• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Eigenvalues Detection Based Spectrum Sensing Algorithm for Cognitive Radio*

    2012-10-21 03:44:58L,,*,,
    傳感技術(shù)學(xué)報 2012年6期

    L,,* ,,

    (1.College of Information Science and Engineering,Jishou University,Jishou Hunan 416000,China;2.National Mobile Communications Research Laboratory,Southeast University,Nanjing 210096,China)

    In recent years,the governments and researchers have become increasingly interested in CR(Cognitive Radio),which is considered as one of the most promising solutions to deal with the conflict between the enormous spectrum demands of cognitive users(unlicensed users)and the scarcity of radio spectrum resources used by primary users(licensed users)[1-4].In fact,IEEE has formed a working group on wireless regional area networks(IEEE 802.22)whose goal is to develop a standard for cognitive users to access the TV spectrum holes[3].

    Spectrum sensing plays a fundamental role in CR,and its task is to use the data collected by wireless sen-sors to decide whether the spectrum holes exist or not.However,detecting the presence of the primary signal is practically difficult due to the low signal to noise ratio(SNR),deep fading and hidden nodes problem[5-6].There are many types of basic sensing algorithms presented in the literature.Among them,the MED[7],also called the blindly combined energy detection(BCED)method in Ref[8],is a preferred technique that can achieve a high probability of detection(Pd)for the correlated primary signal,which is usually the case in most sensing scenarios[6-8].The MED detects the existence of the primary signalin terms with the maximum eigenvalue of the SCM of the received signal.Recently,a new SED sensing algorithm based on the smallest eigenvalue detection has been introduced in Ref[9].The simulation results of Ref[9]also show the SED can perform well for the correlated received signal.However,the determination of the decision thresholds poses a big problem for the applications of the MED and the SED.Firstly,the decision thresholds for them are derived by using the random matrix theory(RMT)under the assumption that both the sample size and the sample dimension are infinite[7,9],which results in that the threshold becomes inaccurate in realistic applications with limited sample size and sample dimension.The results of Ref[10]indicate that the inaccurate threshold may lead to poor performance.Further,the calculation of the asymptotical threshold involves the solving of the inverse cumulative distribution function(CDF)of Tracy-Widom distribution of order 1(for the real data)or order 2(for the complex data)[7,9-12],which requires complicated numerical computation and then cannot meet the real-time requirement in many applications.

    Ifthe primary signal is present,then the determinant(i.e.,the product of all eigenvalues)of the SCM for the received signal samples is usually different from that of the statistical covariance matrix of the noise samples.Based on this fact,an alternative sensing algorithm called the eigenvalues detection(ESD)is proposed in this paper.Using all eigenvalues of the SCM as a test statistic,the proposed ESD can execute spectrum sensing without the information about the primary signal and the wireless channel.Besides,the proposed method keeps the same computation complexity as the MED and the SED,while it relaxes the calculation requirement of the threshold by using a simple closed-form expression.Simulation results verify the effectiveness of the ESD.

    The notations conform to the following conventions.Vectors are column vectors denoted in lower case bold,e.g.,x.Matrices are denoted by upper case bold,e.g.,A.lPand IPare theP×Pall-one matrix and identity matrix,respectively.The superscript“T”means transpose operator.det(A)is the determinant of A.E{·}denotes the statistical expectation operator.“~ ”and“”mean respectively“distributed as”and“asymptotically distributed as”.WP(N,R)denotes aP×PWishart distribution withNdegrees of freedom(DOF)and covariance matrix Rdenotes a chi-square distribution withnDOF.

    1 Spectrum Sensing Algorithm for Cognitive Radio Based on Eigenvalues Detection(ESD)

    Considering that there areMantennas at the sensing node andNtime samples can be obtained at each antenna for spectrum sensing,theP×1 received signal sample vector can be written asxm(n)=sm(n)+ηm(n),m=1,…,M,n=1,…,N,wherePdenotes the number of consecutive samples of a sample vector,sm(n)and ηm(n)denote theP×1 sample vectors of the primary signal and noise,respectively.The hypothesis testing problem for spectrum sensing can be represented as

    whereH0indicates primary signal does not exist whileH1indicates primary signal exists.Note thatsm(n)denotes the received signal after the primary signal passes through the wireless channel.Without loss of generality,we assume that ηm(n)is a zero mean white Gaussian processwith statisticalcovariance matrixIP.Assuming that the primary signal and noise are statistical independent,theP×Pstatistical covariance matrix of the received signal can then be written as

    where Rs?E{sm(n)(n)}is the statistical covariance matrix of the primary signal.If the primary signal is present,then we have

