• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋁合金表面用化學刻蝕和陽極氧化法制備的超疏水膜層的耐蝕性能

    2012-09-15 11:45:28李松梅李劉建華
    無機化學學報 2012年8期
    關鍵詞:劉建華北京航空航天大學空天

    李松梅李 彬 劉建華 于 美

    (北京航空航天大學材料科學與工程學院,空天材料與服役教育部重點實驗室,北京 100191)

    鋁合金表面用化學刻蝕和陽極氧化法制備的超疏水膜層的耐蝕性能

    李松梅*李 彬 劉建華 于 美

    (北京航空航天大學材料科學與工程學院,空天材料與服役教育部重點實驗室,北京 100191)

    通過化學刻蝕和陽極氧化在AA2024鋁合金表面制備超疏水表面。當化學刻蝕時間超過3 min時,表面在很寬pH值范圍內(nèi)顯示出水靜態(tài)接觸角大于150°。SEM和AFM照片表明化學刻蝕時間決定了試樣表面形貌和粗糙度。FTIR用來研究氟硅烷(G502)與AA2024表面的結合。結果說明FAS(氟硅烷)分子與鋁合金表面的三氧化二鋁發(fā)生反應,并在陽極氧化膜層表面展示出優(yōu)異的結合性能。超疏水表面的耐腐蝕性能通過在質量分數(shù)為3.5%的NaCl溶液中進行動電位極化和交流阻抗(EIS)測試。電化學測試結果和等效電路模型顯示出超疏水表面顯著改善抗腐蝕性能。

    超疏水;化學刻蝕;陽極氧化;耐腐蝕

    Superhydrophobic surface with a water contact angle of more than 150°has drawn a great deal attention because of its potential application in the industrial area and biological process[1],such as selfclearing material[2],anti-icing coating[3],corrosion-free coating[4-5]and so on.In nature,there are many living things with superhydrophobic surfaces,such as lotus leaf,butterfly wing,etc.From the lotus leaf,we know that the superhydrophobicity of a material depends on not only its surface energy but also its surface morphology[1].In the past decade,many methods were developed to fabricate superhydrophobic surfaces andreferences were in the field of nano-printing[6],electrospun[7], sol-gel[8]and so on. Currently,fabrication of superhydrophobic surfaces on metal has attracted considerable research attention.For example,Wu and co-workers[9]obtained superhydrophobic surface assembly of FAS (fluorinated agent silane)molecules on rough morphology created by chemical etching.Femtosecond Laser ablation was used by Kietzig[10]et al. to create roughness on steel.Wettability of the roughness steel transformed from hydrophilicity to hydrophobicity by laying the specimen in the natural environment,and reached superhydrophobicity when the lay time was over 50 days.

    Aluminum and its alloy have excellent physical and mechanical properties such as low density,good electromagnetism and high strength/weight ratio.Thus,they are expected to find applications in various industries such as aerospace and automobile.However,the poor corrosion resistance limits their application.Most of the corrosion occurs when the metallic matrix contacts with water and oxygen or other corrosion environment.One of the most effective corrosion protections for aluminum alloy is to treat the metal or alloy with chromium.However,chromium is toxic and harmful to the environment.Superhydrophobic surface treatment is one of the efficient strategies to protect aluminum alloy from corrosion because the surface is water repellent and separates the metallic matrix from water and corrosion environment.In ourprevious study[4],superhydrophobic surface was fabricated on aluminum alloy by anodization and self-assembly,butthe method was time consuming and demanded more energy.

    Here we report the preparation of superhydrophobic surface by chemical etching,anodization and self-assembly of FAS molecules.The static water contact angle was measured in wide pH value range.FTIR was employed to investigate the AA2024 surface combination of the fluorinated agent silane (FAS)molecules.Corrosion resistance of the superhydrophobic surface was estimated by electrochemical measurements in 3.5wt% NaCl aqueous solution.

    1 Experimental

    1.1 Preparation of superhydrophobic surface on Aluminium alloy AA2024

    Aluminum alloy AA2024(composition:4.5%Cu,1.5%Mg,0.5%Fe,0.6%Mn,0.5%Si,0.5%others and Al is the rest)with a size of 60mm×40mm×3mm was used as the substrate.The substrates were ground by emery paper (No.100,500,1000,grit sizes were 165,25,13 μm,respectively)gradually,and then ultrasonically cleaned in acetone and distilled water for 10 min,respectively.Diluted hydrochloric acid(VHCl∶VH2O=1∶1)was used as chemical etching solution at 15 ℃ .Chemical etching time was 2~4 min.Anodization process was conducted in the solution with 45 g·L-1sulfuric acid and 10 g·L-1boracic acid.The anodizing parameters were 0.6 A·cm-2,25 ℃,20 min.After anodization,the samples were immersed in 100 mL FAS solution containing 0.6 g FAS(G502,C13F12H18SiO3),40 mL methanol and 60 mL H2O(prepared by stirring for 4 h at 30℃)for 2 h at 40℃.

