• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    梨形核殼結(jié)構(gòu)氧化鋅/銀亞微米球的制備、表征及光學性能

    2012-11-09 12:50:42馬劍琪
    無機化學學報 2012年8期
    關(guān)鍵詞:梨形核殼氧化鋅

    馬劍琪

    (陜西理工學院化學與環(huán)境科學學院,漢中 723001)

    梨形核殼結(jié)構(gòu)氧化鋅/銀亞微米球的制備、表征及光學性能

    馬劍琪

    (陜西理工學院化學與環(huán)境科學學院,漢中 723001)

    擇要:利用亞錫離子還原銀離子生成的金屬銀沉積在合成的梨形氧化鋅表面作為晶種,進一步生長銀納米粒子,制備了梨形的、核殼結(jié)構(gòu)的、單分散的氧化鋅/銀亞微米球。利用X射線衍射、透射電鏡、能量色散X射線譜、紫外可見吸收譜及光致發(fā)光譜對所制備樣品的形貌、微觀結(jié)構(gòu)、組成和光學性能進行了表征。結(jié)果表明:(1)樣品是由梨形亞微米氧化鋅核和銀納米顆粒殼組成;(2)在氧化鋅表面的銀納米粒子作為光激發(fā)產(chǎn)生的電子捕獲劑提高了光產(chǎn)生的載流子的分離效率,在能量沒有改變的情況下減少了紫外發(fā)射光的強度,淬滅了可見發(fā)射光。

    氧化鋅亞微米球;銀納米粒子;ZnO/Ag核殼結(jié)構(gòu)亞微米球;光學性質(zhì)

    Photocatalysis is one of the most dynamic areas in modern science as its potential in solving many current environmental and energy issues[1-4].Among semiconductor photocatalysts,in addition to the most extensively studied TiO2,ZnO with a similar band gap(3.2 eV)has attracted much attention due to its high photosensitivity and stability.In some cases,ZnO exhibits better photocatalytic activity than that of TiO2,SnO2,ZrO2,WO3,etc.,due to itshigher efficiency for generation of photoinduced carriers(electron-hole pairs)[5-7]. However, the quick recombination ofcarriersdecreasestheavailablephotocatalytic efficiency,thus limiting its practical application in the environment field[8].Depositing the semiconductor with noble metal nanoparticles(NPs)such as Ag[9],Au[10],Pt[11],and so on is one of the efficient ways to improve the capability of photochemical degradation by trapping the photoinduced carriers[12].For example,depositing Ag nanoparticles(Ag NPs)on various kinds of micro/nano structured ZnO,such as nanoparticle,nanorod,nanofiber,hollow sphere,etc.,can hinder the quick recombination of carriers and improve its photocatalytic activity[13-16].It is widely accepted that Ag NPs on ZnO can trap the photogenerated electrons from the semiconductor and thus enhance the separation efficiency of photogenerated electrons and holes.Nonetheless,so far there have been only a few examples about the synthesis of ZnO/Ag core-shell submicrospheres[17-18].In this work,ZnO/Ag core-shell submicrospheres,constructed by pear-shaped wurtzite ZnO submicrosphere core and Ag NPs shell,are obtained via a seed-mediated particle growth procedure,which has been used for decoration of ZnO nanorods[14],carbon nanotubes[19]and silica spheres[20].In addition,the relation between optical properties and the separation efficiency of photoinduced carriers in the ZnO/Ag core-shell composite is investigated to evaluate the influence of deposited Ag NPs on the electronic structure and surface property of ZnO,using the as-prepared pure ZnO submicrospheres and commercial ZnO as the reference.

    1 Experimental

    1.1 Materials

    All chemicals were analytical grade and used as received without further purification.Zn(CH3COO)2·2H2O(ZnAc),C2H5OH,SnCl2·H2O,AgNO3,NH3·H2O,diethylene glycol (DEG,HOCH2CH2OCH2CH2OH),sodium citrate (Na3C6H5O7)and commercial ZnO were purchased from Shanghai Chemical Industrial Company.

    1.2 Synthesis of pure pear-shaped ZnO submicrospheres

    The pure pear-shaped ZnO submicrospheres used in this work were prepared by a two-stage reaction process.For the first step,0.015 mol ZnAc was added to 150 mL DEG and heated to 160℃under reflux.After 30 min,a primary reaction was performed and cooled to room temperature (RT).The product was centrifuged and the supernatant was decanted off and saved as stock solution,and the polydispersed powder was discarded.For the second step,0.015 mol ZnAc was added to 150 mL DEG and the reaction solution was heated to 150℃,then 10 mL stock solution was added to the solution.Following this addition,this solution was again heated to 160℃,stirred for 1 h,then cooled to RT.The ZnO submicrospheres were separated from the solvent by a repeated centrifugation-sonication process.