    Therefore,the quotient det Rx/detIPcan be viewed as an indicator to decide whether the primary signal is present or not.In practical applications,the exact statistical covariance matrix can only be approximated by the SCM defined as

    Hence,a new test statistic can be proposed as

    Based on the above analysis,the hypothesis testing problem in Equ(1)can be re-expressed as

    where γ denotes the decision threshold.Denote λ1,λ2,…,λPas the eigenvalues ofordered in decreasing order.Using the equation det,the new statistic can then be equivalently rewritten as

    From Equ(8),the proposed statistic uses all the eigenvalues of the SCM as an indicator to detect whether the primary signal is present or not.Consequently,the new sensing algorithm based on the eigenvalues detection can be summarized as follows

    Algorithms 1:Spectrum Sensing Algorithm for Cognitive Radio Based on Eigenvalues Detection(ESD)

    Input:xm(n),M,N,P,and the targetPf

    Output:“yes”if the primary signal is present,otherwise“no”

    Step 2 Calculate the statistic Λ using Equ(6);

    Step 3 Determine the decision threshold γ using Equ(20)(to be given in the next section);

    Step 4 If Λ>γ,return“yes”;If Λ<γ,return“no”.

    Remarks:(a)Different from the SED,the proposed ESD uses all eigenvalues of the SCM to construct the test statistic.If all eigenvalues of the SCM are equal,then the ESD reduces to the SED.(b)If the signal subspace is rank-one,i.e.,rank(Rs)=1,then the smallestP-1 eigenvalues ofwill be approximately equal toand the proposed algorithm reduces to the MED.In this sense,the MED can be viewed as a special case of the ESD,(c)The main implementation complexity for the MED,SED,and ESD lies in the computing of the SCM defined in Equ(5)and the eigenvalue decomposition of it.Obviously,the propose ESD has the same computation complexity as the MED and the SED.

    2 Analysis of the Probability of False Alarm and the Decision Threshold

    Usually,the decision threshold is determined according toPf.Therefore,the distribution function of the test statistic underH0should be firstly derived.WhenMN→ +∞ andPis verysmall,an asymptotic distribution can be given by[13]

    Noting that ln(x)is a monotonically increasing function with respect tox>0.Therefore,the false alarm probability can be expressed as

    Given a target probability of false alarm,sayPFA,the asymptotic threshold can then be calculated by combining Equ(9)and Equ(10)

    where exp(x)andQ-1(x)denote the exponential function and the inverse MarcumQfunction,respectively.As mentioned above,γasyis valid for the applications with a very large sample size and a very small sample dimen-sion.However,it becomes not accurate enough in the practical application with a large sample dimension and would cause the loss of the detection performance(see Table 1 and Fig.1 in Sec.4).In the following,we will give an improved decision threshold for the proposed ESD.

    Applying the theorem of Bartlett decomposition yields[13]

    Taking natural logarithm on both sides of Equ(14)yields

    Table 1 Actual for different sample sizes and sample dimensions when and are used

    We can prove that the following asymptotic distribution holds as the sample size MN is large(see Appendix)

    Using the fact thatvi(i=1,…,P)are all independent of each other,from(17),we can obtain the following distribution

    where

    Given the targetPFA,the improved decision threshold can then be determined by combining Equ(10)and Equ(19)

    Remarks:(a)WhenMN→+∞ andPis very small,we have μ→0 and σ2→2P/MN,and then γimp→γasy,which means that both γimpand γasyare accurate enough in the scenario with a large sample size and a very small sample dimension.However,ifPbecomes large,then the values of μ and σ2would deviate from the asymptotic ones,and then the asymptotic decision threshold γasywould become invalid while the proposed γimpis still valid.(b)As mentioned before,the determinations of the decision thresholds for both the SED and the MED need to solve the inverse Tracy-Widom distribution.Unfortunately,thisdistribution isdefined by a complex nonlinear PainleveⅡdifferential equation[7],and the solving heavily relies on either complicated programming techniques or a commercial statistical software package[14-15].Compared with the MED and the SED,the determination of the threshold for the ESD does not need complex numerical computation and can meet the realtime requirement in spectrum sensing.(c)Obviously,the computation of the threshold in Equ(20)does not need any information of the primary signal and the wireless channel.For a practical application,the calculation of the threshold is needed only once for given values ofM,N,PandPFA.