    1.2 Characterization of surfaces

    Water contact angles for as-prepared surfaces were estimated with opticscontactangle meter(Dataphysics OCA20)based on a sessile drop measuring method.The volume of the test water droplet was 6 μL.The contact angle of samples was obtained by averaging fivedifferentpoints.The surface morphologies of the prepared samples were estimated by scanning electron microscope(FE-SEM,Apllo 300,Japan)and atomic force microscope(AFM,Veeco,MutiModeNanoscope Ⅲ a,USA).SEM accelerating voltage was 15 kV.The AFM test was Tapping Mode and test area was 15×15μm.Chemical bonds were characterized by Fourier transform infrared spectroscopy(FTIR;NEXUS-470,Nicolet).

    1.3 Electrochemical measurements

    Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)measurements were used to estimate the corrosion resistant of superhydrophobic surfaces.Electrochemical workstation (Princeton Applied Research 2273)was employed to test electrochemical measurements based on three electrode system. All electrochemical measurements were performed in 3.5wt% NaCl aqueous solutions at room temperature.Before electrochemical measurements,the specimens were immersed in the aqueous solution for 10 min to obtain a stable surface.The prepared surface was used as the working electrode with test area of 3.14 cm2.A saturated calomel electrode was used as the reference electrode and a platinum sheet was used as the counter electrode.Potentiodynamic polarization curves were subsequently measured with respect to the open circuit potential(OCP)at a scanning rate of 2 mV·s-1from -0.5 V to 1 V.Electrochemical impedance spectroscopic measurements were conducted in the frequency ranges between 10 mHz and 100 kHz with a sinusoidal perturbation of 10 mV.The program Zsimpwin 3.2 was used to obtain fitting parameters based on equivalent circuit.

    2 Results and discussion

    2.1 Fabrication of Superhydrophobic surfaces

    Schemes for the sample fabrication are shown in Fig.1.All of the samples were assembled by FAS molecules.The sample only treated by chemical etching for 2,3 and 4 min is denoted as CE2,CE3,CE4,respectively,and the sample only anodized for 20 min is denoted as A,and the samples treated by chemical etching for 2,3 and 4 min and anodization for 20 min is named as CE2A,CE3A and CE4A,respectively.Fig.2 shows the water contact angle measurement on samples obtained by different treatments under wide pH value range.It can be seen clearly that the surfaces anodized for 20 min (A)has the lowest water contact angle from 90°to 100°in all pH value ranges.The surface chemical etching for 2 min(CE2)has water contact angle values from 132°to 139°,and exhibits hydrophobic property,so is the surface treated by chemical etching for 2 min and by anodization for 20 min (CE2A).The contact angle is greater than 150°if chemical etching time for the sample is over 3 min (CE3,CE4,CE3A and CE4A).The water contact angle has a little decrease when the pH value of water is above 9.

    Thus we can conclude that in the process of superhydrophobic surfaces preparation, the determining factor is chemical etching.The wettability of the surfaces changes with chemical etching time.The wettability ofthe surfaces becomes more hydrophobic by extending chemical etching time.Watercontactangledoesnotshow anyfurther variations when chemical time is over 3 min.As shown in Fig.1,the morphology of the surfaces is altered by chemical etching.These can be observed by FE-SEM photographs and AFM images in the next section.The surface chemical property is changed by anodization and self-assembly.This will be discussedin the chemical characterization section.

    2.2 Morphology of the surfaces

    FE-SEM photographs and 3-D top AFM images of several samples are shown in Fig.3.(a),(b)and(c)are the FE-SEM photographs for sample CE2,CE3 and CE4,respectively.It can be seen from Fig.3(a)that the surface of the sample by chemical etching for 2 min is not destroyed totally.There exist platforms from the pretreatment in preparation and a few grooves from etching by dilute chlorhydric acid on the surfaces.As a contrast,Fig.3 (b)and (c)are the images of CE3 and CE4.The surfaces are completely destroyed by dilute chlorhydric acid and become rough.There are irregularly shaped particles on thesurfaces.Fig.3(d),(e)and (f)are the 3-D top AFM images of the sample CE2,CE3 and CE4,respectively.From the AFM images we know the RMS(Roughness Measurement of the Surface)of CE2,CE3 and CE4 is292 nm,646 nm and 761 nm,respectively.When chemical etching time is just 2 min,the RMS is only 292 nm.The RMS value of CE3 is 646 nm,which is double of the sample CE2.The RMS value has continued to increase with chemical etching time.There is no difference between CE2(Fig.3(a))and CE2A(Fig.3(g)),and there is also no distinction between CE3 (Fig.3(b))and CE3A(Fig.3(h)).It demonstrates that the self-assembly does not change the morphology of aluminum alloy surfaces when compared the Fig.3(h)and(i).In summary,chemical etching plays an essential role in changing morphologies and RMS.In contrast to chemical etching,anodization does not have any effects on the morphology.When chemical etching time is 3 min,the surface of aluminum alloy is destroyed by dilute chlorhydric acid,and the water contact angle of the surfaces reaches 150°no matter the specimen is treated by anodization or not.

