• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋁合金表面用化學刻蝕和陽極氧化法制備的超疏水膜層的耐蝕性能

    2012-09-15 11:45:28李松梅李劉建華
    無機化學學報 2012年8期
    關鍵詞:劉建華北京航空航天大學空天

    李松梅李 彬 劉建華 于 美

    (北京航空航天大學材料科學與工程學院,空天材料與服役教育部重點實驗室,北京 100191)

    鋁合金表面用化學刻蝕和陽極氧化法制備的超疏水膜層的耐蝕性能

    李松梅*李 彬 劉建華 于 美

    (北京航空航天大學材料科學與工程學院,空天材料與服役教育部重點實驗室,北京 100191)

    通過化學刻蝕和陽極氧化在AA2024鋁合金表面制備超疏水表面。當化學刻蝕時間超過3 min時,表面在很寬pH值范圍內(nèi)顯示出水靜態(tài)接觸角大于150°。SEM和AFM照片表明化學刻蝕時間決定了試樣表面形貌和粗糙度。FTIR用來研究氟硅烷(G502)與AA2024表面的結合。結果說明FAS(氟硅烷)分子與鋁合金表面的三氧化二鋁發(fā)生反應,并在陽極氧化膜層表面展示出優(yōu)異的結合性能。超疏水表面的耐腐蝕性能通過在質量分數(shù)為3.5%的NaCl溶液中進行動電位極化和交流阻抗(EIS)測試。電化學測試結果和等效電路模型顯示出超疏水表面顯著改善抗腐蝕性能。

    超疏水;化學刻蝕;陽極氧化;耐腐蝕

    Superhydrophobic surface with a water contact angle of more than 150°has drawn a great deal attention because of its potential application in the industrial area and biological process[1],such as selfclearing material[2],anti-icing coating[3],corrosion-free coating[4-5]and so on.In nature,there are many living things with superhydrophobic surfaces,such as lotus leaf,butterfly wing,etc.From the lotus leaf,we know that the superhydrophobicity of a material depends on not only its surface energy but also its surface morphology[1].In the past decade,many methods were developed to fabricate superhydrophobic surfaces andreferences were in the field of nano-printing[6],electrospun[7], sol-gel[8]and so on. Currently,fabrication of superhydrophobic surfaces on metal has attracted considerable research attention.For example,Wu and co-workers[9]obtained superhydrophobic surface assembly of FAS (fluorinated agent silane)molecules on rough morphology created by chemical etching.Femtosecond Laser ablation was used by Kietzig[10]et al. to create roughness on steel.Wettability of the roughness steel transformed from hydrophilicity to hydrophobicity by laying the specimen in the natural environment,and reached superhydrophobicity when the lay time was over 50 days.

    Aluminum and its alloy have excellent physical and mechanical properties such as low density,good electromagnetism and high strength/weight ratio.Thus,they are expected to find applications in various industries such as aerospace and automobile.However,the poor corrosion resistance limits their application.Most of the corrosion occurs when the metallic matrix contacts with water and oxygen or other corrosion environment.One of the most effective corrosion protections for aluminum alloy is to treat the metal or alloy with chromium.However,chromium is toxic and harmful to the environment.Superhydrophobic surface treatment is one of the efficient strategies to protect aluminum alloy from corrosion because the surface is water repellent and separates the metallic matrix from water and corrosion environment.In ourprevious study[4],superhydrophobic surface was fabricated on aluminum alloy by anodization and self-assembly,butthe method was time consuming and demanded more energy.

    Here we report the preparation of superhydrophobic surface by chemical etching,anodization and self-assembly of FAS molecules.The static water contact angle was measured in wide pH value range.FTIR was employed to investigate the AA2024 surface combination of the fluorinated agent silane (FAS)molecules.Corrosion resistance of the superhydrophobic surface was estimated by electrochemical measurements in 3.5wt% NaCl aqueous solution.

    1 Experimental

    1.1 Preparation of superhydrophobic surface on Aluminium alloy AA2024

    Aluminum alloy AA2024(composition:4.5%Cu,1.5%Mg,0.5%Fe,0.6%Mn,0.5%Si,0.5%others and Al is the rest)with a size of 60mm×40mm×3mm was used as the substrate.The substrates were ground by emery paper (No.100,500,1000,grit sizes were 165,25,13 μm,respectively)gradually,and then ultrasonically cleaned in acetone and distilled water for 10 min,respectively.Diluted hydrochloric acid(VHCl∶VH2O=1∶1)was used as chemical etching solution at 15 ℃ .Chemical etching time was 2~4 min.Anodization process was conducted in the solution with 45 g·L-1sulfuric acid and 10 g·L-1boracic acid.The anodizing parameters were 0.6 A·cm-2,25 ℃,20 min.After anodization,the samples were immersed in 100 mL FAS solution containing 0.6 g FAS(G502,C13F12H18SiO3),40 mL methanol and 60 mL H2O(prepared by stirring for 4 h at 30℃)for 2 h at 40℃.

    1.2 Characterization of surfaces

    Water contact angles for as-prepared surfaces were estimated with opticscontactangle meter(Dataphysics OCA20)based on a sessile drop measuring method.The volume of the test water droplet was 6 μL.The contact angle of samples was obtained by averaging fivedifferentpoints.The surface morphologies of the prepared samples were estimated by scanning electron microscope(FE-SEM,Apllo 300,Japan)and atomic force microscope(AFM,Veeco,MutiModeNanoscope Ⅲ a,USA).SEM accelerating voltage was 15 kV.The AFM test was Tapping Mode and test area was 15×15μm.Chemical bonds were characterized by Fourier transform infrared spectroscopy(FTIR;NEXUS-470,Nicolet).