    1.3 Preparation of ZnO/Ag core-shell submicrospheres

    In a typical synthesis,50 mg of the as-prepared ZnO was dispersed into 40 mL of ethanol solution containing about 10 mg of SnCl2·H2O with vigorous stirring for 30 min at RT and centrifuged.This resulted in sorption ofSn2+onto ZnO surfaces(ZnO@Sn2+,activated ZnO spheres).After this,the activated ZnO spheres were dispersed into 25 mL 0.005 mol·L-1Ag(NH3)2+ethanol solution and stirred for about 1 h,then centrifuged to obtain ZnO spheres containing Ag seeds.The growth of Ag NPs proceeded as follows:The Ag-seeded ZnO spheres were redispersed into 25 mL aqueous solution containing 7.5 mmol AgNO3and was heated to 80℃,then 0.5 mL of 0.35 mol·L-1sodium citrate was added under vigorous stirring.The solution was stirred for 60 min at 80℃.During the reaction,the color of the colloidal solution gradually evolved,indicating the reduction of Ag+by sodium citrate and the formation of the core-shell structure composites.Finally,the reaction mixture was cooled to RT and the samples were separated by a repeated centrifugation-sonication process.

    1.4 Characterization

    Transmission electron microscopy (TEM)images associated with energy dispersive X-ray spectroscopy(EDS)were obtained on JEOL JEM-3010 TEM with an acceleration voltage of 200 kV.The X-ray diffraction(XRD)patterns were recorded on a Japan Rigaka D/max-IIB X-ray diffractometer equipped with a graphite diffracted-beam monochromator for Cu Kα radiation(λ=0.15418 nm)at 45 kV and 200 mA,using 0.15 mm receiving slit and scintillation counter as the detector.The 2θ region was in the range of 20°~80°with a step of 0.02°and a scanning speed of 5°·min-1.UV-Vis spectra were recorded on a Hitachi U-3010 spectrophotometer.Photoluminescence (PL)spectra were recorded on a Hitachi F4500 fluorescence spectrophotometer using a Xenon lamp as the excitation source atroom temperature.The samples were dispersed in ethanol using ultrasonic bath and the excitation wavelength used in PL measurement was 325 nm.

    2 Results and discussion

    2.1 TEM analysis

    Fig.1 displays the low-magnification TEM image ofpear-shaped ZnO submicrospheres and highmagnification TEM image of a single ZnO submicrosphere,respectively.Fig.1(a)reveals that the synthesized ZnO consists of monodisperse pear-shaped submicrospheres and that the average diameter of the spheres is 220 nm.Fig.1(b)shows that the single ZnO submicrosphere consists of numerous primary nanoparticles with diameters ranging from 20 to 30 nm.The size of the primary nanoparticles was too small to conclusively determine the diameter from the TEM image,therefore,the crystal size obtained from the XRD result was used as the estimated diameter(see XRD analysis).

    Fig.2 shows the typical TEM images and EDS spectrum of the ZnO/Ag core-shell submicrospheres.From representative low-magnification TEM image shown in Fig.2(a),the ZnO/Ag core-shell composites basically keep the same pear-shaped structure and monodispersity as uncoated ZnO submicrosphers with an average diameter of 250 nm.Fig.2(b)and Fig.2(c)show the high-magnification TEM images of a typical single ZnO/Ag sphere,which is assembled by many ZnO and Ag NPs.Further analysis reveals that the composite sphere is coated by uniform thin nanoshell.The nanoshelliscomposed oflarge numberof spherical Ag NPs,whose size ranges from 10 nm to 30 nm.The measured average diameter of the Ag NPs is 15 nm.Only the peaks corresponding to Ag,Zn,and O are observed in the EDS spectrum (Fig.2(d)),demonstrating once again thatthe samples are composed of Zn,O,and Ag,and the ZnO/Ag coreshell composites are formed.Also,one can observe a small number of free Ag NPs based on a large number of TEM images (Fig.2(a)),showing the successful combination of Ag NPs with ZnO submicrospheres.It isworth pointingoutthattheAgNPsin the composites are metallic crystalline Ag with fcc structure,which is in good agreement with the XRD result(vide infra).

    Fig.1 TEM images of pear-shaped ZnO submicrospheres

    Fig.2 TEM images and EDS spectrum for pear-shaped ZnO/Ag core-shell submicrospheres

    2.2 XRD analysis

    Fig.3 shows the XRD patterns of bulk commercial ZnO,pure pear-shaped ZnO submicrospheres and ZnO/Ag core-shellsubmicrospheres,respectively.The peaks at 2θ=31.77°,34.42°,36.25°,47.54°,56.60°,62.86°,and 67.81°observed in Fig.3(a)and Fig.3(b),respectively,are indexed to the(100),(002),(101),(102),(110),(103)and(112)diffractions of ZnO crystal with a hexagonal wurtzite structure(PDF No.36-1451).No impurity peaks are detected.However, the diffraction peaks of the ZnO submicrospheres are obviously broadened in comparison with bulk commercial ZnO due to the small particle size.As can be seen from Fig.3(c),three additional diffraction peaks appear compared to pure ZnO submicrospheres(Fig.3(b)).The three additional peaks at 2θ=38.18°,44.42°and 64.50° (marked with*)can be indexed to(111),(200),and(220)planes of fcc silver,respectively.Their position and relative intensities are in good agreement with the (PDF No.04-0783)of bulk silver,which proves the formation of crystalline Ag.Moreover,all diffraction peak positions of ZnO in ZnO/Ag composites are in accord with that of pure ZnO submicrospheres,indicating that Ag does not incorporate into the lattice of ZnO,is only mixed with ZnO spheres.Furthermore,the average sizes of the ZnO and Ag NPs,calculated by the Scherrer formula using the strongest peaks (101)for ZnO and(111)for Ag,are estimated to be 25 and 15 nm,respectively.

