黄a三级三级三级人| 国产视频首页在线观看| 久久综合国产亚洲精品| 嫩草影院入口| 天天躁日日操中文字幕| 亚洲五月天丁香| 欧美xxxx黑人xx丫x性爽| 能在线免费看毛片的网站| 99久久精品国产国产毛片| 亚洲人与动物交配视频| 成年免费大片在线观看| 亚洲美女搞黄在线观看| 99久久成人亚洲精品观看| 黄色欧美视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品一及| 1024手机看黄色片| 亚洲三级黄色毛片| 日产精品乱码卡一卡2卡三| 久久久久久大精品| 男人狂女人下面高潮的视频| 在线观看66精品国产| 91麻豆精品激情在线观看国产| av卡一久久| 精品久久久久久久久久久久久| 你懂的网址亚洲精品在线观看 | 日韩精品青青久久久久久| 亚洲精品国产成人久久av| 99热6这里只有精品| 亚洲成av人片在线播放无| 日产精品乱码卡一卡2卡三| 美女xxoo啪啪120秒动态图| 国产中年淑女户外野战色| 91狼人影院| 3wmmmm亚洲av在线观看| 亚洲国产欧美人成| 久久久国产成人免费| 中文字幕久久专区| 国产乱人视频| 国产黄色小视频在线观看| 女人被狂操c到高潮| 大又大粗又爽又黄少妇毛片口| 三级男女做爰猛烈吃奶摸视频| 久久亚洲精品不卡| 日本免费a在线| 午夜精品国产一区二区电影 | 国产乱人视频| 91久久精品国产一区二区三区| 国产成人aa在线观看| 午夜视频国产福利| 免费看a级黄色片| 色综合站精品国产| 午夜激情欧美在线| 岛国毛片在线播放| 国产一区二区三区av在线 | 国产精品电影一区二区三区| 大型黄色视频在线免费观看| 综合色av麻豆| 亚洲国产色片| 日本一本二区三区精品| 1000部很黄的大片| 有码 亚洲区| 欧美xxxx性猛交bbbb| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 成人永久免费在线观看视频| 免费av毛片视频| 男人和女人高潮做爰伦理| 99精品在免费线老司机午夜| 国产精品无大码| 男女视频在线观看网站免费| 午夜久久久久精精品| 国产精品久久久久久久电影| 中国国产av一级| 免费看日本二区| 波野结衣二区三区在线| 哪里可以看免费的av片| 久久久国产成人精品二区| h日本视频在线播放| 亚洲欧美成人综合另类久久久 | 少妇猛男粗大的猛烈进出视频 | 色5月婷婷丁香| 精品人妻视频免费看| 两个人视频免费观看高清| 欧美高清性xxxxhd video| 欧美区成人在线视频| 国产男人的电影天堂91| 亚洲精品456在线播放app| 看十八女毛片水多多多| 国产精品日韩av在线免费观看| 色综合亚洲欧美另类图片| 禁无遮挡网站| 亚洲,欧美,日韩| 亚洲欧美日韩无卡精品| 亚洲精品国产av成人精品| 国产伦精品一区二区三区四那| 亚洲成人精品中文字幕电影| 日韩欧美精品免费久久| 联通29元200g的流量卡| 村上凉子中文字幕在线| 六月丁香七月| 18+在线观看网站| 日产精品乱码卡一卡2卡三| 亚洲精品成人久久久久久| 嫩草影院入口| 麻豆一二三区av精品| 久久国产乱子免费精品| 亚洲精品成人久久久久久| 欧美+日韩+精品| 国产高清不卡午夜福利| 黑人高潮一二区| 国产精品久久久久久精品电影小说 | 亚洲婷婷狠狠爱综合网| 日本在线视频免费播放| 日本黄大片高清| 国产视频首页在线观看| 免费黄网站久久成人精品| 国产午夜福利久久久久久| 精品久久国产蜜桃| 中文字幕制服av| 在线观看免费视频日本深夜| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 欧美又色又爽又黄视频| 美女内射精品一级片tv| 亚洲国产日韩欧美精品在线观看| 九九久久精品国产亚洲av麻豆| 亚洲欧美中文字幕日韩二区| 熟妇人妻久久中文字幕3abv| www.