    1.3 Electrochemical measurements

    Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)measurements were used to estimate the corrosion resistant of superhydrophobic surfaces.Electrochemical workstation (Princeton Applied Research 2273)was employed to test electrochemical measurements based on three electrode system. All electrochemical measurements were performed in 3.5wt% NaCl aqueous solutions at room temperature.Before electrochemical measurements,the specimens were immersed in the aqueous solution for 10 min to obtain a stable surface.The prepared surface was used as the working electrode with test area of 3.14 cm2.A saturated calomel electrode was used as the reference electrode and a platinum sheet was used as the counter electrode.Potentiodynamic polarization curves were subsequently measured with respect to the open circuit potential(OCP)at a scanning rate of 2 mV·s-1from -0.5 V to 1 V.Electrochemical impedance spectroscopic measurements were conducted in the frequency ranges between 10 mHz and 100 kHz with a sinusoidal perturbation of 10 mV.The program Zsimpwin 3.2 was used to obtain fitting parameters based on equivalent circuit.

    2 Results and discussion

    2.1 Fabrication of Superhydrophobic surfaces

    Schemes for the sample fabrication are shown in Fig.1.All of the samples were assembled by FAS molecules.The sample only treated by chemical etching for 2,3 and 4 min is denoted as CE2,CE3,CE4,respectively,and the sample only anodized for 20 min is denoted as A,and the samples treated by chemical etching for 2,3 and 4 min and anodization for 20 min is named as CE2A,CE3A and CE4A,respectively.Fig.2 shows the water contact angle measurement on samples obtained by different treatments under wide pH value range.It can be seen clearly that the surfaces anodized for 20 min (A)has the lowest water contact angle from 90°to 100°in all pH value ranges.The surface chemical etching for 2 min(CE2)has water contact angle values from 132°to 139°,and exhibits hydrophobic property,so is the surface treated by chemical etching for 2 min and by anodization for 20 min (CE2A).The contact angle is greater than 150°if chemical etching time for the sample is over 3 min (CE3,CE4,CE3A and CE4A).The water contact angle has a little decrease when the pH value of water is above 9.

    Thus we can conclude that in the process of superhydrophobic surfaces preparation, the determining factor is chemical etching.The wettability of the surfaces changes with chemical etching time.The wettability ofthe surfaces becomes more hydrophobic by extending chemical etching time.Watercontactangledoesnotshow anyfurther variations when chemical time is over 3 min.As shown in Fig.1,the morphology of the surfaces is altered by chemical etching.These can be observed by FE-SEM photographs and AFM images in the next section.The surface chemical property is changed by anodization and self-assembly.This will be discussedin the chemical characterization section.

    2.2 Morphology of the surfaces

    FE-SEM photographs and 3-D top AFM images of several samples are shown in Fig.3.(a),(b)and(c)are the FE-SEM photographs for sample CE2,CE3 and CE4,respectively.It can be seen from Fig.3(a)that the surface of the sample by chemical etching for 2 min is not destroyed totally.There exist platforms from the pretreatment in preparation and a few grooves from etching by dilute chlorhydric acid on the surfaces.As a contrast,Fig.3 (b)and (c)are the images of CE3 and CE4.The surfaces are completely destroyed by dilute chlorhydric acid and become rough.There are irregularly shaped particles on thesurfaces.Fig.3(d),(e)and (f)are the 3-D top AFM images of the sample CE2,CE3 and CE4,respectively.From the AFM images we know the RMS(Roughness Measurement of the Surface)of CE2,CE3 and CE4 is292 nm,646 nm and 761 nm,respectively.When chemical etching time is just 2 min,the RMS is only 292 nm.The RMS value of CE3 is 646 nm,which is double of the sample CE2.The RMS value has continued to increase with chemical etching time.There is no difference between CE2(Fig.3(a))and CE2A(Fig.3(g)),and there is also no distinction between CE3 (Fig.3(b))and CE3A(Fig.3(h)).It demonstrates that the self-assembly does not change the morphology of aluminum alloy surfaces when compared the Fig.3(h)and(i).In summary,chemical etching plays an essential role in changing morphologies and RMS.In contrast to chemical etching,anodization does not have any effects on the morphology.When chemical etching time is 3 min,the surface of aluminum alloy is destroyed by dilute chlorhydric acid,and the water contact angle of the surfaces reaches 150°no matter the specimen is treated by anodization or not.