    3 Simulations

    In this section,the proposed ESD is evaluated numerically and compared with the other two eigenvalue based method including the MED and the SED.For illustration,the received primary signal is assumed to be a Gaussian distribution with a statistical covariance matrix ρslP+(1-ρs)IP,where ρsdenotes the correlation coefficient between the primary signal samples.For the real signal,the decision thresholds for the MED and the SED can be respectively computed as[7,9]①In reference[9],the threshold of the SED is derived for the complex signal.For the real signal,the threshold can be calculated by simply replacing(·)with(·)in the complex one(see reference[11]for details)..

    where(·)denotes the inverse CDF of Tracy-Widom distribution of order 1.

    Firstly,the actual probabilities of false alarm of the proposed ESD for different sample sizes and sample dimensions are given in Table 1,where we setPFA=0.1 and then obtain the thresholds,i.e.,γasyand γimp,using the formulae derived in Equ(11)and Equ(20).Comparing the targetPFA=0.1 with the simulated results,we see that both γasyand γimpbecome more accurate with the increasing sample dimensionMN,while the latter is more robust to the sample dimensionP.We also see that the theoretical threshold is a little bit higher than the expected,which causes the actualPfto be slightly lower thanPFA=0.1.The effects of the thresholds on the detection probability are demonstrated in Fig.1,where we fixMN=1 000 and ρs=0.5.It can be seen that better detection performance can be achieved by using the improved threshold γimp,especially for a large value ofP.

    Fig.1 The effects of the theoretical thresholds on the detection performance(dashed lines:γasy,solid lines:γimp)

    Secondly,the detection performance of the ESD compared with the MED and the SED for different correlation coefficients is presented in Fig.2,where the improved threshold in Equ(20)is used for the ESD.As can be seen,compared with the MED,the ESD shows better sensing performance under low(ρs=0.1)and moderate(ρs=0.5)correlation coefficients.When the received signals are highly correlated(ρs=0.9),the ESD shows better sensing performance in the low SNR region and slightly worse performance in the high SNR region.Compared with the SED,the proposed ESD can achieve higher detection probability in the high SNR region,especially for the highly correlated signal.On the other hand,from the point of view of the false-alarm probability,the SED yields a far higherPf(about)than the presettingPFA=0.1,which indicates the asymptotic threshold is far lower than the true one.The lower threshold results in the unreliability of the detection performance for the SED and also the reduction of the actual spectral utilization for the cognitive user.Obviously,the proposed ESD almost achieves the desired,which implies the threshold given by Equ(20)is very accurate in practical applications.

    Fig.2 Performance comparison of the ESD with the MED and the SED for different correlation coefficients(MN=1 000,P=3)

    Finally,the effects of the sample size and the sample dimension are investigated in Fig.3 and Fig.4,respectively.At first,the detection performance of the new algorithm for different sample sizes is presented in Fig.3,where we fix ρs=0.5,P=3 orP=5,while the sample sizes vary from 100 to 1 000.As expected,the sensing performance for the ESD increases significantly with the increasing sample size.At the same time,the sensing performance of the new algorithm with different sample dimensions is investigated in Fig.4.As expected,we observe that the sensing performance of the new algorithm can be further enhanced via increasing the sample dimension of the received signal vector.For example,the amounts of performance improvement for bothMN=200 andMN=1 000 are about 2 dB when the sample dimension increases from the increasing sample size.

    Fig.3 Performance of the ESD for different sample sizes(ρs=0.5,dased lines:P=3,solid lines:P=5)

    Fig.4 Performance of the ESD for different sample dimensions(ρs=0.5)

    4 Conclusion

    A spectrum sensing algorithm based on the eigenvalues detection has been introduced in this paper.Correspondingly,the probability of false alarm and the decision threshold are analyzed by using the multivariate statistical theories.The proposed ESD can be used for the sensing scenarios without the information about the primary signal and the wireless channel.More importantly,the proposed ESD keeps the same computation complexity as the MED and the SED,while it relaxes the calculation requirement of the decision threshold by using a simple closed-form expression.Simulation results verify the effectiveness of the proposed sensing method.

    5 Appendix

    Asymptotic Distribution of vi

    The characteristic function ofcan hence be given as

    Note thatzi(1≤i≤P)is very large due to the fact that usuallyMNis large whilePis small in practical applications.We can then use the asymptotic expansion of the log gamma function[13]to expand the second and third terms on the right hand side of Equ(22)according tozito get

    Noting that the right hand side of Equ(23)is just the characteristic function of a Gaussian random variable,we then have

    Using the property of the Gaussian random variable,we can easily obtain Equ(18).

    [1]Haykin S.Cognitive Radio:Brain-Empowered Wireless Communications[J].IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.

    [2]Zhang J W,Zhao Q,Zou J Y.Algorithm of Spectrum Allocation for Wireless Sensor Network Based on Dynamic Spectrum Sensing[J].Chinese Journal of Sensors and Actuators,2009,22(10):1481-1485.