    2.3 Chemical characterization of superhydrophobic

    Fig.4 shows the FTIR spectra of several samples.From the whole spectrum of the sample anodized without self-assembly of FAS molecules(Fig.4(a)),one can see that there is only one peak at 1 138 cm-1due to Al-O-Al stretching modes.Fig.4(b)is the spectrum of the sample self-assembled by FAS molecules on anodization AA2024,there are two peaks at 1 127 cm-1and 1 160 cm-1,assigned to Si-O and Al-O-Si,respectively.There is one more peak at 1 245 cm-1assigned to-CF2and-CF3.These peaks demonstrate thatFAS moleculesareassembled on anodized AA2024.There are no any peaks in the spectrum for the sample self-assembled by FAS molecules on chemical etched AA2024 (CE3)as shown in Fig.4(c).It demonstrates that there are little FAS molecules on chemical etched AA2024 (CE3).There are three peaks for the sample self-assembled by FAS molecules on chemical etched and anodized AA2024 (CE3A)at 1 116 cm-1,1 141 cm-1and 1 241 cm-1,respectively,almost the same as that of the self-assembled FAS molecules on anodized AA2024,which is obvious in Fig.4(b)and(d).The peak at 1 241 cm-1is assigned to-CF2and-CF3,and the peaks at 1 116 cm-1and 1 141 cm-1are assigned to Si-O and Al-O-Si,respectively,the same as that of the self-assembled FAS molecules on anodized AA2024.These peaks demonstrate that FAS molecules are assembled on the sample treated with chemical etching and anodization.

    It can be seen from the FTIR spectra that the FAS molecules are assembled on the specimen treated by anodizing.Anodization film on aluminum alloy is a must for self-assembly. Fadeev et al[11]have demonstrated that the FAS molecules reacted with the hydroxyl group on the solid surface have several modes.Hydroxyl group is the pre-requirement for FAS moleculestoreactwith solid surfaces.Takahiro Ishizaki and his co-workers[5,12]have assembled fluoroalkylsilane molecules on magnesium alloy coated with nano-structured cerium oxide lm.The hydroxyl group on the cerium oxide is bonded with fluoroalkylsilane.Liu et al[13]used n-tetradecanoic acid(CH3(CH2)12COOH)to assemble on the copper sheet treated with 7 mol·L-1HNO3for 30 seconds to activate surfaces.The above examples demonstrate that the hydroxyl group is the most important factor inself-assembly.In our study,the hydroxyl group for assembly is provided by anodization,and there are little FAS molecules assembled on the samples treated by chemical etching only.

    2.4 Corrosion resistant performance of the superhydrophobic surface

    The corrosion resistant performance of the superhydrophobic surfaces was investigated in NaCl aqueous solution from the electrochemical point of view.Fig.5 shows potentiodynamic polarization curves of(a)bare Al,(b)anodization,(c)CE2A and(d)CE3A immersed in 3.5wt%NaCl aqueous solution.As compared to the corrosion current density (jcorr)of the bare aluminum alloy (1.386×10-7A·cm-2),that of the specimen treated by anodization (1.15×10-10A·cm-2)decreases by more than three orders of magnitude.The jcorrvalues of the surfaces CE2A and CE3A are estimated to be 2.89×10-10A·cm-2and 8.509×10-12A·cm-2,respectively.It should be noted that the jcorrvalue of CE3A decreases by five orders of magnitude compared with that of bare aluminum alloy.This supports the conclusion that the superhydrophobic treatment is effective for improving the corrosion resistance ofaluminum alloy.In addition,the corrosion potential (Ecorr)of the bare aluminum,anodization samples,CE2A and CE3A are-637 mV,-498 mV,-420 mV and-577 mV,respectively.As compared to the Ecorrvalues of the bare aluminum specimen,thatofthe superhydrophobic surfaces(CE3A)are shifted to the positive direction.The significant shift of the Ecorrto the positive direction could be attributed to an improvementin the protective properties of the superhydrophobic surfaces on aluminum alloy.We can draw the same conclusion from the jcorrand Ecorrnumerical data that the corrosion resistant performance of aluminum alloy is greatly improved by superhydrophobic surface treatment.

    Fig.6 presents the EIS bode plots of the samples of (a)bare Al,(b)anodization,(c)CE2A and(d)CE3A immersed in 3.5wt%NaCl aqueous solution.Generally,we consider the|Z|values at low frequency as some point of anticorrosion performance.The|Z|values at 10 mHz of(a)bare Al,(b)anodization,(c)CE2A and (d)CE3A immersed in 3.5wt%NaCl aqueous solution are 4.94 kΩ·cm2,3.20 MΩ·cm2,15.4 MΩ·cm2and 33.2 MΩ·cm2,respectively.The|Z|value of superhydrophobic surfaces(CE3A)at 10 mHz decreases by 4 orders of magnitude when compared with that of the bare aluminum.It should be noted that the |Z|value of superhydrophobic surfaces(CE3A)in 10 mHz is just two times that of CE2A,however,it is decuple that of anodization.These results indicate that superhydrophobic treatment tremendously improves anticorrosion performance.As compared to the|Z|value of the specimen treated with anodization,that of the specimen treated with both chemical etching and anodizing (CE2A,CE3A)raises one order of magnitude.It indicates that changing wettability of aluminum alloy surfaces could improve their anticorrosion performance.

    It can be seen from Fig.6 that the impedance spectra of bare aluminum and the specimen treated with anodizing have two capacitive loops at medium and low frequency.For the specimen treated with anodizing,the medium loop shifts to higher frequency,and the low loop shifts to lower one.This is because that the structure of aluminum surfaces has been changed by anodization and self-assembly of FAS molecules.The medium loop can be attributed to the natural oxide (anodization and self-assembly of FAS molecules)films on the electrode surface,while the other loop can be attributed to the double layer capacitance.The impedance spectra of CE2A and CE3A have a similar plot with three capacitive loops at high,medium and low frequency,respectively.The loop at high frequency can be attributed to air layer between solid surfacesand solution created by roughness structure on superhydrophobic surfaces,the medium one can be attributed to anodization and selfassembly,and the last one can be due to double layer.This conclusion is well in agreement with the FE-SEM image results.