    2.3 Chemical characterization of superhydrophobic

    Fig.4 shows the FTIR spectra of several samples.From the whole spectrum of the sample anodized without self-assembly of FAS molecules(Fig.4(a)),one can see that there is only one peak at 1 138 cm-1due to Al-O-Al stretching modes.Fig.4(b)is the spectrum of the sample self-assembled by FAS molecules on anodization AA2024,there are two peaks at 1 127 cm-1and 1 160 cm-1,assigned to Si-O and Al-O-Si,respectively.There is one more peak at 1 245 cm-1assigned to-CF2and-CF3.These peaks demonstrate thatFAS moleculesareassembled on anodized AA2024.There are no any peaks in the spectrum for the sample self-assembled by FAS molecules on chemical etched AA2024 (CE3)as shown in Fig.4(c).It demonstrates that there are little FAS molecules on chemical etched AA2024 (CE3).There are three peaks for the sample self-assembled by FAS molecules on chemical etched and anodized AA2024 (CE3A)at 1 116 cm-1,1 141 cm-1and 1 241 cm-1,respectively,almost the same as that of the self-assembled FAS molecules on anodized AA2024,which is obvious in Fig.4(b)and(d).The peak at 1 241 cm-1is assigned to-CF2and-CF3,and the peaks at 1 116 cm-1and 1 141 cm-1are assigned to Si-O and Al-O-Si,respectively,the same as that of the self-assembled FAS molecules on anodized AA2024.These peaks demonstrate that FAS molecules are assembled on the sample treated with chemical etching and anodization.

    It can be seen from the FTIR spectra that the FAS molecules are assembled on the specimen treated by anodizing.Anodization film on aluminum alloy is a must for self-assembly. Fadeev et al[11]have demonstrated that the FAS molecules reacted with the hydroxyl group on the solid surface have several modes.Hydroxyl group is the pre-requirement for FAS moleculestoreactwith solid surfaces.Takahiro Ishizaki and his co-workers[5,12]have assembled fluoroalkylsilane molecules on magnesium alloy coated with nano-structured cerium oxide lm.The hydroxyl group on the cerium oxide is bonded with fluoroalkylsilane.Liu et al[13]used n-tetradecanoic acid(CH3(CH2)12COOH)to assemble on the copper sheet treated with 7 mol·L-1HNO3for 30 seconds to activate surfaces.The above examples demonstrate that the hydroxyl group is the most important factor inself-assembly.In our study,the hydroxyl group for assembly is provided by anodization,and there are little FAS molecules assembled on the samples treated by chemical etching only.

    2.4 Corrosion resistant performance of the superhydrophobic surface

    The corrosion resistant performance of the superhydrophobic surfaces was investigated in NaCl aqueous solution from the electrochemical point of view.Fig.5 shows potentiodynamic polarization curves of(a)bare Al,(b)anodization,(c)CE2A and(d)CE3A immersed in 3.5wt%NaCl aqueous solution.As compared to the corrosion current density (jcorr)of the bare aluminum alloy (1.386×10-7A·cm-2),that of the specimen treated by anodization (1.15×10-10A·cm-2)decreases by more than three orders of magnitude.The jcorrvalues of the surfaces CE2A and CE3A are estimated to be 2.89×10-10A·cm-2and 8.509×10-12A·cm-2,respectively.It should be noted that the jcorrvalue of CE3A decreases by five orders of magnitude compared with that of bare aluminum alloy.This supports the conclusion that the superhydrophobic treatment is effective for improving the corrosion resistance ofaluminum alloy.In addition,the corrosion potential (Ecorr)of the bare aluminum,anodization samples,CE2A and CE3A are-637 mV,-498 mV,-420 mV and-577 mV,respectively.As compared to the Ecorrvalues of the bare aluminum specimen,thatofthe superhydrophobic surfaces(CE3A)are shifted to the positive direction.The significant shift of the Ecorrto the positive direction could be attributed to an improvementin the protective properties of the superhydrophobic surfaces on aluminum alloy.We can draw the same conclusion from the jcorrand Ecorrnumerical data that the corrosion resistant performance of aluminum alloy is greatly improved by superhydrophobic surface treatment.

    Fig.6 presents the EIS bode plots of the samples of (a)bare Al,(b)anodization,(c)CE2A and(d)CE3A immersed in 3.5wt%NaCl aqueous solution.Generally,we consider the|Z|values at low frequency as some point of anticorrosion performance.The|Z|values at 10 mHz of(a)bare Al,(b)anodization,(c)CE2A and (d)CE3A immersed in 3.5wt%NaCl aqueous solution are 4.94 kΩ·cm2,3.20 MΩ·cm2,15.4 MΩ·cm2and 33.2 MΩ·cm2,respectively.The|Z|value of superhydrophobic surfaces(CE3A)at 10 mHz decreases by 4 orders of magnitude when compared with that of the bare aluminum.It should be noted that the |Z|value of superhydrophobic surfaces(CE3A)in 10 mHz is just two times that of CE2A,however,it is decuple that of anodization.These results indicate that superhydrophobic treatment tremendously improves anticorrosion performance.As compared to the|Z|value of the specimen treated with anodization,that of the specimen treated with both chemical etching and anodizing (CE2A,CE3A)raises one order of magnitude.It indicates that changing wettability of aluminum alloy surfaces could improve their anticorrosion performance.

    It can be seen from Fig.6 that the impedance spectra of bare aluminum and the specimen treated with anodizing have two capacitive loops at medium and low frequency.For the specimen treated with anodizing,the medium loop shifts to higher frequency,and the low loop shifts to lower one.This is because that the structure of aluminum surfaces has been changed by anodization and self-assembly of FAS molecules.The medium loop can be attributed to the natural oxide (anodization and self-assembly of FAS molecules)films on the electrode surface,while the other loop can be attributed to the double layer capacitance.The impedance spectra of CE2A and CE3A have a similar plot with three capacitive loops at high,medium and low frequency,respectively.The loop at high frequency can be attributed to air layer between solid surfacesand solution created by roughness structure on superhydrophobic surfaces,the medium one can be attributed to anodization and selfassembly,and the last one can be due to double layer.This conclusion is well in agreement with the FE-SEM image results.

