• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    梨形核殼結(jié)構(gòu)氧化鋅/銀亞微米球的制備、表征及光學性能

    2012-11-09 12:50:42馬劍琪
    無機化學學報 2012年8期
    關(guān)鍵詞:梨形核殼氧化鋅

    馬劍琪

    (陜西理工學院化學與環(huán)境科學學院,漢中 723001)

    梨形核殼結(jié)構(gòu)氧化鋅/銀亞微米球的制備、表征及光學性能

    馬劍琪

    (陜西理工學院化學與環(huán)境科學學院,漢中 723001)

    擇要:利用亞錫離子還原銀離子生成的金屬銀沉積在合成的梨形氧化鋅表面作為晶種,進一步生長銀納米粒子,制備了梨形的、核殼結(jié)構(gòu)的、單分散的氧化鋅/銀亞微米球。利用X射線衍射、透射電鏡、能量色散X射線譜、紫外可見吸收譜及光致發(fā)光譜對所制備樣品的形貌、微觀結(jié)構(gòu)、組成和光學性能進行了表征。結(jié)果表明:(1)樣品是由梨形亞微米氧化鋅核和銀納米顆粒殼組成;(2)在氧化鋅表面的銀納米粒子作為光激發(fā)產(chǎn)生的電子捕獲劑提高了光產(chǎn)生的載流子的分離效率,在能量沒有改變的情況下減少了紫外發(fā)射光的強度,淬滅了可見發(fā)射光。

    氧化鋅亞微米球;銀納米粒子;ZnO/Ag核殼結(jié)構(gòu)亞微米球;光學性質(zhì)

    Photocatalysis is one of the most dynamic areas in modern science as its potential in solving many current environmental and energy issues[1-4].Among semiconductor photocatalysts,in addition to the most extensively studied TiO2,ZnO with a similar band gap(3.2 eV)has attracted much attention due to its high photosensitivity and stability.In some cases,ZnO exhibits better photocatalytic activity than that of TiO2,SnO2,ZrO2,WO3,etc.,due to itshigher efficiency for generation of photoinduced carriers(electron-hole pairs)[5-7]. However, the quick recombination ofcarriersdecreasestheavailablephotocatalytic efficiency,thus limiting its practical application in the environment field[8].Depositing the semiconductor with noble metal nanoparticles(NPs)such as Ag[9],Au[10],Pt[11],and so on is one of the efficient ways to improve the capability of photochemical degradation by trapping the photoinduced carriers[12].For example,depositing Ag nanoparticles(Ag NPs)on various kinds of micro/nano structured ZnO,such as nanoparticle,nanorod,nanofiber,hollow sphere,etc.,can hinder the quick recombination of carriers and improve its photocatalytic activity[13-16].It is widely accepted that Ag NPs on ZnO can trap the photogenerated electrons from the semiconductor and thus enhance the separation efficiency of photogenerated electrons and holes.Nonetheless,so far there have been only a few examples about the synthesis of ZnO/Ag core-shell submicrospheres[17-18].In this work,ZnO/Ag core-shell submicrospheres,constructed by pear-shaped wurtzite ZnO submicrosphere core and Ag NPs shell,are obtained via a seed-mediated particle growth procedure,which has been used for decoration of ZnO nanorods[14],carbon nanotubes[19]and silica spheres[20].In addition,the relation between optical properties and the separation efficiency of photoinduced carriers in the ZnO/Ag core-shell composite is investigated to evaluate the influence of deposited Ag NPs on the electronic structure and surface property of ZnO,using the as-prepared pure ZnO submicrospheres and commercial ZnO as the reference.

    1 Experimental

    1.1 Materials

    All chemicals were analytical grade and used as received without further purification.Zn(CH3COO)2·2H2O(ZnAc),C2H5OH,SnCl2·H2O,AgNO3,NH3·H2O,diethylene glycol (DEG,HOCH2CH2OCH2CH2OH),sodium citrate (Na3C6H5O7)and commercial ZnO were purchased from Shanghai Chemical Industrial Company.

    1.2 Synthesis of pure pear-shaped ZnO submicrospheres

    The pure pear-shaped ZnO submicrospheres used in this work were prepared by a two-stage reaction process.For the first step,0.015 mol ZnAc was added to 150 mL DEG and heated to 160℃under reflux.After 30 min,a primary reaction was performed and cooled to room temperature (RT).The product was centrifuged and the supernatant was decanted off and saved as stock solution,and the polydispersed powder was discarded.For the second step,0.015 mol ZnAc was added to 150 mL DEG and the reaction solution was heated to 150℃,then 10 mL stock solution was added to the solution.Following this addition,this solution was again heated to 160℃,stirred for 1 h,then cooled to RT.The ZnO submicrospheres were separated from the solvent by a repeated centrifugation-sonication process.