    [3]WANG B,Liu K J R.Advances in Cognitive Radio Networks:A Survey[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(1):5-23.

    [4]Wei M,Lian Q S.The Wideband Spectrum Covariance Sensing Algorithm Based on Compressed Sensing[J].Chinese Journal of Sensors and Actuators,2011,24(7):1022-1026.

    [5]Unnikrishnan J,Veeravalli V V.Cooperative Spectrum Sensing and Detection for Cognitive Radio[C]//Proc.IEEE Global Communications Conference(GLOBECOM).Washington,DC,USA,2007:2972-2976.

    [6]Zeng Y H,Liang Y C.Spectrum-Sensing Algorithms for Cognitive Radio Based on Statistical Covariances[J].IEEE Transactions on Vehicular Technology,2009,58(4):1804-1815.

    [7]Zeng Y H,Koh C L,Liang Y C.Maximum Eigenvalue Detection:Theory and Application[C]//Proc.IEEE International Conference on Communications(ICC).Beijing,China,2008:4160-4164.

    [8]Zeng Y H,Liang Y C,Zhang R.Blindly Combined Energy Detection for Spectrum Sensing in Cognitive Radio[J].IEEE Signal Processing Letters,2008,15:649-652.

    [9]Cao K T,Yang ZH.Novel Cooperative Spectrum Sensing Algorithm Based on the Smallest Eigenvalue[J].Chinese Journal of Scientific Instrument,2011,32(4):736-741.

    [10]Penna F,Garello R,Spirito M A.Cooperative Spectrum Sensing Based on the Limiting Eigenvalue Ratio Distribution in Wishart Matrices[J].IEEE Communications Letters,2009,13(7):507-509.

    [11]FEldheim O N,Sodin S.A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices[EB/OL].Online,http://arxiv.org/PS_cache/arxiv/pdf/0812/0812.1961v4.pdf.

    [12]Yang X,Lei K J,Peng S L,et al.Blind Detection for Primary User Based on the Sample Covariance Matrix in Cognitive Radio[J].IEEE Communications Letters,2011,15(1):40-42.

    [13]Muirhead R J.Aspects of Multivariate Statistical Theory[M].Hoboken,New Jersey,USA:John Wiley & Sons,Inc,1982.

    [14]Dieng M.RMLab Version 0.02[EB/OL].http://math.arizona.edu/~ momar/,2006.

    [15]Andrei Bejan.Largest Eigenvalues and Sample Covariance Matrices[EB/OL].http://www.cl.cam.ac.uk/~ aib29/MScdssrtnWrwck.pdf.

    [16]Krishnamoorthy K.Handbook of Statistical Distributions with Applications[M].Boca Raton,F(xiàn)L,USA:Chapman & Hall/CRC,2006.