    To further determine accurate analysis of the impedance data,the equivalence circuit models are proposed.As shown in Fig.7,the equivalent circuit model(a)is for bare aluminum and anodization(A),and (b)is for CE2A and CE3A immersed in 3.5wt%NaCl aqueous solution.In these circuit models,Rct||Cdlis assigned to the impedance of the interface reaction between the films and substrate,Rc||Ccis assigned to the impedance of the interface

    Cair||Rairis assigned to the air layer from reaction between theelectrolytic solution and films,and trapped by rough structures of the superhydrophobic surfaces.There are no pores on bare aluminum and anodization (A)specimen,so the equivalent circuit model (a)can be used to fitting them.Equivalent circuit model(b)can be used for fitting hydrophobic surfaces.The Rctvalues obtained from the fitting results as a corrosion resistant emblem are shown in Table 1.The Rctvalues of bare aluminum,anodization(A),CE2A and CE3A are 4.44 kΩ·cm2,1.85 MΩ·cm2,12.3 MΩ·cm2and 34.2 MΩ·cm2,respectively,almost with the same order of magnitude as|Z|values of electrochemical impedance spectroscopy at 10 mHz.It indicates that our equivalent circuit models are well suited for the electrochemical impedance spectroscopy.Compared the specimen treated with anodization to the bare aluminum,Rchas increased by 3 ordersofmagnitude,and Rctvalue hasalso increased by 3 orders of magnitude.These results indicate that anodization and self-assembly of FAS molecules improve anticorrosion resistance of aluminum,the same conclusion as the|Z|values for electrochemical impedance spectroscopy at 10 mHz and the potentiodynamic polarization curves.Compared the Rctvalues of CE2A and CE3A with theRctof anodization(A),it can see that the anticorrosion performance is improved by wettability ofthe aluminum alloy surfaces,which is the same as|Z|values for electrochemical impedance spectroscopy at 10 mHz.When compared the Rairvalues of CE3A with that of CE2A,it is also found that the anticorrosion performance is influenced by wettability of aluminum surfaces.

    Table 1 Electrochemical model impedance parameters from Nyquist plots of different samples

    3 Conclusions

    This paper has demonstrated a convenient and effective method to prepare superhydrophobic surfaces by means of chemical etching and anodization.A static water contact angle of more than 154 at a wide pH value range can be obtained when the as-prepared surfaces are self-assembled by FAS molecules.Chemical etching time is the critical factor for the surface morphology and the water contact angle.Anodization is a necessary process for fabrication of superhydrophobic surfaces. Moreover, the superhydrophobic surfaces exhibit excellent anticorrosion performance compared with the anodization samples and the bare samples when just applying immersion in the corrosion environment for 30 min.

    [1]Ma M,Hill R M.Curr.Opin.Colloid In.,2006,11(4):193-202

    [2]Li X,Du X,He J.Langmuir,2010,26(16):13528-13534

    [3]Mishchenko L,Hatton B,Bahadur V,et al.ACS Nano,2010,4(12):7699-7707

    [4]LI Song-Mei(李松梅),ZHOU Si-Zhuo(周思卓),LIU Jian-Hua(劉建華).Acta Phys.-Chim.Sin.(Wuli Huaxue Xuebao),2009,25(12):2581-2589

    [5]Ishizaki T,Masuda Y,Sakamoto M.Langmuir,2011,27(8):4780-4788

    [6]Weng C,Chang C,Peng C,et al.Chem.Mater.,2011,23(8):2075-2083

    [7]Grignard B,Vaillant A,de Coninck J,et al.Langmuir,2011,27(1):335-342

    [8]Lu S,Chen Y,Xu W,et al.Appl.Surf.Sci.,2010,256(20):6072-6075

    [9]Xu W,Liu H,Lu S,et al.Langmuir,2008,24(19):10895-10900

    [10]Kietzig A,Hatzikiriakos S G,Englezos P.Langmuir,2009,25(8):4821-4827

    [11]Fadeev A Y,Mccarthy T J.Langmuir,2000,16(18):7268-7274

    [12]Ishizaki T,Hieda J,Saito N,et al.Electrochim.Acta,2010,55(23):7094-7101

    [13]Liu T,Chen S,Cheng S,et al.Electrochim.Acta,2007,52(28):8003-8007

    Corrosion Resistance of Superhydrophobic Film on Aluminum Alloy Surface Fabricated by Chemical Etching and Anodization

    LI Song-Mei*LI Bin LIU Jian-Hua YU Mei
    (Key Laboratory of Aerospace Materials and Performance,Ministry of Education,School of Materials Science and Engineering,Beihang University,Beijing 100191,China)

    A superhydrophobic surface was fabricated by chemical etching and anodization on AA2024 aluminum alloy.A static water contact angle of more than 150°was achieved at a wide pH value range when the surface chemical etching time was more than 3 min.The SEM and AFM images showed that the surface morphology and roughness were dependent on chemical etching time.The FTIR results indicated that the FAS (fluorinated agent silane)molecules reacted with alundum on the aluminum alloy surface and the surface exhibited excellent adhesion performance on the anodization specimen.The corrosion resistance of the superhydrophobic surfaces was estimated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)measurements in 3.5wt%NaCl aqueous solution.The electrochemical measurements and appropriate equivalent circuit models revealed that the anticorrosion performance was greatly improved by the superhydrophobic surface.