色视频.com| 亚洲欧美中文字幕日韩二区| 天天一区二区日本电影三级| 亚洲精品色激情综合| 国产亚洲欧美98| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 欧美成人精品欧美一级黄| 亚洲国产高清在线一区二区三| 亚洲精品国产成人久久av| 亚洲久久久久久中文字幕| 在线a可以看的网站| 亚洲内射少妇av| 久久精品国产99精品国产亚洲性色| 精品少妇黑人巨大在线播放 | 欧美日韩综合久久久久久| 欧美一区二区国产精品久久精品| 日本在线视频免费播放| 欧美日本亚洲视频在线播放| 亚洲精品影视一区二区三区av| 国内精品久久久久精免费| 中文欧美无线码| 男插女下体视频免费在线播放| 18+在线观看网站| 亚洲av中文av极速乱| 欧美日韩乱码在线| 国产亚洲av片在线观看秒播厂 | 69人妻影院| 国产又黄又爽又无遮挡在线| 亚洲精品自拍成人| 免费观看的影片在线观看| 在线国产一区二区在线| 亚洲av男天堂| 校园春色视频在线观看| 亚洲精品久久久久久婷婷小说 | av天堂在线播放| 女人十人毛片免费观看3o分钟| 午夜精品一区二区三区免费看| 成人高潮视频无遮挡免费网站| 免费不卡的大黄色大毛片视频在线观看 | 伦精品一区二区三区| 国产精品久久久久久精品电影| 国产淫片久久久久久久久| 成人高潮视频无遮挡免费网站| 欧美精品国产亚洲| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人久久性| 亚洲av一区综合| 亚洲国产精品国产精品| 91久久精品电影网| 女人十人毛片免费观看3o分钟| 国产激情偷乱视频一区二区| 在线免费观看的www视频| 亚洲成a人片在线一区二区| 欧美人与善性xxx| 久久鲁丝午夜福利片| 亚洲av男天堂| 国产亚洲欧美98| 精品熟女少妇av免费看| 国产黄a三级三级三级人| 中文字幕免费在线视频6| 色哟哟哟哟哟哟| 日本av手机在线免费观看| 中文在线观看免费www的网站| 免费观看在线日韩| 五月玫瑰六月丁香| 精品一区二区三区视频在线| 久久久久久久久中文| 在线天堂最新版资源| 91麻豆精品激情在线观看国产| 国产黄色小视频在线观看| 一级av片app| 天天一区二区日本电影三级| 深夜a级毛片| 久久久精品欧美日韩精品| 一级二级三级毛片免费看| 免费观看人在逋| 色哟哟·www| a级毛片a级免费在线| 久久欧美精品欧美久久欧美| 日韩中字成人| 嫩草影院新地址| 少妇人妻精品综合一区二区 | 草草在线视频免费看| 哪里可以看免费的av片| 久久久久九九精品影院| 婷婷色av中文字幕| 国产 一区 欧美 日韩| 特级一级黄色大片| 亚洲精品自拍成人| 久久久久久久久久黄片| 日本欧美国产在线视频| 高清毛片免费看| 亚洲欧美精品自产自拍| 久久久成人免费电影| 哪里可以看免费的av片| av女优亚洲男人天堂| 97超碰精品成人国产| 国产精品久久久久久亚洲av鲁大| 亚洲18禁久久av| 久久人人爽人人片av| 午夜视频国产福利| 蜜臀久久99精品久久宅男| 日韩强制内射视频| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 草草在线视频免费看| 欧美日韩乱码在线| 国产精品久久电影中文字幕| 在线播放无遮挡| av天堂中文字幕网| 九色成人免费人妻av| 久久午夜亚洲精品久久| 黄色欧美视频在线观看| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品在线观看| 三级国产精品欧美在线观看| 中国美女看黄片| av在线亚洲专区| 国产高清视频在线观看网站| 高清在线视频一区二区三区 | 中文字幕人妻熟人妻熟丝袜美| 亚洲乱码一区二区免费版| 久久九九热精品免费| 国产亚洲精品av在线| 日韩中字成人| 日韩av不卡免费在线播放| 国产三级在线视频| 午夜久久久久精精品| 国产成人a∨麻豆精品| 免费看av在线观看网站| 老女人水多毛片| 国产高潮美女av| 久久久久久久午夜电影| 久久久久性生活片| 久久精品国产亚洲av涩爱 | 97超碰精品成人国产| 久久99蜜桃精品久久| 69人妻影院| 九九爱精品视频在线观看| 日本黄色视频三级网站网址| 国产精品三级大全| 欧美色欧美亚洲另类二区| 18+在线观看网站| 黄片wwwwww| 亚洲成人久久爱视频| 亚洲自拍偷在线| 久久久成人免费电影| 91在线精品国自产拍蜜月| 人妻制服诱惑在线中文字幕| 久久韩国三级中文字幕| 人妻夜夜爽99麻豆av| 精品人妻熟女av久视频| 国产午夜精品久久久久久一区二区三区| 