    To further determine accurate analysis of the impedance data,the equivalence circuit models are proposed.As shown in Fig.7,the equivalent circuit model(a)is for bare aluminum and anodization(A),and (b)is for CE2A and CE3A immersed in 3.5wt%NaCl aqueous solution.In these circuit models,Rct||Cdlis assigned to the impedance of the interface reaction between the films and substrate,Rc||Ccis assigned to the impedance of the interface

    Cair||Rairis assigned to the air layer from reaction between theelectrolytic solution and films,and trapped by rough structures of the superhydrophobic surfaces.There are no pores on bare aluminum and anodization (A)specimen,so the equivalent circuit model (a)can be used to fitting them.Equivalent circuit model(b)can be used for fitting hydrophobic surfaces.The Rctvalues obtained from the fitting results as a corrosion resistant emblem are shown in Table 1.The Rctvalues of bare aluminum,anodization(A),CE2A and CE3A are 4.44 kΩ·cm2,1.85 MΩ·cm2,12.3 MΩ·cm2and 34.2 MΩ·cm2,respectively,almost with the same order of magnitude as|Z|values of electrochemical impedance spectroscopy at 10 mHz.It indicates that our equivalent circuit models are well suited for the electrochemical impedance spectroscopy.Compared the specimen treated with anodization to the bare aluminum,Rchas increased by 3 ordersofmagnitude,and Rctvalue hasalso increased by 3 orders of magnitude.These results indicate that anodization and self-assembly of FAS molecules improve anticorrosion resistance of aluminum,the same conclusion as the|Z|values for electrochemical impedance spectroscopy at 10 mHz and the potentiodynamic polarization curves.Compared the Rctvalues of CE2A and CE3A with theRctof anodization(A),it can see that the anticorrosion performance is improved by wettability ofthe aluminum alloy surfaces,which is the same as|Z|values for electrochemical impedance spectroscopy at 10 mHz.When compared the Rairvalues of CE3A with that of CE2A,it is also found that the anticorrosion performance is influenced by wettability of aluminum surfaces.

    Table 1 Electrochemical model impedance parameters from Nyquist plots of different samples

    3 Conclusions

    This paper has demonstrated a convenient and effective method to prepare superhydrophobic surfaces by means of chemical etching and anodization.A static water contact angle of more than 154 at a wide pH value range can be obtained when the as-prepared surfaces are self-assembled by FAS molecules.Chemical etching time is the critical factor for the surface morphology and the water contact angle.Anodization is a necessary process for fabrication of superhydrophobic surfaces. Moreover, the superhydrophobic surfaces exhibit excellent anticorrosion performance compared with the anodization samples and the bare samples when just applying immersion in the corrosion environment for 30 min.

    [1]Ma M,Hill R M.Curr.Opin.Colloid In.,2006,11(4):193-202

    [2]Li X,Du X,He J.Langmuir,2010,26(16):13528-13534

    [3]Mishchenko L,Hatton B,Bahadur V,et al.ACS Nano,2010,4(12):7699-7707

    [4]LI Song-Mei(李松梅),ZHOU Si-Zhuo(周思卓),LIU Jian-Hua(劉建華).Acta Phys.-Chim.Sin.(Wuli Huaxue Xuebao),2009,25(12):2581-2589

    [5]Ishizaki T,Masuda Y,Sakamoto M.Langmuir,2011,27(8):4780-4788

    [6]Weng C,Chang C,Peng C,et al.Chem.Mater.,2011,23(8):2075-2083

    [7]Grignard B,Vaillant A,de Coninck J,et al.Langmuir,2011,27(1):335-342

    [8]Lu S,Chen Y,Xu W,et al.Appl.Surf.Sci.,2010,256(20):6072-6075

    [9]Xu W,Liu H,Lu S,et al.Langmuir,2008,24(19):10895-10900

    [10]Kietzig A,Hatzikiriakos S G,Englezos P.Langmuir,2009,25(8):4821-4827

    [11]Fadeev A Y,Mccarthy T J.Langmuir,2000,16(18):7268-7274

    [12]Ishizaki T,Hieda J,Saito N,et al.Electrochim.Acta,2010,55(23):7094-7101

    [13]Liu T,Chen S,Cheng S,et al.Electrochim.Acta,2007,52(28):8003-8007

    Corrosion Resistance of Superhydrophobic Film on Aluminum Alloy Surface Fabricated by Chemical Etching and Anodization

    LI Song-Mei*LI Bin LIU Jian-Hua YU Mei
    (Key Laboratory of Aerospace Materials and Performance,Ministry of Education,School of Materials Science and Engineering,Beihang University,Beijing 100191,China)