    superhydrophobic;chemical etching;anodization;anticorrosion

    O647.5;O614.3+1

    A

    1001-4861(2012)08-1755-08

    2011-11-17。收修改稿日期:2012-03-23。航空科學基金(No.20110251003)資助項目。

    *通訊聯(lián)系人。E-mail:songmei_li@buaa.edu.cn

    猜你喜歡
    劉建華北京航空航天大學空天
    《北京航空航天大學學報》征稿簡則
    美國空天防御作戰(zhàn)指揮體系現(xiàn)狀及啟示
    《北京航空航天大學學報》征稿簡則
    俄羅斯空天防御作戰(zhàn)指揮體系現(xiàn)狀及啟示
    《北京航空航天大學學報》征稿簡則
    《北京航空航天大學學報》征稿簡則
    空天獵人 呼嘯來戰(zhàn)
    搟面條
    掉鞭炮
    手影
    制服丝袜香蕉在线| 免费女性裸体啪啪无遮挡网站| 国产免费现黄频在线看| 国产黄频视频在线观看| 成人国语在线视频| 精品一区二区三区av网在线观看 | 国产高清国产精品国产三级| 亚洲成人手机| 欧美国产精品va在线观看不卡| 黄网站色视频无遮挡免费观看| 亚洲精品国产av蜜桃| 97在线人人人人妻| 日韩电影二区| 国产在线免费精品| 国产女主播在线喷水免费视频网站| 18在线观看网站| 99久久精品国产亚洲精品| 美女扒开内裤让男人捅视频| 91老司机精品| 99九九在线精品视频| 亚洲精品成人av观看孕妇| 亚洲国产成人一精品久久久| 两个人免费观看高清视频| 看十八女毛片水多多多| 满18在线观看网站| 久久久精品国产亚洲av高清涩受| 亚洲精品乱久久久久久| www.熟女人妻精品国产| 亚洲国产欧美网| 亚洲熟女毛片儿| 国产精品麻豆人妻色哟哟久久| 久久av网站| 国产成人精品无人区| 69精品国产乱码久久久| 欧美少妇被猛烈插入视频| 日日摸夜夜添夜夜爱| 最近2019中文字幕mv第一页| 18禁观看日本| 国产淫语在线视频| 亚洲人成77777在线视频| 久久久久久久久久久久大奶| 操美女的视频在线观看| 国产精品女同一区二区软件| 久久国产亚洲av麻豆专区| 亚洲自偷自拍图片 自拍| 久久久久国产精品人妻一区二区| 精品少妇一区二区三区视频日本电影 | 狂野欧美激情性xxxx| av又黄又爽大尺度在线免费看| 看免费av毛片| 免费日韩欧美在线观看| 丝袜脚勾引网站| 少妇 在线观看| 亚洲国产欧美日韩在线播放| 国产亚洲精品第一综合不卡| 捣出白浆h1v1| 日韩大码丰满熟妇| 久久久久国产一级毛片高清牌| 综合色丁香网| 男人爽女人下面视频在线观看| 自线自在国产av| 在线观看免费视频网站a站| 亚洲av日韩精品久久久久久密 | 欧美97在线视频| 精品人妻熟女毛片av久久网站| 美女大奶头黄色视频| 日韩不卡一区二区三区视频在线| 久久久精品94久久精品| 天天躁日日躁夜夜躁夜夜| 久久久久久久精品精品| 大片电影免费在线观看免费| 日韩中文字幕视频在线看片| 七月丁香在线播放| av免费观看日本| 国产精品偷伦视频观看了| 青草久久国产| 汤姆久久久久久久影院中文字幕| 日韩av不卡免费在线播放| 母亲3免费完整高清在线观看| 精品免费久久久久久久清纯 | 激情视频va一区二区三区| 啦啦啦啦在线视频资源| 亚洲成人一二三区av| 亚洲精品在线美女| 热re99久久精品国产66热6| 亚洲精品在线美女| 丝袜在线中文字幕| 老司机靠b影院| 久久久久久人人人人人| 在线观看www视频免费| 一区二区三区激情视频| 黄网站色视频无遮挡免费观看| 最近的中文字幕免费完整| 少妇人妻精品综合一区二区| 国产精品 欧美亚洲| 少妇人妻久久综合中文| 亚洲欧洲国产日韩| 免费不卡黄色视频| 极品人妻少妇av视频| 国产一区二区在线观看av| 菩萨蛮人人尽说江南好唐韦庄| 七月丁香在线播放| 777米奇影视久久| 国产精品欧美亚洲77777| 久久久久精品国产欧美久久久 | 日本欧美国产在线视频| 2021少妇久久久久久久久久久| 毛片一级片免费看久久久久| 99九九在线精品视频| 人妻人人澡人人爽人人| 国产精品嫩草影院av在线观看| 老司机影院成人| 国产日韩欧美视频二区| 天天影视国产精品| 99精国产麻豆久久婷婷| 日本一区二区免费在线视频| 中文字幕色久视频| 久久 成人 亚洲| a级毛片黄视频| 999久久久国产精品视频| 国产日韩欧美亚洲二区| 久久毛片免费看一区二区三区| 老汉色av国产亚洲站长工具| 一级毛片黄色毛片免费观看视频| 国产成人精品无人区| 亚洲国产av影院在线观看| 色综合欧美亚洲国产小说| 久久影院123| 国产免费视频播放在线视频| 最近手机中文字幕大全| 国产黄色视频一区二区在线观看| 免费看av在线观看网站| 日韩制服丝袜自拍偷拍| 欧美精品高潮呻吟av久久| 另类亚洲欧美激情| 黄色视频不卡| 一级毛片黄色毛片免费观看视频| 久久免费观看电影| 一区在线观看完整版| 伦理电影免费视频| 看免费av毛片| 青春草国产在线视频| 国产成人系列免费观看| 性高湖久久久久久久久免费观看| 亚洲激情五月婷婷啪啪| 自拍欧美九色日韩亚洲蝌蚪91| 欧美中文综合在线视频| 久久精品久久精品一区二区三区| 日本欧美国产在线视频| 丝袜喷水一区| 中文字幕人妻丝袜制服| e午夜精品久久久久久久| 国语对白做爰xxxⅹ性视频网站| 欧美亚洲日本最大视频资源| 亚洲,欧美,日韩| 亚洲,欧美精品.