    Fig.3 XRD patterns for(a)commercial ZnO,(b)pure pear-shaped ZnO submicrospheres,(c)pear-shaped ZnO/Agcore-shellsubmicrospheres

    2.3 Optical properties and mechanism

    Fig.4 shows UV-Vis absorption spectra of bulk commercial ZnO, pure pear-shaped ZnO submicrospheres and ZnO/Ag core-shell composites.In Fig.4(a),the bulk commercial ZnO exhibits obvious UV absorption peak at 386 nm,which can be assigned to the absorption of the ZnO semiconductor.It can be easily found from Fig.4(b)that the UV absorption position of the pear-shaped ZnO submicrospheres has a conspicuous blueshift of about 10 nm compared to that of bulk commercial ZnO due to quantum size effect[21]and the quantum confinement effect[22].The result implies that the absorption shift of pure ZnO crystals is usually related to their size change[21-22].As shown in Fig.4 (c),two prominent absorption peaks of the ZnO/Ag core-shell composites are observed in the UV-Vis region.The UV absorption can be assigned to absorption of ZnO submicrospheres with corresponding absorption peak at around 376 nm.The visible absorption in the range of 410~480 nm can be ascribed to the characteristic absorption of surface plasmon resulting from the metallic Ag NPs in the ZnO/Ag heterostructures[23].The appearance of two kinds ofcharacteristic absorption bands further confirms that the as-synthesized samples are composed of Ag NPs and ZnO submicrospheres.

    Fig.4 UV-Vis absorption spectra for(a)commercial ZnO,(b)pure pear-shaped ZnO submicrospheres,(c)pear-shaped ZnO/Ag core-shell composites

    Fig.5 shows PL spectra of bulk commercial ZnO,pure pear-shaped ZnO submicrospheres,and ZnO/Ag core-shell composites excited with 325 nm wavelength.In Fig.5(a),the bulk ZnO exhibits strong emission peak located at 380 nm that is attributed to the characteristic emission of semiconductor ZnO[24].In Fig.5(b),the pure ZnO submicrospheres exhibit a doubly peaked emission spectrum,with a strong UV band centered at366 nm originating from the excitonic emission.The UV emission energy shifts to the high energy in comparison with that of bulk ZnO,i.e.there is a clear blue-shift.The blue-shift may be caused by the oxygen vacancies on the as-prepared ZnO spheres.The weak visible wide emission peak at around 460~480 nm is due to an electronic transition from defect-associated trap states,such as oxygen vacancies closer to the conduction band edge,to deeply trapped holes near or in the valence band[25].Compared to the pure ZnO submicrospheres,attachment of Ag NPs to the ZnO surface reduces the intensity of the UV emission without energy shifts and quenchesvisibleemission peak (Fig.5(c)).The intensity decrease of the UV emission for the ZnO/Ag composites can be ascribed to the electron trapping effect of Ag NPs,which act as electron acceptor,thus hindering the recombination of photogenerated carriers on ZnO.The wavelength of the visible emission peak for pure ZnO submicrospheres is in the region of the surface plasmon band of Ag NPs,and the Ag NPs absorb the emitted visible light from the ZnO spheres,thereby contributing to quenching the visible emission peak.The electron trapping effect of Ag NPs is favorable for the improvement of the photocatalytic activity of ZnO due to the enhancement of the separation efficiency of photogenerated electrons and holes.The quenching visible emission also indicates that the surface oxygen vacancies in the ZnO/Ag composites are reduced after the Ag loading,suggesting that the metallic Ag NPs are deposited on the defect sites.

    Fig.5 PL spectra for(a)commercial ZnO,(b)pure pear-shaped ZnO submicrospheres,(c)ZnO/Ag core-shell composites

    The electron trapping effect of Ag NPs can be understood based on the proposed charged separation as shown in Fig.6[16,26].When the ZnO/Ag is illuminated by UV light with photon energy higher than the band gap of ZnO,electrons (e-,?)in the valence band (VB)can be excited to the conduction band (CB)with simultaneous generation of the same quantity of holes (h+,⊕)left behind.Because the bottom energy level of the CB of ZnO is higher than the new equilibrium Fermi energy level(Ef)of ZnO/Ag,the photoexcited electrons on the CB can transfer to Ag NPs from ZnO,namely,Ag NPs act as electron trapping agents and effectively hinder the recombination of photogenerated electrons and holes.