    亚洲欧美精品自产自拍| 亚洲av一区综合| 人妻一区二区av| 久热久热在线精品观看| 国产精品一区二区三区四区免费观看| 国产精品综合久久久久久久免费| 超碰97精品在线观看| 午夜亚洲福利在线播放| 国产综合精华液| 国产高清国产精品国产三级 | 午夜免费男女啪啪视频观看| 日韩av在线免费看完整版不卡| 看黄色毛片网站| 高清毛片免费看| 一区二区三区免费毛片| 国产精品不卡视频一区二区| 亚洲美女搞黄在线观看| 亚洲av免费高清在线观看| 午夜老司机福利剧场| 丝袜美腿在线中文| 床上黄色一级片| 777米奇影视久久| 免费不卡的大黄色大毛片视频在线观看 | 天天一区二区日本电影三级| 尾随美女入室| 久久精品熟女亚洲av麻豆精品 | 少妇被粗大猛烈的视频| 久久久久久久久久久免费av| 午夜视频国产福利| 欧美97在线视频| 欧美一级a爱片免费观看看| 狠狠精品人妻久久久久久综合| 韩国av在线不卡| 午夜精品在线福利| 丰满少妇做爰视频| 久久6这里有精品| 亚洲av一区综合| 国产亚洲午夜精品一区二区久久 | 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 日韩中字成人| 国产精品无大码| 免费播放大片免费观看视频在线观看| 国产精品福利在线免费观看| 天天躁夜夜躁狠狠久久av| 全区人妻精品视频| 日韩精品青青久久久久久| 免费看a级黄色片| 久久精品夜夜夜夜夜久久蜜豆| 日韩中字成人| 国产精品人妻久久久影院| 国产精品 国内视频| 最近2019中文字幕mv第一页| 欧美人与性动交α欧美软件| 色婷婷久久久亚洲欧美| videossex国产| 一区二区三区乱码不卡18| 亚洲国产精品成人久久小说| 久久久久久免费高清国产稀缺| 女人高潮潮喷娇喘18禁视频| 18禁国产床啪视频网站| 亚洲国产日韩一区二区| 欧美精品人与动牲交sv欧美| 久久精品国产自在天天线| 在线观看三级黄色| 啦啦啦在线观看免费高清www| 欧美精品国产亚洲| 亚洲国产欧美在线一区| 亚洲欧洲日产国产| 五月伊人婷婷丁香| 成年动漫av网址| 两个人免费观看高清视频| 亚洲,欧美精品.| 久久鲁丝午夜福利片| 大陆偷拍与自拍| 五月开心婷婷网| 日韩熟女老妇一区二区性免费视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av不卡在线播放| 91午夜精品亚洲一区二区三区| 亚洲经典国产精华液单| 女性生殖器流出的白浆| 亚洲第一区二区三区不卡| 久久久久久久久久久久大奶| 久久久亚洲精品成人影院| 欧美精品人与动牲交sv欧美| 亚洲精品aⅴ在线观看| 成人毛片60女人毛片免费| 国产黄色视频一区二区在线观看| 丰满乱子伦码专区| 制服诱惑二区| 91国产中文字幕| 欧美人与性动交α欧美精品济南到 | 国产日韩欧美视频二区| 精品国产一区二区久久| 五月伊人婷婷丁香| 五月伊人婷婷丁香| 久久这里只有精品19| 十分钟在线观看高清视频www| 久久这里只有精品19| 最近中文字幕2019免费版| 在线 av 中文字幕| 在线 av 中文字幕| 少妇人妻精品综合一区二区| 久久人人97超碰香蕉20202| 男女午夜视频在线观看| 午夜影院在线不卡| 亚洲男人天堂网一区| 国产白丝娇喘喷水9色精品| 深夜精品福利| 久久99一区二区三区| 亚洲色图 男人天堂 中文字幕| 99香蕉大伊视频| 精品午夜福利在线看| 亚洲,一卡二卡三卡| 精品少妇一区二区三区视频日本电影 | 十八禁网站网址无遮挡| 18禁动态无遮挡网站| 精品一区在线观看国产| 伦理电影免费视频| 欧美人与性动交α欧美软件| 男人爽女人下面视频在线观看| 国产片特级美女逼逼视频| 麻豆精品久久久久久蜜桃| 美女视频免费永久观看网站| 亚洲伊人久久精品综合| av在线观看视频网站免费| 日韩中文字幕视频在线看片| 校园人妻丝袜中文字幕| 国产精品嫩草影院av在线观看| 热re99久久精品国产66热6| 99久久人妻综合| 少妇的逼水好多| 国产熟女欧美一区二区| 中文字幕人妻熟女乱码| 久久久精品94久久精品| av电影中文网址| 人妻系列 视频| 中文乱码字字幕精品一区二区三区| 18在线观看网站| 婷婷色综合大香蕉| av天堂久久9| 亚洲精品av麻豆狂野| av女优亚洲男人天堂| 国产深夜福利视频在线观看| 亚洲三级黄色毛片| 黄片小视频在线播放| 国产精品一区二区在线观看99| 国产黄色免费在线视频| 日本av免费视频播放| 国产精品秋霞免费鲁丝片| 欧美中文综合在线视频| 亚洲,一卡二卡三卡| 日韩中文字幕欧美一区二区 | 在线观看三级黄色| 大码成人一级视频| 成人漫画全彩无遮挡| 精品卡一卡二卡四卡免费| 亚洲婷婷狠狠爱综合网| 亚洲国产色片| 免费在线观看视频国产中文字幕亚洲 | 国产精品.