    1.3 Preparation of ZnO/Ag core-shell submicrospheres

    In a typical synthesis,50 mg of the as-prepared ZnO was dispersed into 40 mL of ethanol solution containing about 10 mg of SnCl2·H2O with vigorous stirring for 30 min at RT and centrifuged.This resulted in sorption ofSn2+onto ZnO surfaces(ZnO@Sn2+,activated ZnO spheres).After this,the activated ZnO spheres were dispersed into 25 mL 0.005 mol·L-1Ag(NH3)2+ethanol solution and stirred for about 1 h,then centrifuged to obtain ZnO spheres containing Ag seeds.The growth of Ag NPs proceeded as follows:The Ag-seeded ZnO spheres were redispersed into 25 mL aqueous solution containing 7.5 mmol AgNO3and was heated to 80℃,then 0.5 mL of 0.35 mol·L-1sodium citrate was added under vigorous stirring.The solution was stirred for 60 min at 80℃.During the reaction,the color of the colloidal solution gradually evolved,indicating the reduction of Ag+by sodium citrate and the formation of the core-shell structure composites.Finally,the reaction mixture was cooled to RT and the samples were separated by a repeated centrifugation-sonication process.

    1.4 Characterization

    Transmission electron microscopy (TEM)images associated with energy dispersive X-ray spectroscopy(EDS)were obtained on JEOL JEM-3010 TEM with an acceleration voltage of 200 kV.The X-ray diffraction(XRD)patterns were recorded on a Japan Rigaka D/max-IIB X-ray diffractometer equipped with a graphite diffracted-beam monochromator for Cu Kα radiation(λ=0.15418 nm)at 45 kV and 200 mA,using 0.15 mm receiving slit and scintillation counter as the detector.The 2θ region was in the range of 20°~80°with a step of 0.02°and a scanning speed of 5°·min-1.UV-Vis spectra were recorded on a Hitachi U-3010 spectrophotometer.Photoluminescence (PL)spectra were recorded on a Hitachi F4500 fluorescence spectrophotometer using a Xenon lamp as the excitation source atroom temperature.The samples were dispersed in ethanol using ultrasonic bath and the excitation wavelength used in PL measurement was 325 nm.

    2 Results and discussion

    2.1 TEM analysis

    Fig.1 displays the low-magnification TEM image ofpear-shaped ZnO submicrospheres and highmagnification TEM image of a single ZnO submicrosphere,respectively.Fig.1(a)reveals that the synthesized ZnO consists of monodisperse pear-shaped submicrospheres and that the average diameter of the spheres is 220 nm.Fig.1(b)shows that the single ZnO submicrosphere consists of numerous primary nanoparticles with diameters ranging from 20 to 30 nm.The size of the primary nanoparticles was too small to conclusively determine the diameter from the TEM image,therefore,the crystal size obtained from the XRD result was used as the estimated diameter(see XRD analysis).

    Fig.2 shows the typical TEM images and EDS spectrum of the ZnO/Ag core-shell submicrospheres.From representative low-magnification TEM image shown in Fig.2(a),the ZnO/Ag core-shell composites basically keep the same pear-shaped structure and monodispersity as uncoated ZnO submicrosphers with an average diameter of 250 nm.Fig.2(b)and Fig.2(c)show the high-magnification TEM images of a typical single ZnO/Ag sphere,which is assembled by many ZnO and Ag NPs.Further analysis reveals that the composite sphere is coated by uniform thin nanoshell.The nanoshelliscomposed oflarge numberof spherical Ag NPs,whose size ranges from 10 nm to 30 nm.The measured average diameter of the Ag NPs is 15 nm.Only the peaks corresponding to Ag,Zn,and O are observed in the EDS spectrum (Fig.2(d)),demonstrating once again thatthe samples are composed of Zn,O,and Ag,and the ZnO/Ag coreshell composites are formed.Also,one can observe a small number of free Ag NPs based on a large number of TEM images (Fig.2(a)),showing the successful combination of Ag NPs with ZnO submicrospheres.It isworth pointingoutthattheAgNPsin the composites are metallic crystalline Ag with fcc structure,which is in good agreement with the XRD result(vide infra).

    Fig.1 TEM images of pear-shaped ZnO submicrospheres

    Fig.2 TEM images and EDS spectrum for pear-shaped ZnO/Ag core-shell submicrospheres

    2.2 XRD analysis

    Fig.3 shows the XRD patterns of bulk commercial ZnO,pure pear-shaped ZnO submicrospheres and ZnO/Ag core-shellsubmicrospheres,respectively.The peaks at 2θ=31.77°,34.42°,36.25°,47.54°,56.60°,62.86°,and 67.81°observed in Fig.3(a)and Fig.3(b),respectively,are indexed to the(100),(002),(101),(102),(110),(103)and(112)diffractions of ZnO crystal with a hexagonal wurtzite structure(PDF No.36-1451).No impurity peaks are detected.However, the diffraction peaks of the ZnO submicrospheres are obviously broadened in comparison with bulk commercial ZnO due to the small particle size.As can be seen from Fig.3(c),three additional diffraction peaks appear compared to pure ZnO submicrospheres(Fig.3(b)).The three additional peaks at 2θ=38.18°,44.42°and 64.50° (marked with*)can be indexed to(111),(200),and(220)planes of fcc silver,respectively.Their position and relative intensities are in good agreement with the (PDF No.04-0783)of bulk silver,which proves the formation of crystalline Ag.Moreover,all diffraction peak positions of ZnO in ZnO/Ag composites are in accord with that of pure ZnO submicrospheres,indicating that Ag does not incorporate into the lattice of ZnO,is only mixed with ZnO spheres.Furthermore,the average sizes of the ZnO and Ag NPs,calculated by the Scherrer formula using the strongest peaks (101)for ZnO and(111)for Ag,are estimated to be 25 and 15 nm,respectively.