    Fig.6 Proposed charge separation process for the ZnO/Ag core-shell submicrospheres

    3 Conclusions

    Pear-shaped ZnO/Ag core-shell submicrospheres with high stability against aggregation were synthesized.PL analysis shows that attachment of Ag NPs to the ZnO surface reduces the intensity of the UV emission without energy shifts and quenches visible emission peak.The intensity decrease of the UV emission can be ascribed to the electron trapping effectofAg NPs,i.e.Ag NPs on the ZnO submicrospheres acting as electron trapping agents,enhance the separation efficiency of photogenerated electrons and holes.The reason for the quench of visible emission peak is because that the Ag NPs on the ZnO submicrospheres absorb the emitted visible light from the ZnO spheres.The enhanced separation efficiency of photogenerated electrons and holes is favorable for the improvement of the photocatalytic activity of ZnO.

    [1]Monteagudo J M,Durán A,Aguirre M,et al.J.Hazard Mater.,2011,185(1):131-139

    [2]Hossain M F,Biswasc S,Zhang Z H,et al.J.Photochem.Photobiol.A:Chem.,2011,217(1):68-75

    [3]Qin Y,Wang X D,Wang Z L.Nature,2008,451(7180):809-813

    [4]Zhang Q F,Garcia B B,Cao G Z.J.Phys.Chem.C,2011,115:4927-4934

    [5]Sakthivel S,Neppolian B,Shankar MV,et al.Sol.Energy Mat.Sol.C.,2003,77(1):65-82

    [6]Lu F,Cai W P,Zhang Y G.Adv.Funct.Mater.,2008,18(7):1047-1056

    [7]Li Y Z,Xie W,Hu X L,et al.Langmuir,2010,26(1):591-597

    [8]LI Ben-Xia(李本俠),WANG Yan-Fen(王艷芬),WU Yu-Lei(吳玉雷).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2012,28:417-424

    [9]Georgekutty R,Seery M K,Pillai S C.J.Phys.Chem.C,2008,112(35):13563-13570

    [10]Li P,Wei Z,Wu T,et al.J.Am.Chem.Soc.,2011,133(15):5660-5663

    [11]Zeng H B,Liu P S,Cai W P,et al.J.Phys.Chem.C,2008,112(49):19620-19624

    [12]Chiou J W,Ray S C,Tsai H M,et al.J.Phys.Chem.C,2011,115(6):2650-2655

    [13]Zheng Y H,Zheng L R,Zhan Y Y,et al.Inorg.Chem,2007,46(17):6980-6986

    [14]Li F,Yuan Y L,Luo J Y,et al.Appl.Surf.Sci.,2010,256(20):6076-6082

    [15]Lin D D,Wu H,Zhang R,et al.Chem.Mater.,2009,21(15):3479-3484

    [16]Lu W W,Gao S Y,Wang J J.J.Phys.Chem.C,2008,112(43):16792-16800

    [17]Xie J S,Wu Q S.Mater.Lett.,2010,64(3):389-392

    [18]Tian C G,Li W,Pan K,et al.J.Solid State Chem.,2010,183(11):2720-2725

    [19]Ang L M,Andy Hor T S,Xu G Q,et al.Chem.Mater.,1999,11(8):2115-2118

    [20]Kobayashi Y,Maceira V S,Marzan L M L.Chem.Mater.,2001,13(5):1630-1633

    [21]Yang Y H,Chen X Y,Feng Y,et al.Nano Lett.,2007,7(12):3879-3883

    [22]Li Y L,Zhao X,Fan W L.J.Phys.Chem.C,2011,115(9):3552-3557

    [23]Zhang L,Dou Y H,Gu H C.J.Colloid Interface Sci.,2006,297(2):660-664

    [24]Zeng H B,Duan G T,Li Y,et al.Adv.Funct.Mater.,2010,20(4):561-572

    [25]Im J S,Singh J,Soares J W,et al.J.Phys.Chem.C,2011,115(21):10518-10523

    [26]Wang X D,Summers C J,Wang Z L.Appl.Phys.Lett.,2005,86(1):013111(3pages)

    Preparation,Characterization and Optical Properties of Pear-Shaped ZnO/Ag Core-Shell Submicrospheres

    MA Jian-Qi
    (School of Chemistry and Environmental Science,Shaanxi University of Technology,Hanzhong,Shaanxi 723001,China)

    Pear-shaped ZnO/Ag core-shell submicrospheres with good monodispersity were prepared via a seedmediated particle growth method,where metallic Ag particles (reduction of Ag+by Sn2+)deposited on ZnO submicrospheres were served as seeds(nucleation sites)for the further growth of Ag nanoshell overlayer.The asprepared samples were characterized by transmission electron microscopy,energy dispersive X-ray spectroscopy,X-ray diffraction,ultraviolet-visible absorption and photoluminescence measurement.The results demonstrate that the ZnO/Ag composites are composed of pear-shaped wurtzite ZnO submicrospheres and Ag nanoparticles.The results also indicate that the efficiency for separation of photoinduced electrons from holes is enhanced,the intensity of the UV emission is reduced without energy shifts,and the visible emission peak is quenched by Ag nanoparticles on ZnO.