| 大香蕉久久成人网| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 青春草视频在线免费观看| 国产男女超爽视频在线观看| 国产成人91sexporn| 9色porny在线观看| 中文乱码字字幕精品一区二区三区| 日本91视频免费播放| 大话2 男鬼变身卡| 精品午夜福利在线看| 无限看片的www在线观看| 老司机靠b影院| 午夜免费男女啪啪视频观看| 亚洲av欧美aⅴ国产| 亚洲国产av影院在线观看| 黄色毛片三级朝国网站| 天堂俺去俺来也www色官网| 美女中出高潮动态图| 欧美激情高清一区二区三区 | 国产精品一区二区精品视频观看| 日韩视频在线欧美| 国产女主播在线喷水免费视频网站| 啦啦啦在线观看免费高清www| 一级毛片我不卡| 亚洲欧美精品综合一区二区三区| 午夜影院在线不卡| 国产伦人伦偷精品视频| 日韩伦理黄色片| 亚洲情色 制服丝袜| 水蜜桃什么品种好| 纯流量卡能插随身wifi吗| 亚洲精品一二三| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 青青草视频在线视频观看| 成年人午夜在线观看视频| 丝袜在线中文字幕| 国产成人午夜福利电影在线观看| 欧美精品一区二区大全| 十分钟在线观看高清视频www| 两个人看的免费小视频| 一区二区三区乱码不卡18| 亚洲精品成人av观看孕妇| 国产精品久久久av美女十八| 日韩av不卡免费在线播放| 国产1区2区3区精品| 精品一区二区三卡| av片东京热男人的天堂| 国产精品久久久久久精品古装| 狠狠婷婷综合久久久久久88av| 精品一区在线观看国产| 久久久国产欧美日韩av| 99精品久久久久人妻精品| 国产99久久九九免费精品| 国产色婷婷99| 亚洲色图 男人天堂 中文字幕| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 黑人欧美特级aaaaaa片| 人妻 亚洲 视频| 日韩伦理黄色片| 国产黄色视频一区二区在线观看| 精品国产一区二区三区久久久樱花| 搡老乐熟女国产| 亚洲专区中文字幕在线 | 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 精品视频人人做人人爽| 精品久久久久久电影网| 亚洲精品第二区| 国产精品av久久久久免费| 一本色道久久久久久精品综合| 亚洲av综合色区一区| 亚洲第一区二区三区不卡| 欧美日韩视频高清一区二区三区二| av在线app专区| 十八禁人妻一区二区| 亚洲国产最新在线播放| 大香蕉久久网| 亚洲情色 制服丝袜| 国产又爽黄色视频| 国产97色在线日韩免费| 日韩制服丝袜自拍偷拍| 欧美人与性动交α欧美精品济南到| 色婷婷久久久亚洲欧美| 国产精品.久久久| 伦理电影免费视频| 精品一品国产午夜福利视频| 操美女的视频在线观看| 久久人人97超碰香蕉20202| 日韩人妻精品一区2区三区| 午夜91福利影院| 欧美黄色片欧美黄色片| 伦理电影免费视频| 在线观看免费视频网站a站| 亚洲国产av新网站| 丝袜在线中文字幕| 成人手机av| 2021少妇久久久久久久久久久| 九草在线视频观看| 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| 精品一区二区三区四区五区乱码 | 亚洲av在线观看美女高潮| 一区二区三区精品91| 亚洲一区中文字幕在线| 欧美xxⅹ黑人| 女人爽到高潮嗷嗷叫在线视频| 在线精品无人区一区二区三| 久久久精品94久久精品| h视频一区二区三区| 99久久精品国产亚洲精品| 蜜桃国产av成人99| 免费高清在线观看视频在线观看| 国产片特级美女逼逼视频| 午夜福利在线免费观看网站| 亚洲色图综合在线观看| 亚洲国产精品999| 精品午夜福利在线看| 亚洲av成人不卡在线观看播放网 | 母亲3免费完整高清在线观看| 99九九在线精品视频| 国产在线视频一区二区| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看| 色吧在线观看| 亚洲av在线观看美女高潮| 