    Fig.3 XRD patterns for(a)commercial ZnO,(b)pure pear-shaped ZnO submicrospheres,(c)pear-shaped ZnO/Agcore-shellsubmicrospheres

    2.3 Optical properties and mechanism

    Fig.4 shows UV-Vis absorption spectra of bulk commercial ZnO, pure pear-shaped ZnO submicrospheres and ZnO/Ag core-shell composites.In Fig.4(a),the bulk commercial ZnO exhibits obvious UV absorption peak at 386 nm,which can be assigned to the absorption of the ZnO semiconductor.It can be easily found from Fig.4(b)that the UV absorption position of the pear-shaped ZnO submicrospheres has a conspicuous blueshift of about 10 nm compared to that of bulk commercial ZnO due to quantum size effect[21]and the quantum confinement effect[22].The result implies that the absorption shift of pure ZnO crystals is usually related to their size change[21-22].As shown in Fig.4 (c),two prominent absorption peaks of the ZnO/Ag core-shell composites are observed in the UV-Vis region.The UV absorption can be assigned to absorption of ZnO submicrospheres with corresponding absorption peak at around 376 nm.The visible absorption in the range of 410~480 nm can be ascribed to the characteristic absorption of surface plasmon resulting from the metallic Ag NPs in the ZnO/Ag heterostructures[23].The appearance of two kinds ofcharacteristic absorption bands further confirms that the as-synthesized samples are composed of Ag NPs and ZnO submicrospheres.

    Fig.4 UV-Vis absorption spectra for(a)commercial ZnO,(b)pure pear-shaped ZnO submicrospheres,(c)pear-shaped ZnO/Ag core-shell composites

    Fig.5 shows PL spectra of bulk commercial ZnO,pure pear-shaped ZnO submicrospheres,and ZnO/Ag core-shell composites excited with 325 nm wavelength.In Fig.5(a),the bulk ZnO exhibits strong emission peak located at 380 nm that is attributed to the characteristic emission of semiconductor ZnO[24].In Fig.5(b),the pure ZnO submicrospheres exhibit a doubly peaked emission spectrum,with a strong UV band centered at366 nm originating from the excitonic emission.The UV emission energy shifts to the high energy in comparison with that of bulk ZnO,i.e.there is a clear blue-shift.The blue-shift may be caused by the oxygen vacancies on the as-prepared ZnO spheres.The weak visible wide emission peak at around 460~480 nm is due to an electronic transition from defect-associated trap states,such as oxygen vacancies closer to the conduction band edge,to deeply trapped holes near or in the valence band[25].Compared to the pure ZnO submicrospheres,attachment of Ag NPs to the ZnO surface reduces the intensity of the UV emission without energy shifts and quenchesvisibleemission peak (Fig.5(c)).The intensity decrease of the UV emission for the ZnO/Ag composites can be ascribed to the electron trapping effect of Ag NPs,which act as electron acceptor,thus hindering the recombination of photogenerated carriers on ZnO.The wavelength of the visible emission peak for pure ZnO submicrospheres is in the region of the surface plasmon band of Ag NPs,and the Ag NPs absorb the emitted visible light from the ZnO spheres,thereby contributing to quenching the visible emission peak.The electron trapping effect of Ag NPs is favorable for the improvement of the photocatalytic activity of ZnO due to the enhancement of the separation efficiency of photogenerated electrons and holes.The quenching visible emission also indicates that the surface oxygen vacancies in the ZnO/Ag composites are reduced after the Ag loading,suggesting that the metallic Ag NPs are deposited on the defect sites.

    Fig.5 PL spectra for(a)commercial ZnO,(b)pure pear-shaped ZnO submicrospheres,(c)ZnO/Ag core-shell composites

    The electron trapping effect of Ag NPs can be understood based on the proposed charged separation as shown in Fig.6[16,26].When the ZnO/Ag is illuminated by UV light with photon energy higher than the band gap of ZnO,electrons (e-,?)in the valence band (VB)can be excited to the conduction band (CB)with simultaneous generation of the same quantity of holes (h+,⊕)left behind.Because the bottom energy level of the CB of ZnO is higher than the new equilibrium Fermi energy level(Ef)of ZnO/Ag,the photoexcited electrons on the CB can transfer to Ag NPs from ZnO,namely,Ag NPs act as electron trapping agents and effectively hinder the recombination of photogenerated electrons and holes.