    ZnO submicrospheres;Ag nanoparticles;ZnO/Ag core-shell submicrospheres;optical properties

    O649

    A

    1001-4861(2012)08-1717-07

    猜你喜歡
    梨形核殼氧化鋅
    核殼型量子點(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    梨形頭畸形精子致病機制及相關(guān)研究進展*
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應用
    氧化鋅中氯的脫除工藝
    印度梨形孢(Piriformosporaindica)的生物學特性及對植物生長的互作效應研究進展
    燈泡為什么做成梨形?
    奧秘(2016年3期)2016-03-23 21:59:52
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    銦摻雜調(diào)控氧化鋅納米棒長徑比
    氯霉素氧化鋅乳膏的制備及質(zhì)量標準
    核殼結(jié)構(gòu)Cu@CoW的合成和對硼氨配合物水解的催化性能
    在线免费观看不下载黄p国产 | 一进一出抽搐gif免费好疼| 日韩一区二区视频免费看| 在线播放国产精品三级| 蜜桃亚洲精品一区二区三区| 欧美色欧美亚洲另类二区| 久久久久性生活片| 国产亚洲av嫩草精品影院| 日韩欧美免费精品| 制服丝袜大香蕉在线| 免费看美女性在线毛片视频| 美女xxoo啪啪120秒动态图| 欧美性猛交╳xxx乱大交人| 国产成人福利小说| 亚洲国产欧美人成| 亚洲av日韩精品久久久久久密| a级毛片a级免费在线| 综合色av麻豆| 亚洲av第一区精品v没综合| 麻豆国产97在线/欧美| 嫩草影院入口| 亚洲精品乱码久久久v下载方式| 国产亚洲精品av在线| 国产精品一区二区性色av| 99久久精品热视频| 精品免费久久久久久久清纯| 国产69精品久久久久777片| 成人欧美大片| 亚洲国产高清在线一区二区三| 男人舔女人下体高潮全视频| 国产高清有码在线观看视频| 国产中年淑女户外野战色| 人妻丰满熟妇av一区二区三区| 伦理电影大哥的女人| 日日啪夜夜撸| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 窝窝影院91人妻| 欧美区成人在线视频| 婷婷色综合大香蕉| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 久久久久久久久久成人| 国产三级中文精品| 国国产精品蜜臀av免费| 美女 人体艺术 gogo| 免费在线观看日本一区| 国产高潮美女av| 免费电影在线观看免费观看| 中国美女看黄片| 欧美极品一区二区三区四区| 网址你懂的国产日韩在线| 久久精品国产亚洲网站| 中文字幕高清在线视频| 欧美日本视频| 亚洲国产日韩欧美精品在线观看| 日本三级黄在线观看| 亚洲国产精品成人综合色| 国产精品久久久久久亚洲av鲁大| 成年女人看的毛片在线观看| 国产熟女欧美一区二区| 2021天堂中文幕一二区在线观| 人妻夜夜爽99麻豆av| 男女啪啪激烈高潮av片| 日韩欧美精品v在线| 91久久精品电影网| 成人毛片a级毛片在线播放| 亚洲国产精品合色在线| 日韩欧美在线乱码| 免费av观看视频| 成人高潮视频无遮挡免费网站| 看免费成人av毛片| 国内久久婷婷六月综合欲色啪| 成人亚洲精品av一区二区| 又黄又爽又刺激的免费视频.| 欧美潮喷喷水| 久久精品国产亚洲av天美| 欧美xxxx性猛交bbbb| 久久久国产成人免费| 久久九九热精品免费| av女优亚洲男人天堂| 麻豆av噜噜一区二区三区| 国产精品久久电影中文字幕| 精品久久久久久久久久免费视频| 窝窝影院91人妻| 亚洲国产精品合色在线| 久久精品91蜜桃| 精品人妻1区二区| 一a级毛片在线观看| 97超视频在线观看视频| 国产成人福利小说| 日日干狠狠操夜夜爽| 国产亚洲av嫩草精品影院| 中文在线观看免费www的网站| 伊人久久精品亚洲午夜| 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件 | av天堂中文字幕网| 亚洲精品色激情综合| 日本一二三区视频观看| 日本一本二区三区精品| 日本黄大片高清| 深夜精品福利| 国产欧美日韩一区二区精品| 国产在线男女| 波多野结衣高清无吗| 男女边吃奶边做爰视频| 国产精品一区www在线观看 | 偷拍熟女少妇极品色| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添av毛片 | 校园春色视频在线观看| 国产精品久久久久久久电影| 久久精品综合一区二区三区| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| 日本 av在线| 91久久精品国产一区二区成人| 