欧美日韩视频精品一区| 亚洲精品国产区一区二| 黄片无遮挡物在线观看| 国产乱来视频区| 大话2 男鬼变身卡| 国产精品熟女久久久久浪| 国产成人精品在线电影| 高清不卡的av网站| 黄色一级大片看看| 高清不卡的av网站| 啦啦啦 在线观看视频| 激情五月婷婷亚洲| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看av| 悠悠久久av| 汤姆久久久久久久影院中文字幕| 一级a爱视频在线免费观看| 亚洲欧美精品自产自拍| 欧美 亚洲 国产 日韩一| 午夜福利在线免费观看网站| av卡一久久| 精品人妻熟女毛片av久久网站| 欧美精品av麻豆av| 久久久欧美国产精品| av又黄又爽大尺度在线免费看| 亚洲国产精品国产精品| 99久久精品国产亚洲精品| 亚洲专区中文字幕在线 | 亚洲欧美色中文字幕在线| 极品人妻少妇av视频| 纯流量卡能插随身wifi吗| 国产精品成人在线| 一区二区三区激情视频| 青草久久国产| 亚洲精品中文字幕在线视频| 超色免费av| 国产 精品1| 国产免费福利视频在线观看| 日本欧美国产在线视频| 满18在线观看网站| 丝袜脚勾引网站| 久久99一区二区三区| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 一级毛片我不卡| 国产精品一区二区在线观看99| 啦啦啦中文免费视频观看日本| 男女床上黄色一级片免费看| 人人妻人人添人人爽欧美一区卜| 深夜精品福利| 看免费av毛片| av有码第一页| 国产免费一区二区三区四区乱码| 久久久国产精品麻豆| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 丰满少妇做爰视频| 免费观看av网站的网址| 最近手机中文字幕大全| 久久精品国产亚洲av高清一级| 亚洲自偷自拍图片 自拍| 香蕉丝袜av| av电影中文网址| 精品国产一区二区三区久久久樱花| 午夜日韩欧美国产| 欧美日韩亚洲综合一区二区三区_| 久久韩国三级中文字幕| 天天添夜夜摸| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区黑人| 成年人午夜在线观看视频| 亚洲七黄色美女视频| 一本大道久久a久久精品| 国产有黄有色有爽视频| 天天躁日日躁夜夜躁夜夜| 天天添夜夜摸| 超碰成人久久| 国产免费福利视频在线观看| 丝袜脚勾引网站| 伊人亚洲综合成人网| 曰老女人黄片| 麻豆av在线久日| 午夜激情av网站| 日韩人妻精品一区2区三区| 国产精品99久久99久久久不卡 | 亚洲精品国产区一区二| 最黄视频免费看| 午夜精品国产一区二区电影| 精品久久久久久电影网| 欧美av亚洲av综合av国产av | 国产伦理片在线播放av一区| 综合色丁香网| 成人免费观看视频高清| 亚洲欧美一区二区三区久久| 中文字幕人妻丝袜制服| av女优亚洲男人天堂| 纵有疾风起免费观看全集完整版| 九色亚洲精品在线播放| 又大又爽又粗| 黄色 视频免费看| 中文字幕人妻熟女乱码| 韩国精品一区二区三区| 色吧在线观看| 男女无遮挡免费网站观看| 免费久久久久久久精品成人欧美视频| 午夜免费男女啪啪视频观看| 国产成人一区二区在线| 啦啦啦中文免费视频观看日本| 国产在线免费精品| 人妻人人澡人人爽人人| 人成视频在线观看免费观看| 一边摸一边做爽爽视频免费| 亚洲天堂av无毛| 中文字幕亚洲精品专区| 国产成人91sexporn| 丝袜喷水一区| 多毛熟女@视频| 国产精品久久久人人做人人爽| svipshipincom国产片| kizo精华| 亚洲精品久久午夜乱码| 免费高清在线观看日韩| 老司机影院成人| 久久久久久久久久久久大奶| 激情视频va一区二区三区| 免费观看a级毛片全部| 午夜精品国产一区二区电影| 日韩大片免费观看网站| 一区二区日韩欧美中文字幕| 久久综合国产亚洲精品| 岛国毛片在线播放| 日韩欧美精品免费久久| 满18在线观看网站| 国产乱来视频区| 波多野结衣一区麻豆| 男人舔女人的私密视频| 各种免费的搞黄视频| 日韩视频在线欧美| 久久影院123| 老汉色av国产亚洲站长工具| 午夜91福利影院| 亚洲欧美一区二区三区黑人| 99热全是精品| 又大又黄又爽视频免费| 在线观看一区二区三区激情| 多毛熟女@视频| 亚洲男人天堂网一区| 最近中文字幕高清免费大全6| 久久精品人人爽人人爽视色| 女性被躁到高潮视频| 天天躁夜夜躁狠狠久久av| 丰满饥渴人妻一区二区三| 国产 一区精品| 男人舔女人的私密视频| 精品午夜福利在线看| 国产精品国产av在线观看| 大片电影免费在线观看免费| 国产日韩欧美在线精品| 亚洲免费av在线视频| 亚洲美女黄色视频免费看| 美女主播在线视频| 在线免费观看不下载黄p国产| 亚洲第一区二区三区不卡| av不卡在线播放| 中文字幕人妻丝袜制服| 免费在线观看视频国产中文字幕亚洲 | 成人三级做爰电影| 天天影视国产精品| 熟女少妇亚洲综合色aaa.