    Fig.6 Proposed charge separation process for the ZnO/Ag core-shell submicrospheres

    3 Conclusions

    Pear-shaped ZnO/Ag core-shell submicrospheres with high stability against aggregation were synthesized.PL analysis shows that attachment of Ag NPs to the ZnO surface reduces the intensity of the UV emission without energy shifts and quenches visible emission peak.The intensity decrease of the UV emission can be ascribed to the electron trapping effectofAg NPs,i.e.Ag NPs on the ZnO submicrospheres acting as electron trapping agents,enhance the separation efficiency of photogenerated electrons and holes.The reason for the quench of visible emission peak is because that the Ag NPs on the ZnO submicrospheres absorb the emitted visible light from the ZnO spheres.The enhanced separation efficiency of photogenerated electrons and holes is favorable for the improvement of the photocatalytic activity of ZnO.

    [1]Monteagudo J M,Durán A,Aguirre M,et al.J.Hazard Mater.,2011,185(1):131-139

    [2]Hossain M F,Biswasc S,Zhang Z H,et al.J.Photochem.Photobiol.A:Chem.,2011,217(1):68-75

    [3]Qin Y,Wang X D,Wang Z L.Nature,2008,451(7180):809-813

    [4]Zhang Q F,Garcia B B,Cao G Z.J.Phys.Chem.C,2011,115:4927-4934

    [5]Sakthivel S,Neppolian B,Shankar MV,et al.Sol.Energy Mat.Sol.C.,2003,77(1):65-82

    [6]Lu F,Cai W P,Zhang Y G.Adv.Funct.Mater.,2008,18(7):1047-1056

    [7]Li Y Z,Xie W,Hu X L,et al.Langmuir,2010,26(1):591-597

    [8]LI Ben-Xia(李本俠),WANG Yan-Fen(王艷芬),WU Yu-Lei(吳玉雷).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2012,28:417-424

    [9]Georgekutty R,Seery M K,Pillai S C.J.Phys.Chem.C,2008,112(35):13563-13570

    [10]Li P,Wei Z,Wu T,et al.J.Am.Chem.Soc.,2011,133(15):5660-5663

    [11]Zeng H B,Liu P S,Cai W P,et al.J.Phys.Chem.C,2008,112(49):19620-19624

    [12]Chiou J W,Ray S C,Tsai H M,et al.J.Phys.Chem.C,2011,115(6):2650-2655

    [13]Zheng Y H,Zheng L R,Zhan Y Y,et al.Inorg.Chem,2007,46(17):6980-6986

    [14]Li F,Yuan Y L,Luo J Y,et al.Appl.Surf.Sci.,2010,256(20):6076-6082

    [15]Lin D D,Wu H,Zhang R,et al.Chem.Mater.,2009,21(15):3479-3484

    [16]Lu W W,Gao S Y,Wang J J.J.Phys.Chem.C,2008,112(43):16792-16800

    [17]Xie J S,Wu Q S.Mater.Lett.,2010,64(3):389-392

    [18]Tian C G,Li W,Pan K,et al.J.Solid State Chem.,2010,183(11):2720-2725

    [19]Ang L M,Andy Hor T S,Xu G Q,et al.Chem.Mater.,1999,11(8):2115-2118

    [20]Kobayashi Y,Maceira V S,Marzan L M L.Chem.Mater.,2001,13(5):1630-1633

    [21]Yang Y H,Chen X Y,Feng Y,et al.Nano Lett.,2007,7(12):3879-3883

    [22]Li Y L,Zhao X,Fan W L.J.Phys.Chem.C,2011,115(9):3552-3557

    [23]Zhang L,Dou Y H,Gu H C.J.Colloid Interface Sci.,2006,297(2):660-664

    [24]Zeng H B,Duan G T,Li Y,et al.Adv.Funct.Mater.,2010,20(4):561-572

    [25]Im J S,Singh J,Soares J W,et al.J.Phys.Chem.C,2011,115(21):10518-10523

    [26]Wang X D,Summers C J,Wang Z L.Appl.Phys.Lett.,2005,86(1):013111(3pages)

    Preparation,Characterization and Optical Properties of Pear-Shaped ZnO/Ag Core-Shell Submicrospheres

    MA Jian-Qi
    (School of Chemistry and Environmental Science,Shaanxi University of Technology,Hanzhong,Shaanxi 723001,China)

    Pear-shaped ZnO/Ag core-shell submicrospheres with good monodispersity were prepared via a seedmediated particle growth method,where metallic Ag particles (reduction of Ag+by Sn2+)deposited on ZnO submicrospheres were served as seeds(nucleation sites)for the further growth of Ag nanoshell overlayer.The asprepared samples were characterized by transmission electron microscopy,energy dispersive X-ray spectroscopy,X-ray diffraction,ultraviolet-visible absorption and photoluminescence measurement.The results demonstrate that the ZnO/Ag composites are composed of pear-shaped wurtzite ZnO submicrospheres and Ag nanoparticles.The results also indicate that the efficiency for separation of photoinduced electrons from holes is enhanced,the intensity of the UV emission is reduced without energy shifts,and the visible emission peak is quenched by Ag nanoparticles on ZnO.