久久久| 欧美+日韩+精品| 亚洲欧美一区二区三区黑人 | 久久久久网色| av线在线观看网站| 国产成人午夜福利电影在线观看| 国产在线免费精品| 永久网站在线| 一区在线观看完整版| av免费观看日本| 美女高潮到喷水免费观看| 国产乱人偷精品视频| 国产免费一区二区三区四区乱码| 老司机影院成人| 精品亚洲乱码少妇综合久久| 亚洲国产精品999| 亚洲中文av在线| 纵有疾风起免费观看全集完整版| 人人妻人人澡人人看| 各种免费的搞黄视频| 在线观看美女被高潮喷水网站| 下体分泌物呈黄色| 最新的欧美精品一区二区| 国产精品免费视频内射| 在线亚洲精品国产二区图片欧美| 人人妻人人爽人人添夜夜欢视频| 欧美激情高清一区二区三区 | 黄色一级大片看看| freevideosex欧美| a级毛片在线看网站| 一区二区日韩欧美中文字幕| 日本黄色日本黄色录像| 欧美精品人与动牲交sv欧美| 日日撸夜夜添| 国精品久久久久久国模美| 精品少妇一区二区三区视频日本电影 | 日韩在线高清观看一区二区三区| 久久久久久久久久久免费av| 人人妻人人添人人爽欧美一区卜| 欧美人与性动交α欧美精品济南到 | 午夜福利乱码中文字幕| 99久久综合免费| 久久久久网色| 国产野战对白在线观看| 在线天堂中文资源库| 汤姆久久久久久久影院中文字幕| 夫妻午夜视频| 欧美 亚洲 国产 日韩一| www.自偷自拍.com| 激情五月婷婷亚洲| 亚洲国产av新网站| 日本av手机在线免费观看| 97人妻天天添夜夜摸| 高清在线视频一区二区三区| 看免费成人av毛片| 亚洲精品中文字幕在线视频| 久久久久久久精品精品| 高清欧美精品videossex| 免费看av在线观看网站| 考比视频在线观看| 大话2 男鬼变身卡| 日韩精品有码人妻一区| 一级毛片电影观看| 青青草视频在线视频观看| 成人毛片60女人毛片免费| 侵犯人妻中文字幕一二三四区| videossex国产| 激情视频va一区二区三区| 亚洲三级黄色毛片| 中文字幕人妻丝袜制服| 久久久精品国产亚洲av高清涩受| 亚洲情色 制服丝袜| 日本欧美国产在线视频| 精品第一国产精品| 又粗又硬又长又爽又黄的视频| av卡一久久| 男女午夜视频在线观看| 日本免费在线观看一区| av免费在线看不卡| 婷婷色综合www| 一区福利在线观看| 亚洲av中文av极速乱| 国产精品三级大全| 国产精品免费视频内射| 午夜影院在线不卡| 亚洲国产看品久久| 婷婷色综合www| 三上悠亚av全集在线观看| 99re6热这里在线精品视频| 精品人妻偷拍中文字幕| 国产激情久久老熟女| 日韩欧美精品免费久久| 如何舔出高潮| 亚洲国产精品国产精品| 午夜91福利影院| www.自偷自拍.com| 熟女电影av网| 大片电影免费在线观看免费| www日本在线高清视频| 久久久a久久爽久久v久久| 丝袜美腿诱惑在线| 黄色配什么色好看| 纯流量卡能插随身wifi吗| 久久久欧美国产精品| 久久免费观看电影| 精品久久蜜臀av无| 精品少妇内射三级| 久久久久久久国产电影| 日韩,欧美,国产一区二区三区| 观看av在线不卡| 一区福利在线观看| 亚洲精品久久成人aⅴ小说| 亚洲av欧美aⅴ国产| www.精华液| 午夜激情av网站| 精品人妻在线不人妻| freevideosex欧美| 成人漫画全彩无遮挡| 婷婷色综合大香蕉| 亚洲精品自拍成人| 日韩av免费高清视频| 日韩一区二区三区影片| 欧美+日韩+精品| 最近最新中文字幕大全免费视频 | av网站在线播放免费| 亚洲 欧美一区二区三区| 妹子高潮喷水视频| 大香蕉久久网| 午夜av观看不卡| 日本爱情动作片www.在线观看| 日本爱情动作片www.在线观看| 丝袜脚勾引网站| 老汉色av国产亚洲站长工具| 可以免费在线观看a视频的电影网站 | 日韩av在线免费看完整版不卡| 人人妻人人添人人爽欧美一区卜| 女人被躁到高潮嗷嗷叫费观| 国产免费福利视频在线观看| 色哟哟·www| 中文乱码字字幕精品一区二区三区| 亚洲三级黄色毛片| 午夜福利网站1000一区二区三区| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 最近中文字幕2019免费版| 亚洲欧洲精品一区二区精品久久久 | 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久成人av| 免费在线观看完整版高清| 一本色道久久久久久精品综合| 