| 天天影视国产精品| 久久久久视频综合| 无遮挡黄片免费观看| 成人国语在线视频| 亚洲精品在线美女| 天天添夜夜摸| 精品少妇内射三级| 亚洲精品一二三| 十分钟在线观看高清视频www| 亚洲美女搞黄在线观看| 精品国产乱码久久久久久小说| 丝袜在线中文字幕| av福利片在线| 在线亚洲精品国产二区图片欧美| 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 日韩大码丰满熟妇| 侵犯人妻中文字幕一二三四区| 伊人亚洲综合成人网| 欧美精品亚洲一区二区| 美女大奶头黄色视频| 国产精品免费视频内射| 日韩一本色道免费dvd| 九色亚洲精品在线播放| 精品福利永久在线观看| 9热在线视频观看99| 免费观看av网站的网址| 男男h啪啪无遮挡| 捣出白浆h1v1| 天美传媒精品一区二区| 欧美激情 高清一区二区三区| 激情五月婷婷亚洲| 久久精品aⅴ一区二区三区四区| av又黄又爽大尺度在线免费看| 精品亚洲成国产av| 亚洲av男天堂| 日日啪夜夜爽| 一区二区av电影网| 韩国精品一区二区三区| 国产欧美日韩综合在线一区二区| 老司机靠b影院| 69精品国产乱码久久久| 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 亚洲精品国产区一区二| 亚洲熟女精品中文字幕| 老司机靠b影院| 观看av在线不卡| 中文字幕制服av| 国产一区二区三区av在线| 亚洲av在线观看美女高潮| √禁漫天堂资源中文www| 久久久久精品人妻al黑| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久综合国产亚洲精品| 狠狠婷婷综合久久久久久88av| 国产乱来视频区| 精品一区二区免费观看| 午夜福利一区二区在线看| 卡戴珊不雅视频在线播放| 精品福利永久在线观看| 18禁观看日本| √禁漫天堂资源中文www| 国产一区二区激情短视频 | 一二三四中文在线观看免费高清| 纵有疾风起免费观看全集完整版| 亚洲国产成人一精品久久久| 日韩av免费高清视频| 久久久久精品人妻al黑| 国产老妇伦熟女老妇高清| 哪个播放器可以免费观看大片| 天天影视国产精品| 久久精品久久精品一区二区三区| 国产福利在线免费观看视频| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美在线精品| 精品少妇久久久久久888优播| 亚洲欧美精品自产自拍| 欧美 日韩 精品 国产| av网站在线播放免费| 黄色视频不卡| 九色亚洲精品在线播放| 亚洲国产av影院在线观看| 久久久欧美国产精品| 日韩欧美精品免费久久| 街头女战士在线观看网站| 亚洲欧美色中文字幕在线| 色视频在线一区二区三区| 欧美xxⅹ黑人| 中文字幕亚洲精品专区| 国产精品 欧美亚洲| 国产成人精品在线电影| 国产日韩欧美视频二区| 国产精品亚洲av一区麻豆 | 亚洲综合精品二区| 如日韩欧美国产精品一区二区三区| 午夜福利视频在线观看免费| 日韩成人av中文字幕在线观看| 久久99一区二区三区| 三上悠亚av全集在线观看| 国产精品欧美亚洲77777| 看十八女毛片水多多多| 国产亚洲av高清不卡| 日韩大片免费观看网站| 十八禁网站网址无遮挡| 下体分泌物呈黄色| 国产一区二区在线观看av| 欧美老熟妇乱子伦牲交| 老司机深夜福利视频在线观看 | 婷婷色麻豆天堂久久| 精品亚洲成国产av| 亚洲精品久久午夜乱码| 母亲3免费完整高清在线观看| 国产深夜福利视频在线观看| 久久影院123| 欧美xxⅹ黑人| 久久久久久久国产电影| 国产精品 欧美亚洲| 精品国产一区二区三区久久久樱花| 激情视频va一区二区三区| 亚洲av福利一区| 成人免费观看视频高清| 亚洲欧美激情在线| 亚洲一级一片aⅴ在线观看| 十八禁网站网址无遮挡| 九色亚洲精品在线播放| 最新在线观看一区二区三区 | 免费观看人在逋| 亚洲精品国产区一区二| 国产成人啪精品午夜网站| 国产av精品麻豆| 国产精品久久久久久精品古装| 美女扒开内裤让男人捅视频| 老司机影院毛片| 欧美另类一区| 波野结衣二区三区在线| 亚洲精品在线美女| 亚洲国产中文字幕在线视频| 最近中文字幕2019免费版| 婷婷成人精品国产| 美女扒开内裤让男人捅视频| 天天添夜夜摸| 国产精品久久久久久久久免| 一级毛片电影观看| 免费女性裸体啪啪无遮挡网站| 久久久久久久国产电影| 中国国产av一级| 制服丝袜香蕉在线| 亚洲av成人不卡在线观看播放网 | 丰满乱子伦码专区| 一级毛片黄色毛片免费观看视频| 国产精品蜜桃在线观看| 国产视频首页在线观看| 欧美xxⅹ黑人| 老熟女久久久| 精品少妇久久久久久888优播| 亚洲激情五月婷婷啪啪| 午夜影院在线不卡|