    ZnO submicrospheres;Ag nanoparticles;ZnO/Ag core-shell submicrospheres;optical properties

    O649

    A

    1001-4861(2012)08-1717-07

    猜你喜歡
    梨形核殼氧化鋅
    核殼型量子點(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    梨形頭畸形精子致病機制及相關(guān)研究進展*
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應用
    氧化鋅中氯的脫除工藝
    印度梨形孢(Piriformosporaindica)的生物學特性及對植物生長的互作效應研究進展
    燈泡為什么做成梨形?
    奧秘(2016年3期)2016-03-23 21:59:52
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    銦摻雜調(diào)控氧化鋅納米棒長徑比
    氯霉素氧化鋅乳膏的制備及質(zhì)量標準
    核殼結(jié)構(gòu)Cu@CoW的合成和對硼氨配合物水解的催化性能
    国产精品一区二区三区四区久久| 久久久久久国产a免费观看| 99国产精品一区二区蜜桃av| 欧美另类亚洲清纯唯美| 757午夜福利合集在线观看| 国产高潮美女av| 亚洲av.av天堂| 91在线精品国自产拍蜜月| 国产成人av教育| 日韩大尺度精品在线看网址| 身体一侧抽搐| 国产高清视频在线观看网站| 久9热在线精品视频| 久久人妻av系列| 搞女人的毛片| 国产男靠女视频免费网站| 哪里可以看免费的av片| 国产成人av教育| 窝窝影院91人妻| 精品国产亚洲在线| 一二三四社区在线视频社区8| 十八禁人妻一区二区| 内地一区二区视频在线| 小说图片视频综合网站| 欧美黑人欧美精品刺激| 久9热在线精品视频| 成人美女网站在线观看视频| 人妻夜夜爽99麻豆av| 国产精品免费一区二区三区在线| 欧美乱妇无乱码| av黄色大香蕉| 亚洲 欧美 日韩 在线 免费| 国产91精品成人一区二区三区| 毛片一级片免费看久久久久 | 夜夜爽天天搞| 特大巨黑吊av在线直播| 亚洲专区国产一区二区| 欧美黄色片欧美黄色片| 最近在线观看免费完整版| 精品一区二区三区av网在线观看| 一区二区三区高清视频在线| 一个人免费在线观看的高清视频| 国产精品亚洲av一区麻豆| 免费av观看视频| 91午夜精品亚洲一区二区三区 | 简卡轻食公司| 日韩欧美在线乱码| 久久国产乱子伦精品免费另类| 嫩草影院精品99| 中文字幕精品亚洲无线码一区| 天堂av国产一区二区熟女人妻| 每晚都被弄得嗷嗷叫到高潮| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 午夜精品一区二区三区免费看| 成人特级黄色片久久久久久久| 精品乱码久久久久久99久播| 久久久国产成人免费| 啦啦啦观看免费观看视频高清| 国产极品精品免费视频能看的| 99热只有精品国产| 别揉我奶头~嗯~啊~动态视频| 久久久久久久亚洲中文字幕 | 三级毛片av免费| 国产在线男女| 精品久久久久久,| 日韩欧美免费精品| 成人亚洲精品av一区二区| 亚洲最大成人中文| 国产精品,欧美在线| 最后的刺客免费高清国语| 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| 亚州av有码| 毛片女人毛片| 人人妻人人看人人澡| 亚洲精品亚洲一区二区| 色综合站精品国产| 国产单亲对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 欧美午夜高清在线| 国产精华一区二区三区| 波多野结衣巨乳人妻| 亚洲 国产 在线| 久久久久久大精品| 蜜桃亚洲精品一区二区三区| 欧美日韩瑟瑟在线播放| 91麻豆精品激情在线观看国产| 桃红色精品国产亚洲av| 色综合婷婷激情| 午夜福利在线在线| 男女视频在线观看网站免费| 天堂网av新在线| 人妻夜夜爽99麻豆av| 国产三级黄色录像| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| 久久人人爽人人爽人人片va | 99视频精品全部免费 在线| 国产欧美日韩一区二区三| 一本久久中文字幕| 成人欧美大片| 成人三级黄色视频| 嫁个100分男人电影在线观看| 国产高清激情床上av| 欧美一区二区国产精品久久精品| 在线观看午夜福利视频| 真实男女啪啪啪动态图| 国内精品美女久久久久久| 一二三四社区在线视频社区8| 一进一出抽搐动态| 搡老熟女国产l中国老女人| 国产真实伦视频高清在线观看 | 精品99又大又爽又粗少妇毛片 | 久久久成人免费电影| 青草久久国产| 亚洲无线观看免费| 精品一区二区免费观看| bbb黄色大片| 亚洲无线观看免费| 精品乱码久久久久久99久播| 99在线视频只有这里精品首页| 