男人爽女人下面视频在线观看| 日韩,欧美,国产一区二区三区| 又粗又硬又长又爽又黄的视频| 欧美日韩精品网址| 亚洲国产精品999| 日韩一卡2卡3卡4卡2021年| 中文乱码字字幕精品一区二区三区| 丝袜喷水一区| a级毛片在线看网站| 国产免费视频播放在线视频| 黑人巨大精品欧美一区二区蜜桃| 视频在线观看一区二区三区| 99久久综合免费| 国产av一区二区精品久久| 国产精品偷伦视频观看了| 王馨瑶露胸无遮挡在线观看| 久热这里只有精品99| 男女啪啪激烈高潮av片| 久久人人爽av亚洲精品天堂| 一级a爱视频在线免费观看| 热re99久久国产66热| 亚洲av在线观看美女高潮| 男女免费视频国产| 国产综合精华液| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| 欧美变态另类bdsm刘玥| 波多野结衣一区麻豆| 久久精品国产综合久久久| 一级毛片我不卡| 国产黄色视频一区二区在线观看| 黄片小视频在线播放| 国产欧美日韩综合在线一区二区| av在线播放精品| 亚洲av在线观看美女高潮| 国产在线一区二区三区精| 亚洲美女搞黄在线观看| 久久精品国产亚洲av涩爱| 久久久久久伊人网av| 春色校园在线视频观看| 久久久精品免费免费高清| 精品国产乱码久久久久久小说| 99久国产av精品国产电影| 黄片小视频在线播放| 亚洲美女视频黄频| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 精品久久蜜臀av无| 久久ye,这里只有精品| 丰满迷人的少妇在线观看| 免费黄频网站在线观看国产| 电影成人av| 国精品久久久久久国模美| 国产又爽黄色视频| 国产精品一国产av| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 久久久久久久精品精品| 亚洲三级黄色毛片| 看非洲黑人一级黄片| 女性被躁到高潮视频| 亚洲精华国产精华液的使用体验| 亚洲av.av天堂| 在线免费观看不下载黄p国产| 九草在线视频观看| 亚洲精品乱久久久久久| 久久久久久人人人人人| freevideosex欧美| 国产片特级美女逼逼视频| 黄色一级大片看看| 青青草视频在线视频观看| 国产精品麻豆人妻色哟哟久久| 婷婷色综合大香蕉| 在线免费观看不下载黄p国产| videosex国产| 国产男女内射视频| 999精品在线视频| 深夜精品福利| 人妻 亚洲 视频| 欧美bdsm另类| 最近的中文字幕免费完整| 新久久久久国产一级毛片| 国产淫语在线视频| 国产一区二区三区av在线| 男人爽女人下面视频在线观看| 80岁老熟妇乱子伦牲交| 国产爽快片一区二区三区| 国产男女超爽视频在线观看| av又黄又爽大尺度在线免费看| 精品少妇一区二区三区视频日本电影 | 美女脱内裤让男人舔精品视频| 亚洲精品久久久久久婷婷小说| 欧美xxⅹ黑人| 国产高清国产精品国产三级| 黄色 视频免费看| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频| 欧美老熟妇乱子伦牲交| 久久久久国产一级毛片高清牌| 婷婷色av中文字幕| 成人毛片60女人毛片免费| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲内射少妇av| 国产精品久久久av美女十八| 久久久久精品久久久久真实原创| 国产乱来视频区| 香蕉丝袜av| 看免费av毛片| 日韩精品免费视频一区二区三区| 又大又黄又爽视频免费| 人妻少妇偷人精品九色| 九草在线视频观看| 午夜久久久在线观看| 亚洲美女搞黄在线观看| 黄色一级大片看看| 日本猛色少妇xxxxx猛交久久| 97在线人人人人妻| 国产极品天堂在线| 成年人午夜在线观看视频| 亚洲成色77777| 欧美精品av麻豆av| 亚洲伊人色综图| 丝袜美腿诱惑在线| 蜜桃在线观看..