    A superhydrophobic surface was fabricated by chemical etching and anodization on AA2024 aluminum alloy.A static water contact angle of more than 150°was achieved at a wide pH value range when the surface chemical etching time was more than 3 min.The SEM and AFM images showed that the surface morphology and roughness were dependent on chemical etching time.The FTIR results indicated that the FAS (fluorinated agent silane)molecules reacted with alundum on the aluminum alloy surface and the surface exhibited excellent adhesion performance on the anodization specimen.The corrosion resistance of the superhydrophobic surfaces was estimated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)measurements in 3.5wt%NaCl aqueous solution.The electrochemical measurements and appropriate equivalent circuit models revealed that the anticorrosion performance was greatly improved by the superhydrophobic surface.

    superhydrophobic;chemical etching;anodization;anticorrosion

    O647.5;O614.3+1

    A

    1001-4861(2012)08-1755-08

    2011-11-17。收修改稿日期:2012-03-23。航空科學基金(No.20110251003)資助項目。

    *通訊聯(lián)系人。E-mail:songmei_li@buaa.edu.cn

    猜你喜歡
    劉建華北京航空航天大學空天
    《北京航空航天大學學報》征稿簡則
    美國空天防御作戰(zhàn)指揮體系現(xiàn)狀及啟示
    《北京航空航天大學學報》征稿簡則
    俄羅斯空天防御作戰(zhàn)指揮體系現(xiàn)狀及啟示
    《北京航空航天大學學報》征稿簡則
    《北京航空航天大學學報》征稿簡則
    空天獵人 呼嘯來戰(zhàn)
    搟面條
    掉鞭炮
    手影
    久久热在线av| 一边亲一边摸免费视频| av在线播放精品| 在线天堂最新版资源| 91aial.com中文字幕在线观看| 国产亚洲午夜精品一区二区久久| 毛片一级片免费看久久久久| 成年av动漫网址| 人人妻人人爽人人添夜夜欢视频| 国产精品一国产av| 国产av国产精品国产| 韩国av在线不卡| 国产亚洲精品第一综合不卡| 叶爱在线成人免费视频播放| 亚洲精品乱久久久久久| 亚洲四区av| 国产野战对白在线观看| 久久女婷五月综合色啪小说| av片东京热男人的天堂| 99久久精品国产国产毛片| 精品人妻一区二区三区麻豆| 熟女电影av网| 777米奇影视久久| 午夜福利影视在线免费观看| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av| 成人国产麻豆网| av国产精品久久久久影院| 热re99久久精品国产66热6| 久久精品aⅴ一区二区三区四区 | 男女国产视频网站| 亚洲精品第二区| 亚洲精品久久成人aⅴ小说| 永久网站在线| 国产精品亚洲av一区麻豆 | 老熟女久久久| 女人久久www免费人成看片| 日本色播在线视频| 国产成人a∨麻豆精品| 欧美 日韩 精品 国产| 十八禁网站网址无遮挡| 精品国产一区二区久久| 又黄又粗又硬又大视频| 久久精品熟女亚洲av麻豆精品| 制服丝袜香蕉在线| 久久久久国产一级毛片高清牌| 亚洲国产最新在线播放| 国产成人精品一,二区| 欧美最新免费一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲国产最新在线播放| 男女无遮挡免费网站观看| 制服丝袜香蕉在线| 青春草亚洲视频在线观看| 一级黄片播放器| 午夜免费男女啪啪视频观看| 91aial.com中文字幕在线观看| 国产成人av激情在线播放| 在线观看www视频免费| 国产精品不卡视频一区二区| 26uuu在线亚洲综合色| 亚洲 欧美一区二区三区| 亚洲国产欧美日韩在线播放| 欧美日韩综合久久久久久| 性少妇av在线| a级毛片黄视频| 精品视频人人做人人爽| 久久精品亚洲av国产电影网| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| 