波多野结衣巨乳人妻| 亚洲成人精品中文字幕电影| 日本一二三区视频观看| 中文资源天堂在线| 欧美午夜高清在线| 97超级碰碰碰精品色视频在线观看| 757午夜福利合集在线观看| 日韩欧美一区二区三区在线观看| 一进一出抽搐动态| 精品福利观看| 国产一区二区在线av高清观看| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 搡女人真爽免费视频火全软件 | 深夜精品福利| 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 露出奶头的视频| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 国产精品女同一区二区软件 | av福利片在线观看| 噜噜噜噜噜久久久久久91| 亚洲精品456在线播放app | 精品一区二区免费观看| 欧美xxxx性猛交bbbb| 亚洲,欧美,日韩| avwww免费| 久久午夜福利片| 中文字幕久久专区| 少妇被粗大猛烈的视频| 日韩有码中文字幕| 白带黄色成豆腐渣| 久久精品综合一区二区三区| 日本在线视频免费播放| 最好的美女福利视频网| 91久久精品国产一区二区成人| 真实男女啪啪啪动态图| 一级a爱片免费观看的视频| 性色avwww在线观看| 亚洲第一电影网av| 亚洲专区国产一区二区| 听说在线观看完整版免费高清| 精品一区二区三区视频在线| 免费在线观看日本一区| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 国产精品乱码一区二三区的特点| 亚洲熟妇熟女久久| 亚洲不卡免费看| 欧美日韩黄片免| 久久久精品欧美日韩精品| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在 | 最近中文字幕高清免费大全6 | 亚洲av中文字字幕乱码综合| 久久精品夜夜夜夜夜久久蜜豆| 久久性视频一级片| 人妻制服诱惑在线中文字幕| 国产三级黄色录像| 国产大屁股一区二区在线视频| 亚洲 国产 在线| 日韩av在线大香蕉| 9191精品国产免费久久| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 亚洲精品亚洲一区二区| 给我免费播放毛片高清在线观看| 激情在线观看视频在线高清| 丰满乱子伦码专区| 久久久久久久亚洲中文字幕 | 国产大屁股一区二区在线视频| 97碰自拍视频| 国产亚洲精品久久久com| 91在线观看av| 哪里可以看免费的av片| 又爽又黄a免费视频| 国产乱人视频| 高清毛片免费观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 琪琪午夜伦伦电影理论片6080| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看影片大全网站| 色播亚洲综合网| av专区在线播放| 国产一区二区在线观看日韩| 在线免费观看不下载黄p国产 | 久久久久久久久大av| 51国产日韩欧美| 白带黄色成豆腐渣| 我要搜黄色片| 亚洲中文日韩欧美视频| 亚洲av美国av| 免费黄网站久久成人精品 | 精品日产1卡2卡| 1000部很黄的大片| 久久天躁狠狠躁夜夜2o2o| 午夜日韩欧美国产| 亚洲精品色激情综合| 蜜桃亚洲精品一区二区三区| 波多野结衣高清无吗| 亚洲精品影视一区二区三区av| 精品久久久久久久人妻蜜臀av| 最新中文字幕久久久久| aaaaa片日本免费| 在线观看免费视频日本深夜| а√天堂www在线а√下载| 亚洲av成人精品一区久久| 日韩成人在线观看一区二区三区| 男人和女人高潮做爰伦理| 在线十欧美十亚洲十日本专区| 高清日韩中文字幕在线| 精品99又大又爽又粗少妇毛片 | 嫩草影院精品99| 久久国产精品人妻蜜桃| av欧美777| 日韩有码中文字幕| 一区二区三区激情视频| 最近最新免费中文字幕在线| 人妻制服诱惑在线中文字幕| 俄罗斯特黄特色一大片| av专区在线播放| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看| 午夜福利18| 精品一区二区三区视频在线| 亚洲成av人片在线播放无| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| 欧美绝顶高潮抽搐喷水| 乱人视频在线观看| 国产激情偷乱视频一区二区| 波多野结衣高清作品| 欧美另类亚洲清纯唯美| 久久国产乱子免费精品| 日本黄色片子视频| 亚洲精品在线观看二区| 狂野欧美白嫩少妇大欣赏| 国产视频一区二区在线看| 美女xxoo啪啪120秒动态图 | 制服丝袜大香蕉在线| 国产色婷婷99| av欧美777| 国产视频内射| 99久久久亚洲精品蜜臀av| 欧美成人a在线观看| 韩国av一区二区三区四区| 亚洲18禁久久av| 亚洲久久久久久中文字幕| 男人舔奶头视频| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 