欧美日韩亚洲国产一区二区在线观看| 精品福利观看| 亚洲精品色激情综合| 在现免费观看毛片| 中国美白少妇内射xxxbb| 婷婷精品国产亚洲av在线| 国产精品爽爽va在线观看网站| 99热6这里只有精品| 韩国av一区二区三区四区| 精品久久久久久,| 我要搜黄色片| 黄色丝袜av网址大全| 麻豆成人av在线观看| 色吧在线观看| 少妇人妻精品综合一区二区 | 最近在线观看免费完整版| 黄色欧美视频在线观看| av在线观看视频网站免费| 黄色视频,在线免费观看| 干丝袜人妻中文字幕| 特级一级黄色大片| 亚洲精品日韩av片在线观看| 欧美xxxx黑人xx丫x性爽| 九色国产91popny在线| 永久网站在线| 欧美日韩中文字幕国产精品一区二区三区| 欧美色欧美亚洲另类二区| 国产精品99久久久久久久久| 在线观看一区二区三区| 日韩高清综合在线| 黄色欧美视频在线观看| 欧美一区二区精品小视频在线| 成年女人永久免费观看视频| 日韩 亚洲 欧美在线| 看黄色毛片网站| 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 亚洲av不卡在线观看| 一级黄色大片毛片| 亚洲自偷自拍三级| 精品欧美国产一区二区三| 国产在线男女| 亚洲欧美日韩无卡精品| 91久久精品国产一区二区成人| 又爽又黄a免费视频| 国产一级毛片七仙女欲春2| 少妇的逼好多水| 99热6这里只有精品| 搞女人的毛片| 欧美bdsm另类| 国产成人影院久久av| 99热精品在线国产| av中文乱码字幕在线| 校园人妻丝袜中文字幕| 国产精品久久电影中文字幕| 亚洲中文字幕日韩| 免费av毛片视频| 亚洲精品国产成人久久av| 色视频www国产| 99久久九九国产精品国产免费| 热99在线观看视频| 国产精品女同一区二区软件 | 国产高潮美女av| 丰满人妻一区二区三区视频av| 国产高清有码在线观看视频| 久久草成人影院| 精品福利观看| 亚洲自偷自拍三级| 少妇人妻精品综合一区二区 | 国产真实乱freesex| 成人综合一区亚洲| 国产白丝娇喘喷水9色精品| 天堂影院成人在线观看| 嫩草影院新地址| 搡老妇女老女人老熟妇| 国产高清有码在线观看视频| 久久久久九九精品影院| 国产成人aa在线观看| 久久精品国产亚洲av天美| 精品人妻一区二区三区麻豆 | 免费大片18禁| 亚洲欧美日韩高清专用| 国产精品永久免费网站| 99精品在免费线老司机午夜| a级一级毛片免费在线观看| 精品一区二区三区视频在线观看免费| 在线观看一区二区三区| 制服丝袜大香蕉在线| 亚洲av免费高清在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲一区高清亚洲精品| 国产高清三级在线| 又黄又爽又免费观看的视频| 亚洲真实伦在线观看| 亚洲av免费在线观看| 亚洲精品影视一区二区三区av| 色av中文字幕| 国产免费男女视频| 最好的美女福利视频网| 免费黄网站久久成人精品| 国内久久婷婷六月综合欲色啪| 波多野结衣巨乳人妻| 亚洲精华国产精华液的使用体验 | 18禁在线播放成人免费| 一边摸一边抽搐一进一小说| 国产av一区在线观看免费| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕日韩| 美女免费视频网站| 久久久久久伊人网av| 日本免费a在线| 成人av在线播放网站| 国产又黄又爽又无遮挡在线| 免费看光身美女| 亚洲美女黄片视频| 日韩强制内射视频| 别揉我奶头~嗯~啊~动态视频| 日本一本二区三区精品| 欧美日韩综合久久久久久 | 18禁在线播放成人免费| 成人性生交大片免费视频hd| 99热这里只有是精品50| 亚洲经典国产精华液单| 少妇的逼好多水| 国产精品久久久久久久久免| 久久香蕉精品热| 最近视频中文字幕2019在线8| 亚洲图色成人| 亚洲中文字幕一区二区三区有码在线看| 亚洲美女视频黄频| 久久久久免费精品人妻一区二区| 国产精品不卡视频一区二区| 伊人久久精品亚洲午夜| 久久热精品热| 免费高清视频大片| 久9热在线精品视频| 亚洲天堂国产精品一区在线| 欧美最新免费一区二区三区| 97碰自拍视频| 国产黄a三级三级三级人| 长腿黑丝高跟| 毛片女人毛片| 内地一区二区视频在线| 欧美不卡视频在线免费观看| 国内揄拍国产精品人妻在线| 舔av片在线| 一级毛片久久久久久久久女| 午夜免费激情av| 亚洲不卡免费看| 亚洲av五月六月丁香网| 亚洲美女黄片视频| 国产精品日韩av在线免费观看| 国模一区二区三区四区视频| 成人鲁丝片一二三区免费| 日日夜夜操网爽| 欧美区成人在线视频| 人人妻人人澡欧美一区二区| 级片在线观看| 日韩欧美在线乱码| av天堂中文字幕网| 精品乱码久久久久久99久播| 国产精品嫩草影院av在线观看 | 欧美+日韩+精品| 国产真实伦视频高清在线观看 | 天天一区二区日本电影三级| 五月伊人婷婷丁香| 亚洲国产精品成人综合色| 色尼玛亚洲综合影院| 中文资源天堂在线| av中文乱码字幕在线| 免费看美女性在线毛片视频| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看 | 久久99热6这里只有精品| 亚洲欧美日韩东京热| 国产午夜福利久久久久久| 国产主播在线观看一区二区| 一个人观看的视频www高清免费观看| 禁无遮挡网站| 国产视频内射| av黄色大香蕉| 少妇的逼水好多| 国产精品一区二区三区四区免费观看 | 欧美色欧美亚洲另类二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩高清在线视频| 在线a可以看的网站| 黄色女人牲交| 亚洲黑人精品在线| 亚洲人成网站高清观看| 国产精品久久久久久久电影| 国产主播在线观看一区二区| 成人午夜高清在线视频| 久久久久精品国产欧美久久久| 亚洲电影在线观看av| 亚洲国产欧美人成| 亚洲一区高清亚洲精品| 亚洲av二区三区四区| 国产精品免费一区二区三区在线| 久久午夜亚洲精品久久| 午夜日韩欧美国产| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 大又大粗又爽又黄少妇毛片口| 国产av在哪里看| 毛片一级片免费看久久久久 | 国产亚洲精品综合一区在线观看| 一级黄色大片毛片| 精品久久久久久久久久久久久| 99久久精品一区二区三区| 午夜免费成人在线视频| 夜夜爽天天搞| 国内久久婷婷六月综合欲色啪| www.www免费av| 欧美精品国产亚洲| 女人十人毛片免费观看3o分钟| 免费在线观看成人毛片| 伦精品一区二区三区| 亚洲精品日韩av片在线观看| 啪啪无遮挡十八禁网站| 尤物成人国产欧美一区二区三区| 国产免费一级a男人的天堂| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 精品欧美国产一区二区三| 九九热线精品视视频播放| 麻豆av噜噜一区二区三区| 欧美三级亚洲精品| 欧美日韩乱码在线| 久久久久精品国产欧美久久久| 国产亚洲精品久久久久久毛片| 国产精品,欧美在线| 在线免费十八禁| 天天一区二区日本电影三级| 久久人人爽人人爽人人片va| 人妻久久中文字幕网| 天天一区二区日本电影三级| 久久精品久久久久久噜噜老黄 | 亚洲无线在线观看| 免费看日本二区| 国产亚洲精品久久久久久毛片| 有码 亚洲区| 91精品国产九色| 在线天堂最新版资源| 欧美性猛交黑人性爽| 久久精品国产99精品国产亚洲性色| h日本视频在线播放| 少妇的逼好多水| 国产单亲对白刺激| 小说图片视频综合网站| 国国产精品蜜臀av免费| 欧美日韩亚洲国产一区二区在线观看| 免费无遮挡裸体视频| 免费看美女性在线毛片视频| 久久久久久久久中文| 九色成人免费人妻av| 亚洲在线观看片| 99热网站在线观看| 国产精品永久免费网站| 国产主播在线观看一区二区| 校园春色视频在线观看| 18禁黄网站禁片免费观看直播| 久久久久性生活片| 天堂av国产一区二区熟女人妻| 久久久久久伊人网av| 日本在线视频免费播放| 亚洲美女视频黄频| 国产精品久久电影中文字幕| 少妇丰满av| 精品日产1卡2卡| 少妇人妻一区二区三区视频| 欧美丝袜亚洲另类 | 亚洲成a人片在线一区二区| 午夜福利高清视频| 久99久视频精品免费| 国内精品美女久久久久久| 给我免费播放毛片高清在线观看| 国产精品亚洲一级av第二区| 亚洲精品影视一区二区三区av| 国产白丝娇喘喷水9色精品| 免费人成视频x8x8入口观看| 黄色一级大片看看| 日韩av在线大香蕉| 免费无遮挡裸体视频| 日韩av在线大香蕉| 国产成人一区二区在线| 精品久久国产蜜桃| 精品久久久久久久久久久久久| 一区二区三区激情视频| 日韩欧美国产一区二区入口| 国模一区二区三区四区视频| 欧美激情国产日韩精品一区| 国产精品国产三级国产av玫瑰| 亚洲av免费高清在线观看| 内射极品少妇av片p| 少妇的逼好多水| 级片在线观看| 自拍偷自拍亚洲精品老妇| 国内精品宾馆在线| 欧美不卡视频在线免费观看| 国产精品爽爽va在线观看网站| 高清在线国产一区| 男女啪啪激烈高潮av片| 国产成人影院久久av| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 97人妻精品一区二区三区麻豆| 日韩 亚洲 欧美在线| 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 波多野结衣巨乳人妻| 久久久久久久久大av| 麻豆精品久久久久久蜜桃| 国产一级毛片七仙女欲春2| 亚洲黑人精品在线| av在线天堂中文字幕| 精品久久国产蜜桃| 乱码一卡2卡4卡精品| 亚洲精品成人久久久久久| 国产成人av教育| 亚洲人成网站在线播放欧美日韩| 国产伦人伦偷精品视频| 中文资源天堂在线| 国国产精品蜜臀av免费| 在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频 | 99久久九九国产精品国产免费| 色综合站精品国产| 又爽又黄a免费视频| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 啦啦啦韩国在线观看视频| 