日韩熟女老妇一区二区性免费视频| 成人国产麻豆网| 精品国产国语对白av| 久久精品国产鲁丝片午夜精品| 亚洲经典国产精华液单| 国产成人91sexporn| 亚洲欧美一区二区三区久久| 男人添女人高潮全过程视频| 日产精品乱码卡一卡2卡三| 制服人妻中文乱码| 自线自在国产av| 欧美最新免费一区二区三区| 亚洲成国产人片在线观看| 欧美人与性动交α欧美软件| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 国产在视频线精品| 少妇的逼水好多| 91国产中文字幕| 久久精品久久精品一区二区三区| 男女午夜视频在线观看| 制服丝袜香蕉在线| 国产激情久久老熟女| 777久久人妻少妇嫩草av网站| 久热这里只有精品99| 这个男人来自地球电影免费观看 | 久热久热在线精品观看| 大陆偷拍与自拍| 免费不卡的大黄色大毛片视频在线观看| 一本大道久久a久久精品| 国产免费又黄又爽又色| 如日韩欧美国产精品一区二区三区| 久久青草综合色| 天天躁夜夜躁狠狠躁躁| 天天操日日干夜夜撸| 男女高潮啪啪啪动态图| 九九爱精品视频在线观看| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品电影小说| 精品人妻在线不人妻| 日产精品乱码卡一卡2卡三| 校园人妻丝袜中文字幕| 精品亚洲成国产av| 汤姆久久久久久久影院中文字幕| 毛片一级片免费看久久久久| 午夜免费观看性视频| av在线观看视频网站免费| 日韩成人av中文字幕在线观看| 18禁观看日本| 香蕉丝袜av| 欧美精品国产亚洲| 美女视频免费永久观看网站| 免费观看av网站的网址| 两个人看的免费小视频| 久久久a久久爽久久v久久| 亚洲av欧美aⅴ国产| 国产片内射在线| 国产无遮挡羞羞视频在线观看| 看十八女毛片水多多多| 各种免费的搞黄视频| 国产精品嫩草影院av在线观看| 考比视频在线观看| 亚洲av成人精品一二三区| 婷婷色综合www| 亚洲精品久久成人aⅴ小说| 成人手机av| 美女福利国产在线| 伦精品一区二区三区| 精品国产乱码久久久久久小说| 9191精品国产免费久久| 午夜免费观看性视频| 香蕉国产在线看| 99久久综合免费| 欧美精品高潮呻吟av久久| av网站免费在线观看视频| 精品第一国产精品| 丝袜喷水一区| 久久99蜜桃精品久久| 国产精品久久久久久av不卡| 久久国产精品男人的天堂亚洲| 狠狠婷婷综合久久久久久88av| 欧美精品国产亚洲| 超碰97精品在线观看| 久久精品人人爽人人爽视色| 成人影院久久| 国产野战对白在线观看| 人成视频在线观看免费观看| 少妇猛男粗大的猛烈进出视频| 久久久久久久亚洲中文字幕| 两性夫妻黄色片| 99久久综合免费| 久久精品熟女亚洲av麻豆精品| 两性夫妻黄色片| 天天躁日日躁夜夜躁夜夜| 欧美av亚洲av综合av国产av | 国产视频首页在线观看| 日本91视频免费播放| 日韩人妻精品一区2区三区| 国产综合精华液| 丝瓜视频免费看黄片| 久久精品国产亚洲av高清一级| www.熟女人妻精品国产| 亚洲av在线观看美女高潮| 久久久亚洲精品成人影院| 久久久久久久久免费视频了| 欧美成人午夜免费资源| 日韩av不卡免费在线播放| 久久影院123| 欧美成人午夜免费资源| 久久久亚洲精品成人影院| 日日爽夜夜爽网站| 亚洲视频免费观看视频| 中文字幕色久视频| 国产精品免费视频内射| 精品人妻在线不人妻| 亚洲成色77777| 日韩中字成人| xxxhd国产人妻xxx| 美女视频免费永久观看网站| 黄色配什么色好看| 日韩制服骚丝袜av| 午夜91福利影院| 国产日韩一区二区三区精品不卡| 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 欧美人与善性xxx| 五月伊人婷婷丁香| 久久精品久久精品一区二区三区| 国产精品久久久久久精品古装| 少妇被粗大的猛进出69影院| 高清黄色对白视频在线免费看| 国产一区亚洲一区在线观看| 嫩草影院入口| 老汉色∧v一级毛片| 一区二区日韩欧美中文字幕| 成人毛片a级毛片在线播放| 国产男人的电影天堂91| 老司机亚洲免费影院| 国产xxxxx性猛交| 精品国产露脸久久av麻豆| 国产一区二区在线观看av| 在线观看免费高清a一片| 中文字幕制服av| 亚洲经典国产精华液单| 在线观看美女被高潮喷水网站| 一个人免费看片子| 国产一区二区三区av在线| 欧美人与性动交α欧美软件| 久久精品人人爽人人爽视色| 天堂8中文在线网| 日本91视频免费播放| 国产精品无大码| 2021少妇久久久久久久久久久| 国产探花极品一区二区| 国产高清国产精品国产三级| 精品一区二区三卡| 亚洲国产av影院在线观看| 一级黄片播放器| 精品国产露脸久久av麻豆| 国产精品女同一区二区软件| av视频免费观看在线观看| 极品人妻少妇av视频| 国产亚洲一区二区精品| 精品人妻偷拍中文字幕| av电影中文网址| 中文字幕人妻丝袜一区二区 | av电影中文网址| 国产精品二区激情视频| 国产亚洲午夜精品一区二区久久| 在线观看一区二区三区激情| 亚洲国产av影院在线观看| 少妇 在线观看| 国产欧美亚洲国产| 天天操日日干夜夜撸| 在线天堂中文资源库| 街头女战士在线观看网站| 