性色av乱码一区二区三区2| 成人一区二区视频在线观看| 美女高潮喷水抽搐中文字幕| 99久久成人亚洲精品观看| 亚洲精品一区av在线观看| 99在线视频只有这里精品首页| 免费av不卡在线播放| 美女xxoo啪啪120秒动态图 | 色播亚洲综合网| 韩国av一区二区三区四区| АⅤ资源中文在线天堂| 日本一本二区三区精品| 国产91精品成人一区二区三区| 亚洲av不卡在线观看| 亚洲av成人不卡在线观看播放网| 简卡轻食公司| 91久久精品电影网| 一级作爱视频免费观看| 国产极品精品免费视频能看的| 嫩草影院入口| 99久久九九国产精品国产免费| 99国产综合亚洲精品| 亚洲三级黄色毛片| 88av欧美| 精品一区二区三区av网在线观看| 亚洲av美国av| 久久久久久久亚洲中文字幕 | 亚洲av中文字字幕乱码综合| 床上黄色一级片| 国产色爽女视频免费观看| 国产高清激情床上av| 老司机午夜福利在线观看视频| 日韩欧美国产一区二区入口| 亚洲人与动物交配视频| 午夜福利在线观看免费完整高清在 | 中文字幕久久专区| 波多野结衣高清作品| 久久伊人香网站| 久久国产乱子伦精品免费另类| 51国产日韩欧美| 悠悠久久av| 国产亚洲精品久久久com| 国产乱人伦免费视频| а√天堂www在线а√下载| 韩国av一区二区三区四区| 国产一区二区亚洲精品在线观看| 欧美最黄视频在线播放免费| 欧美精品国产亚洲| 亚洲欧美日韩高清在线视频| 深夜精品福利| 国内精品久久久久精免费| 国产不卡一卡二| 国产麻豆成人av免费视频| 人妻夜夜爽99麻豆av| 久久性视频一级片| 亚洲一区二区三区色噜噜| 成人无遮挡网站| 国产乱人伦免费视频| 欧美成人性av电影在线观看| 国产探花极品一区二区| 两个人视频免费观看高清| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 免费在线观看日本一区| 国产一区二区在线av高清观看| 人妻丰满熟妇av一区二区三区| 免费电影在线观看免费观看| 国产综合懂色| 亚洲av美国av| 啦啦啦观看免费观看视频高清| 亚洲av美国av| 午夜精品一区二区三区免费看| 精品乱码久久久久久99久播| 成人美女网站在线观看视频| 九色成人免费人妻av| 国内精品久久久久精免费| 88av欧美| 成人一区二区视频在线观看| 丰满乱子伦码专区| 在线观看舔阴道视频| 亚洲狠狠婷婷综合久久图片| 久久久久免费精品人妻一区二区| 国产精品精品国产色婷婷| 精品久久久久久久人妻蜜臀av| 国产一区二区在线av高清观看| 日日夜夜操网爽| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清在线视频| 亚洲av成人av| a级一级毛片免费在线观看| 亚洲内射少妇av| 乱码一卡2卡4卡精品| 91麻豆精品激情在线观看国产| 欧美日韩亚洲国产一区二区在线观看| 国产高清激情床上av| 国产久久久一区二区三区| 亚洲美女视频黄频| 日韩欧美国产在线观看| 男女床上黄色一级片免费看| 美女被艹到高潮喷水动态| 久久人人爽人人爽人人片va | 一进一出好大好爽视频| 国产又黄又爽又无遮挡在线| 国产高清视频在线观看网站| 免费一级毛片在线播放高清视频| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| 日韩高清综合在线| 国产精品一区二区性色av| 久久久国产成人免费| 一进一出抽搐gif免费好疼| 别揉我奶头~嗯~啊~动态视频| 国产精品综合久久久久久久免费| 欧美xxxx性猛交bbbb| 日韩精品青青久久久久久| 精品无人区乱码1区二区| 亚洲精品在线观看二区| 中出人妻视频一区二区| 国产伦精品一区二区三区视频9| 黄色丝袜av网址大全| 我的女老师完整版在线观看| 亚洲在线观看片| 亚洲熟妇熟女久久| 亚洲成av人片在线播放无| 国内毛片毛片毛片毛片毛片| 少妇高潮的动态图| 国模一区二区三区四区视频| 动漫黄色视频在线观看| 午夜精品久久久久久毛片777| 久久久久久九九精品二区国产| 一进一出抽搐动态| 无遮挡黄片免费观看| 特大巨黑吊av在线直播| 亚洲综合色惰| 夜夜躁狠狠躁天天躁| 免费高清视频大片| 国产激情偷乱视频一区二区| 免费大片18禁| 一个人看的www免费观看视频| 在线观看午夜福利视频| 悠悠久久av| 无人区码免费观看不卡| 午夜福利18| 成熟少妇高潮喷水视频| 免费av毛片视频| 亚洲在线自拍视频| 成年女人永久免费观看视频| 国产精品99久久久久久久久| 嫩草影院入口| 三级国产精品欧美在线观看| 亚洲欧美激情综合另类| 男人舔女人下体高潮全视频| 真实男女啪啪啪动态图| 丰满乱子伦码专区| 在线十欧美十亚洲十日本专区| 夜夜爽天天搞| 欧美日韩黄片免| 18禁黄网站禁片午夜丰满| 欧美日本亚洲视频在线播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品色激情综合| 99久久精品一区二区三区| 最近视频中文字幕2019在线8| 在线国产一区二区在线| 