| 性少妇av在线| 中文字幕制服av| 中文欧美无线码| 国产精品免费视频内射| 天堂中文最新版在线下载| 色播在线永久视频| 18禁国产床啪视频网站| 亚洲国产av影院在线观看| 一级黄片播放器| 久久人妻熟女aⅴ| 久久综合国产亚洲精品| 国产人伦9x9x在线观看 | 日韩精品免费视频一区二区三区| 男人操女人黄网站| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 女性被躁到高潮视频| 国产有黄有色有爽视频| 男男h啪啪无遮挡| 久久亚洲国产成人精品v| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 久久久久久久久久人人人人人人| 国产成人精品无人区| 日日爽夜夜爽网站| 精品人妻熟女毛片av久久网站| 人人妻人人添人人爽欧美一区卜| 亚洲久久久国产精品| 久久久精品94久久精品| h视频一区二区三区| 有码 亚洲区| 精品国产一区二区三区四区第35| 精品久久蜜臀av无| 精品亚洲成a人片在线观看| 久久精品国产自在天天线| 精品国产超薄肉色丝袜足j| 永久免费av网站大全| 午夜91福利影院| 日韩,欧美,国产一区二区三区| 赤兔流量卡办理| 国产女主播在线喷水免费视频网站| 久久韩国三级中文字幕| 十八禁网站网址无遮挡| 精品一区在线观看国产| 在线观看免费视频网站a站| 色吧在线观看| 亚洲图色成人| 搡女人真爽免费视频火全软件| 国产亚洲一区二区精品| 大话2 男鬼变身卡| 春色校园在线视频观看| 90打野战视频偷拍视频| 校园人妻丝袜中文字幕| 国产成人午夜福利电影在线观看| 免费av中文字幕在线| 国产色婷婷99| 久久久国产一区二区| 国产又爽黄色视频| 一本—道久久a久久精品蜜桃钙片| 自线自在国产av| 久久精品久久久久久噜噜老黄| 天堂俺去俺来也www色官网| 青草久久国产| 亚洲精品中文字幕在线视频| 欧美bdsm另类| 亚洲图色成人| 国产成人免费观看mmmm| 日本91视频免费播放| xxx大片免费视频| 日韩视频在线欧美| 亚洲国产欧美在线一区| av在线老鸭窝| 99久久中文字幕三级久久日本| 亚洲国产欧美日韩在线播放| 女性生殖器流出的白浆| 男女免费视频国产| 亚洲国产最新在线播放| 人人妻人人澡人人爽人人夜夜| 91精品国产国语对白视频| 女性生殖器流出的白浆| 色播在线永久视频| 伦理电影大哥的女人| 午夜福利视频精品| 最近中文字幕2019免费版| 高清欧美精品videossex| 大话2 男鬼变身卡| 国产精品99久久99久久久不卡 | 日本-黄色视频高清免费观看| 一区二区三区乱码不卡18| 久久久久久久久久人人人人人人| 亚洲av电影在线观看一区二区三区| 伦理电影免费视频| 久久婷婷青草| 男女高潮啪啪啪动态图| 热99久久久久精品小说推荐| 久久ye,这里只有精品| 国产午夜精品一二区理论片| 制服人妻中文乱码| 亚洲,欧美,日韩| 人人澡人人妻人| 伦精品一区二区三区| 搡老乐熟女国产| 免费在线观看完整版高清| 制服人妻中文乱码| 国产在线免费精品| 咕卡用的链子| 亚洲第一区二区三区不卡| 欧美国产精品va在线观看不卡| 久久99一区二区三区| 亚洲国产色片| 精品人妻偷拍中文字幕| 黄色视频在线播放观看不卡| freevideosex欧美| 久久久久久久大尺度免费视频| 亚洲av.av天堂| 免费少妇av软件| 久久久久人妻精品一区果冻| 亚洲精华国产精华液的使用体验| 9色porny在线观看| 久久久久精品人妻al黑| 亚洲成人手机| 亚洲av电影在线进入| 国产成人精品在线电影| 在线观看三级黄色| 在线观看免费视频网站a站| 欧美少妇被猛烈插入视频| 成人午夜精彩视频在线观看| 丰满迷人的少妇在线观看| 国产毛片在线视频| 久久青草综合色| 国产白丝娇喘喷水9色精品| 午夜福利影视在线免费观看| 国产福利在线免费观看视频| 欧美国产精品va在线观看不卡| 人成视频在线观看免费观看| 精品少妇一区二区三区视频日本电影 | 午夜日韩欧美国产| 波野结衣二区三区在线| 最近手机中文字幕大全| 满18在线观看网站| 少妇人妻精品综合一区二区| 视频在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 免费观看a级毛片全部| 秋霞在线观看毛片| 韩国av在线不卡| 久久久久久久久久久久大奶| 侵犯人妻中文字幕一二三四区| 国产精品一国产av| 999久久久国产精品视频| 免费播放大片免费观看视频在线观看| 精品亚洲乱码少妇综合久久| 中文字幕色久视频| 一区福利在线观看| 在线观看美女被高潮喷水网站| 亚洲中文av在线| 国产在视频线精品| 我要看黄色一级片免费的| 久久人妻熟女aⅴ| 9热在线视频观看99| 肉色欧美久久久久久久蜜桃| 人成视频在线观看免费观看| 在现免费观看毛片| 亚洲精品日韩在线中文字幕| 婷婷成人精品国产| 亚洲av男天堂| 巨乳人妻的诱惑在线观看| 国产人伦9x9x在线观看 | 大码成人一级视频| 国产成人午夜福利电影在线观看| 黑人欧美特级aaaaaa片| 90打野战视频偷拍视频| 亚洲欧美清纯卡通| 高清黄色对白视频在线免费看| 丰满饥渴人妻一区二区三| 人人妻人人澡人人看| 午夜福利乱码中文字幕| 久久97久久精品| 在线看a的网站|