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 永久网站在线| 久久久久国产一级毛片高清牌| 久久精品久久久久久久性| 成人免费观看视频高清| 国产激情久久老熟女| 看免费av毛片| 精品99又大又爽又粗少妇毛片| 91成人精品电影| 亚洲精品在线美女| a级片在线免费高清观看视频| 中文天堂在线官网| 国产女主播在线喷水免费视频网站| 欧美日韩一级在线毛片| 又黄又粗又硬又大视频| 久久精品国产a三级三级三级| 99国产综合亚洲精品| 男女国产视频网站| 久久人人97超碰香蕉20202| 五月开心婷婷网| 日本猛色少妇xxxxx猛交久久| 婷婷色av中文字幕| 90打野战视频偷拍视频| 精品一区在线观看国产| 十八禁高潮呻吟视频| 超色免费av| 99久久人妻综合| 伦理电影大哥的女人| 晚上一个人看的免费电影| 亚洲人成网站在线观看播放| 亚洲天堂av无毛| 一区二区三区乱码不卡18| 一区二区日韩欧美中文字幕| 1024视频免费在线观看| 久久97久久精品| 巨乳人妻的诱惑在线观看| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 欧美97在线视频| 国产黄频视频在线观看| 精品卡一卡二卡四卡免费| 精品视频人人做人人爽| 丝袜人妻中文字幕| av国产精品久久久久影院| 免费黄网站久久成人精品| 久久久久精品人妻al黑| 超色免费av| av卡一久久| 赤兔流量卡办理| 国产成人91sexporn| 日韩中文字幕欧美一区二区 | 一级毛片 在线播放| 男人爽女人下面视频在线观看| 亚洲欧美成人精品一区二区| 亚洲激情五月婷婷啪啪| 久久 成人 亚洲| 午夜免费观看性视频| 如日韩欧美国产精品一区二区三区| 午夜老司机福利剧场| 国产精品香港三级国产av潘金莲 | 久久久久精品性色| 国产毛片在线视频| 久久精品久久久久久噜噜老黄| 久久久久精品性色| 国产精品.久久久| 熟女少妇亚洲综合色aaa.| 一本大道久久a久久精品| 国产av一区二区精品久久| 七月丁香在线播放| 成人二区视频| 不卡视频在线观看欧美| 亚洲内射少妇av| 黑人巨大精品欧美一区二区蜜桃| 最近最新中文字幕大全免费视频 | 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 黄色怎么调成土黄色| 国产又爽黄色视频| 成人黄色视频免费在线看| 五月天丁香电影| 黄色配什么色好看| 欧美国产精品一级二级三级| 精品99又大又爽又粗少妇毛片| 纵有疾风起免费观看全集完整版| 国产精品久久久久久av不卡| 免费看不卡的av| 国产欧美日韩综合在线一区二区| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 中国三级夫妇交换| 国产片特级美女逼逼视频| 宅男免费午夜| 搡女人真爽免费视频火全软件| 久久久国产一区二区| 成人黄色视频免费在线看| 亚洲欧美清纯卡通| 国产成人午夜福利电影在线观看| 精品国产乱码久久久久久小说| 在现免费观看毛片| 日韩一区二区视频免费看| 美女主播在线视频| 美国免费a级毛片| 精品人妻在线不人妻| av免费观看日本| 久久久久网色| 国产在线免费精品| 2018国产大陆天天弄谢| 免费看av在线观看网站| 肉色欧美久久久久久久蜜桃| 国产一区二区 视频在线| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 99九九在线精品视频| 蜜桃在线观看..| 日韩大片免费观看网站| 另类精品久久| 亚洲av日韩在线播放| 久久人人爽av亚洲精品天堂| tube8黄色片| 一区二区三区精品91| 久久午夜福利片| 欧美黄色片欧美黄色片| 极品人妻少妇av视频| 亚洲国产精品成人久久小说| 2021少妇久久久久久久久久久| 久久久欧美国产精品| 亚洲欧洲国产日韩| 老司机亚洲免费影院| 人妻一区二区av| 最近最新中文字幕免费大全7| 国产成人aa在线观看| 老司机影院毛片| 国产精品女同一区二区软件| 国产日韩欧美在线精品| 婷婷色综合大香蕉| 最近2019中文字幕mv第一页| 90打野战视频偷拍视频| 国产综合精华液| 一区福利在线观看| 少妇人妻久久综合中文| 国产乱来视频区| 肉色欧美久久久久久久蜜桃| 久久 成人 亚洲| 热99久久久久精品小说推荐| 日日撸夜夜添| 亚洲成人一二三区av| 交换朋友夫妻互换小说| 亚洲婷婷狠狠爱综合网| videosex国产| 精品少妇内射三级| 永久网站在线| 国产黄色视频一区二区在线观看| 日产精品乱码卡一卡2卡三| 免费看av在线观看网站| 亚洲欧洲国产日韩| 久久久久久久亚洲中文字幕| 久久久精品94久久精品| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜爱| www.av在线官网国产| 成年动漫av网址| 国产成人免费观看mmmm| 亚洲三级黄色毛片| 中国国产av一级| 在线精品无人区一区二区三| 久久ye,这里只有精品| 亚洲视频免费观看视频| 久久精品久久精品一区二区三区| 大陆偷拍与自拍| 免费日韩欧美在线观看| 1024视频免费在线观看| 如何舔出高潮| 成人国产av品久久久| 9热在线视频观看99| 午夜日本视频在线| 如何舔出高潮| 99久久中文字幕三级久久日本| 国产xxxxx性猛交| www.