少妇丰满av| 国产精品永久免费网站| 国产高清视频在线观看网站| 亚洲成av人片在线播放无| 亚洲七黄色美女视频| 国产乱人伦免费视频| 午夜福利视频1000在线观看| 成人国产一区最新在线观看| 成人性生交大片免费视频hd| 国产野战对白在线观看| 欧美国产日韩亚洲一区| 亚洲av成人av| 国产伦在线观看视频一区| 一区二区三区四区激情视频 | 无人区码免费观看不卡| 五月伊人婷婷丁香| 一本精品99久久精品77| 亚洲无线在线观看| 亚洲va日本ⅴa欧美va伊人久久| 免费搜索国产男女视频| 欧美日韩黄片免| 很黄的视频免费| 成人三级黄色视频| 观看免费一级毛片| a级毛片免费高清观看在线播放| 好看av亚洲va欧美ⅴa在| 啪啪无遮挡十八禁网站| 国产一级毛片七仙女欲春2| 日韩 亚洲 欧美在线| 国产野战对白在线观看| 别揉我奶头 嗯啊视频| 欧美精品国产亚洲| 欧美+日韩+精品| 久久午夜福利片| 亚洲成人久久性| 欧美丝袜亚洲另类 | 日韩中字成人| 天堂影院成人在线观看| 亚州av有码| 99久久99久久久精品蜜桃| 观看美女的网站| 成年版毛片免费区| 午夜福利视频1000在线观看| av天堂在线播放| 国产精品久久电影中文字幕| 亚洲精品色激情综合| 99久久99久久久精品蜜桃| 色播亚洲综合网| 国产一区二区三区视频了| 在线看三级毛片| 国产主播在线观看一区二区| 人妻丰满熟妇av一区二区三区| 俄罗斯特黄特色一大片| 黄色日韩在线| 亚洲国产色片| 亚洲精品日韩av片在线观看| www.熟女人妻精品国产| 99在线人妻在线中文字幕| 国产免费男女视频| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 一级黄片播放器| 欧美bdsm另类| 脱女人内裤的视频| 亚洲七黄色美女视频| 亚洲第一区二区三区不卡| 两人在一起打扑克的视频| 久久久成人免费电影| 午夜精品一区二区三区免费看| 偷拍熟女少妇极品色| 一级黄色大片毛片| 精品无人区乱码1区二区| 搡女人真爽免费视频火全软件 | 国产真实乱freesex| 亚洲自拍偷在线| 老女人水多毛片| 我要看日韩黄色一级片| 波野结衣二区三区在线| 日韩有码中文字幕| 国产主播在线观看一区二区| 天堂av国产一区二区熟女人妻| 亚洲七黄色美女视频| 亚洲中文字幕日韩| 欧美3d第一页| 五月玫瑰六月丁香| 亚洲,欧美,日韩| 国产精华一区二区三区| 国产av在哪里看| www.熟女人妻精品国产| 亚州av有码| 搞女人的毛片| 国产精品嫩草影院av在线观看 | 亚洲av成人不卡在线观看播放网| 久久精品国产亚洲av天美| 久久久久久久午夜电影| 波野结衣二区三区在线| 免费在线观看成人毛片| 高清日韩中文字幕在线| 欧美日韩国产亚洲二区| 毛片女人毛片| 18禁黄网站禁片免费观看直播| 99热这里只有是精品50| 国内毛片毛片毛片毛片毛片| 永久网站在线| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩精品亚洲av| 久久精品国产亚洲av涩爱 | 国产野战对白在线观看| 国产精品一区二区免费欧美| 在线观看美女被高潮喷水网站 | 嫩草影院入口| 久久久久亚洲av毛片大全| 直男gayav资源| 亚洲狠狠婷婷综合久久图片| 在线天堂最新版资源| 又爽又黄无遮挡网站| www.999成人在线观看| 黄色配什么色好看| 亚洲国产色片| 国产精品av视频在线免费观看| 麻豆一二三区av精品| 中国美女看黄片| 国产精品影院久久| 九色国产91popny在线| 观看美女的网站| 成年女人看的毛片在线观看| 夜夜夜夜夜久久久久| 国产91精品成人一区二区三区| 亚洲,欧美,日韩| 高清毛片免费观看视频网站| 日本五十路高清| 亚洲人成网站高清观看| 深爱激情五月婷婷| 欧美日韩黄片免| 校园春色视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 麻豆一二三区av精品| 18美女黄网站色大片免费观看| 亚洲av成人不卡在线观看播放网| 国产aⅴ精品一区二区三区波| 日本免费a在线| 亚洲中文字幕一区二区三区有码在线看| 无人区码免费观看不卡| 欧美午夜高清在线| 亚洲无线观看免费| 最近在线观看免费完整版| 国产主播在线观看一区二区| 在线播放无遮挡| 亚洲av免费高清在线观看| 少妇人妻一区二区三区视频| 国产欧美日韩精品一区二区| 亚洲五月天丁香| 精品人妻1区二区| av在线老鸭窝| 最近中文字幕高清免费大全6 | 少妇人妻一区二区三区视频| 可以在线观看毛片的网站| 欧美黑人巨大hd| av中文乱码字幕在线| 国产色婷婷99| 色精品久久人妻99蜜桃| 国产野战对白在线观看| 免费人成在线观看视频色| 欧美成人a在线观看| 亚洲乱码一区二区免费版| 啦啦啦观看免费观看视频高清| 亚洲五月天丁香| 精品久久久久久,| 免费一级毛片在线播放高清视频| 18禁裸乳无遮挡免费网站照片| 神马国产精品三级电影在线观看| av在线老鸭窝| 啪啪无遮挡十八禁网站| 日本与韩国留学比较| 国产精品电影一区二区三区|