久久亚洲精品不卡| 亚洲人成伊人成综合网2020| 欧美日韩黄片免| 欧美日韩乱码在线| 成人一区二区视频在线观看| 国产精品久久久久久精品电影| 欧美3d第一页| 国内精品美女久久久久久| 亚洲精华国产精华精| 亚洲性久久影院| 亚洲熟妇熟女久久| 国产aⅴ精品一区二区三区波| avwww免费| 中出人妻视频一区二区| 97碰自拍视频| 亚洲国产色片| 动漫黄色视频在线观看| 天天躁日日操中文字幕| 日日摸夜夜添夜夜添av毛片 | 啦啦啦韩国在线观看视频| 免费高清视频大片| 日本一本二区三区精品| 天天一区二区日本电影三级| 在线观看av片永久免费下载| 一本久久中文字幕| 欧美最新免费一区二区三区| 女人十人毛片免费观看3o分钟| 国产伦一二天堂av在线观看| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 色吧在线观看| 国产av一区在线观看免费| 男女下面进入的视频免费午夜| 久久草成人影院| 国产三级在线视频| 美女 人体艺术 gogo| 国内少妇人妻偷人精品xxx网站| 国产精品嫩草影院av在线观看 | 无遮挡黄片免费观看| 97超级碰碰碰精品色视频在线观看| 日韩人妻高清精品专区| 99精品久久久久人妻精品| 色哟哟哟哟哟哟| 免费观看的影片在线观看| 国产亚洲精品久久久久久毛片| 中国美女看黄片| 婷婷亚洲欧美| av视频在线观看入口| 亚洲va日本ⅴa欧美va伊人久久| 99九九线精品视频在线观看视频| 中国美白少妇内射xxxbb| 中文字幕熟女人妻在线| 国产亚洲精品综合一区在线观看| 综合色av麻豆| 国产亚洲精品综合一区在线观看| 亚洲国产欧美人成| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 国产午夜精品久久久久久一区二区三区 | 美女免费视频网站| 亚洲成a人片在线一区二区| 久久精品人妻少妇| 亚洲欧美日韩高清专用| 国内精品美女久久久久久| 男插女下体视频免费在线播放| 国语自产精品视频在线第100页| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站| 欧美日韩中文字幕国产精品一区二区三区| 联通29元200g的流量卡| 久久久久久久久久黄片| 乱码一卡2卡4卡精品| 99热网站在线观看| av黄色大香蕉| 国产精品久久久久久精品电影| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区| 成熟少妇高潮喷水视频| 亚洲精品成人久久久久久| 久久草成人影院| 五月伊人婷婷丁香| 亚洲欧美精品综合久久99| 精品人妻视频免费看| 夜夜夜夜夜久久久久| 国产三级中文精品| 麻豆精品久久久久久蜜桃| 欧美日本亚洲视频在线播放| aaaaa片日本免费| 色在线成人网| 国产v大片淫在线免费观看| 国产 一区精品| 午夜激情福利司机影院| 亚洲 国产 在线| 1024手机看黄色片| 亚洲第一区二区三区不卡| 久久久久九九精品影院| 精品不卡国产一区二区三区| 99国产精品一区二区蜜桃av| 日韩,欧美,国产一区二区三区 | 午夜福利视频1000在线观看| 国产精品久久久久久久电影| 毛片女人毛片| 亚洲电影在线观看av| 国内精品宾馆在线| 1000部很黄的大片| 国产精品美女特级片免费视频播放器| 日本免费一区二区三区高清不卡| 18禁黄网站禁片午夜丰满| 久久欧美精品欧美久久欧美| 麻豆精品久久久久久蜜桃| 亚洲自拍偷在线| 中出人妻视频一区二区| 国内揄拍国产精品人妻在线| 午夜久久久久精精品| 免费不卡的大黄色大毛片视频在线观看 | 国产日本99.免费观看| 免费av毛片视频| 国产亚洲精品av在线| 亚洲最大成人手机在线| 亚洲精品日韩av片在线观看| 亚洲三级黄色毛片| 欧美激情在线99| 日韩人妻高清精品专区| 亚洲不卡免费看| 亚洲av日韩精品久久久久久密| 网址你懂的国产日韩在线| 亚洲成人久久爱视频| 精品国产三级普通话版| 麻豆一二三区av精品| 欧美黑人巨大hd| 男人舔奶头视频| 久久久久精品国产欧美久久久| 日韩强制内射视频| 99视频精品全部免费 在线| 欧美色欧美亚洲另类二区| 91麻豆精品激情在线观看国产| 日韩在线高清观看一区二区三区 | av在线亚洲专区| 日韩高清综合在线| 午夜影院日韩av| 国产综合懂色| 制服丝袜大香蕉在线| 身体一侧抽搐| 欧美另类亚洲清纯唯美| 久久久久久久午夜电影| av天堂中文字幕网| xxxwww97欧美| 色吧在线观看| 老司机深夜福利视频在线观看| 精品欧美国产一区二区三| eeuss影院久久| 天堂av国产一区二区熟女人妻| 欧美xxxx黑人xx丫x性爽| 亚洲美女黄片视频| 国内精品久久久久精免费| 少妇猛男粗大的猛烈进出视频 | 国产乱人伦免费视频| 免费在线观看成人毛片| av国产免费在线观看| 国产av一区在线观看免费| 亚洲熟妇中文字幕五十中出| 人妻丰满熟妇av一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产午夜精品论理片|