熟女人妻精品国产| 亚洲在久久综合| 亚洲成人手机| 永久免费av网站大全| a 毛片基地| 91国产中文字幕| 男人舔女人的私密视频| 亚洲国产欧美在线一区| 国产伦理片在线播放av一区| 男男h啪啪无遮挡| 国产熟女欧美一区二区| 日韩 亚洲 欧美在线| 两性夫妻黄色片| www.自偷自拍.com| 久久久国产一区二区| 18禁国产床啪视频网站| 亚洲,一卡二卡三卡| 美女脱内裤让男人舔精品视频| 男人爽女人下面视频在线观看| 免费高清在线观看视频在线观看| 麻豆乱淫一区二区| 看非洲黑人一级黄片| 亚洲国产精品国产精品| 色哟哟·www| 亚洲成av片中文字幕在线观看 | 亚洲,欧美精品.| 久久国产亚洲av麻豆专区| av.在线天堂| 最近的中文字幕免费完整| 欧美精品一区二区免费开放| 高清在线视频一区二区三区| 国产激情久久老熟女| 亚洲,欧美,日韩| 国产成人免费无遮挡视频| 久久人妻熟女aⅴ| 精品少妇一区二区三区视频日本电影 | 久久精品国产亚洲av涩爱| 日韩视频在线欧美| 伦理电影免费视频| 五月开心婷婷网| 我要看黄色一级片免费的| 日韩人妻精品一区2区三区| 国产成人欧美| 桃花免费在线播放| 免费看不卡的av| 国产成人免费无遮挡视频| 永久网站在线| 国产无遮挡羞羞视频在线观看| av福利片在线| 精品国产一区二区三区四区第35| 国产日韩一区二区三区精品不卡| 亚洲人成77777在线视频| 丝袜脚勾引网站| 波多野结衣一区麻豆| 精品亚洲成国产av| 久久久久人妻精品一区果冻| 欧美最新免费一区二区三区| 国产黄色视频一区二区在线观看| 免费在线观看黄色视频的| 国产又爽黄色视频| 黄色怎么调成土黄色| 国产av码专区亚洲av| 狂野欧美激情性bbbbbb| 亚洲色图 男人天堂 中文字幕| 极品少妇高潮喷水抽搐| 搡老乐熟女国产| 久久久久久久久久久免费av| 国产片特级美女逼逼视频| 如日韩欧美国产精品一区二区三区| av在线app专区| 国产精品免费大片| 亚洲中文av在线| 亚洲一区中文字幕在线| 最黄视频免费看| 欧美在线黄色| av国产精品久久久久影院| 亚洲欧美精品自产自拍| 国产精品一二三区在线看| 日本vs欧美在线观看视频| av视频免费观看在线观看| 卡戴珊不雅视频在线播放| 在线看a的网站| 免费看av在线观看网站| 中文字幕色久视频| 伦精品一区二区三区| 午夜福利影视在线免费观看| 亚洲精品久久久久久婷婷小说| 亚洲伊人色综图| √禁漫天堂资源中文www| 亚洲中文av在线| 欧美日韩av久久| 免费在线观看黄色视频的| 国产精品香港三级国产av潘金莲 | 男女高潮啪啪啪动态图| 国产精品一区二区在线观看99| 男人爽女人下面视频在线观看| 日本午夜av视频| 亚洲三级黄色毛片| 中文字幕av电影在线播放| 天天操日日干夜夜撸| 在线亚洲精品国产二区图片欧美| 大片电影免费在线观看免费| 久久久久国产网址| 97人妻天天添夜夜摸| 亚洲欧洲国产日韩| 亚洲人成网站在线观看播放| 午夜91福利影院| av在线观看视频网站免费| 国产亚洲精品第一综合不卡| 成人漫画全彩无遮挡| 在线天堂最新版资源| 在线观看www视频免费| 亚洲精品乱久久久久久| 十八禁网站网址无遮挡| 美女国产高潮福利片在线看| 99香蕉大伊视频| 日韩精品免费视频一区二区三区| 啦啦啦视频在线资源免费观看| 母亲3免费完整高清在线观看 | 成人手机av| tube8黄色片| 成人影院久久| av.在线天堂| 黄色 视频免费看| xxx大片免费视频| 欧美日本中文国产一区发布| 欧美国产精品va在线观看不卡| 美女主播在线视频| 日本欧美视频一区| 亚洲精品av麻豆狂野| 国产精品 国内视频| 亚洲精品一区蜜桃| 国产视频首页在线观看| 欧美激情高清一区二区三区 | 伦理电影大哥的女人| 久久精品夜色国产| 美女主播在线视频| 在线观看人妻少妇| 免费av中文字幕在线| 国产成人一区二区在线| 人人妻人人澡人人爽人人夜夜| 国产亚洲午夜精品一区二区久久| 久久毛片免费看一区二区三区| 亚洲一级一片aⅴ在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美中文综合在线视频| 日韩在线高清观看一区二区三区| 在线观看美女被高潮喷水网站| 欧美最新免费一区二区三区| a 毛片基地| 最新中文字幕久久久久| 久久久久久久亚洲中文字幕| 在线观看国产h片| 夫妻性生交免费视频一级片| a 毛片基地| 欧美日韩视频精品一区| 国产野战对白在线观看| av一本久久久久| 国产毛片在线视频| 男男h啪啪无遮挡| 男的添女的下面高潮视频| 一级黄片播放器| 国产精品秋霞免费鲁丝片| 欧美在线黄色| 极品人妻少妇av视频| 午夜免费观看性视频| 久久97久久精品| 成年美女黄网站色视频大全免费| 性色av一级| 七月丁香在线播放| 午夜福利视频在线观看免费| 搡老乐熟女国产| 久久久国产精品麻豆| 午夜激情av网站| 最新中文字幕久久久久| 精品一区二区三卡| 国产精品女同一区二区软件| 亚洲人成77777在线视频| 国产成人aa在线观看| 亚洲美女视频黄频| 久久毛片免费看一区二区三区| 中文字幕av电影在线播放| 免费女性裸体啪啪无遮挡网站| 一级a爱视频在线免费观看| 日韩精品有码人妻一区| videos熟女内射| 女人精品久久久久毛片| 国产不卡av网站在线观看| 9191精品国产免费久久|