性欧美人与动物交配| 久久精品久久久久久噜噜老黄 | 少妇高潮的动态图| 亚洲精品国产av成人精品| 欧美三级亚洲精品| 秋霞在线观看毛片| 自拍偷自拍亚洲精品老妇| 国产精品蜜桃在线观看 | 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 性欧美人与动物交配| 丰满的人妻完整版| 国产在线男女| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲欧美一区二区av| 亚洲欧美中文字幕日韩二区| 亚洲成人精品中文字幕电影| 日韩欧美国产在线观看| 九九热线精品视视频播放| 国产免费男女视频| 国产精华一区二区三区| 国产极品天堂在线| 久久久久久久久久久丰满| 精品久久久久久久久av| 在线播放无遮挡| 亚洲五月天丁香| 国产精品综合久久久久久久免费| 国产精品一二三区在线看| 18禁黄网站禁片免费观看直播| 老女人水多毛片| 亚洲最大成人av| 大香蕉久久网| 成人av在线播放网站| 哪个播放器可以免费观看大片| 国产在视频线在精品| a级毛片免费高清观看在线播放| 人妻制服诱惑在线中文字幕| 在现免费观看毛片| 97人妻精品一区二区三区麻豆| 丝袜喷水一区| 美女xxoo啪啪120秒动态图| 一级黄色大片毛片| 一级黄片播放器| 久久这里只有精品中国| av专区在线播放| 日本av手机在线免费观看| 日本黄色视频三级网站网址| 久久精品久久久久久久性| 久久精品国产清高在天天线| 中文字幕av在线有码专区| 毛片一级片免费看久久久久| 天天躁夜夜躁狠狠久久av| 午夜精品国产一区二区电影 | 女的被弄到高潮叫床怎么办| 国产亚洲91精品色在线| 日韩国内少妇激情av| 亚洲四区av| 国产真实伦视频高清在线观看| av在线老鸭窝| 综合色丁香网| 你懂的网址亚洲精品在线观看 | 尾随美女入室| 日本一二三区视频观看| 亚洲欧美精品专区久久| 国产精品麻豆人妻色哟哟久久 | 国产精品人妻久久久影院| 91精品一卡2卡3卡4卡| 久久午夜福利片| 此物有八面人人有两片| 别揉我奶头 嗯啊视频| 久久人人爽人人爽人人片va| 一个人看视频在线观看www免费| 给我免费播放毛片高清在线观看| 91aial.com中文字幕在线观看| 亚洲天堂国产精品一区在线| 偷拍熟女少妇极品色| 国产熟女欧美一区二区| 麻豆av噜噜一区二区三区| 我的女老师完整版在线观看| 伦精品一区二区三区| 99久国产av精品国产电影| 日本色播在线视频| 国产色爽女视频免费观看| 观看美女的网站| 亚洲一区二区三区色噜噜| 晚上一个人看的免费电影| 中文精品一卡2卡3卡4更新| 人妻制服诱惑在线中文字幕| 精品人妻熟女av久视频| 久久精品国产亚洲av香蕉五月| 在线国产一区二区在线| 国产成人影院久久av| 黄片无遮挡物在线观看| 午夜精品一区二区三区免费看| 国产高清有码在线观看视频| 男的添女的下面高潮视频| 高清毛片免费看| 国产单亲对白刺激| 中文精品一卡2卡3卡4更新| 黄色配什么色好看| 国产麻豆成人av免费视频| 久久这里只有精品中国| 亚洲欧美成人精品一区二区| 午夜福利视频1000在线观看| 亚洲成人中文字幕在线播放| 国产欧美日韩精品一区二区| 美女内射精品一级片tv| 精品人妻偷拍中文字幕| 日本三级黄在线观看| 中国国产av一级| 亚洲欧美精品自产自拍| 校园春色视频在线观看| 九九热线精品视视频播放| 全区人妻精品视频| 三级毛片av免费| 热99在线观看视频| 日韩欧美在线乱码| 久久九九热精品免费| 色噜噜av男人的天堂激情| 国产午夜精品一二区理论片| 亚洲欧美清纯卡通| 深夜a级毛片| 国产精品野战在线观看| 一区二区三区免费毛片| 国产午夜精品久久久久久一区二区三区| 日本三级黄在线观看| 99九九线精品视频在线观看视频| 色哟哟哟哟哟哟| 亚洲精品乱码久久久v下载方式| 最近视频中文字幕2019在线8| 人人妻人人澡人人爽人人夜夜 | 一边亲一边摸免费视频| 亚洲经典国产精华液单| 日本黄色片子视频| 亚洲内射少妇av| 欧美区成人在线视频| 亚洲欧美精品综合久久99| 色综合站精品国产| 亚洲国产高清在线一区二区三| 欧美极品一区二区三区四区| 久久久精品欧美日韩精品| 身体一侧抽搐|