• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    分光光度滴定法測(cè)某些多齒配體與Ni(Ⅱ)配合物的穩(wěn)定常數(shù)

    2012-09-15 11:45:02HavaOzayAhmetUlgenYakupBaran
    關(guān)鍵詞:化學(xué)系文理學(xué)院滴定法

    Hava OzayAhmet UlgenYakup Baran*,

    (1Onsekiz Mart大學(xué),文理學(xué)院,化學(xué)系,恰納卡萊 17100,土耳其)

    (2Erciyes大學(xué),文理學(xué)院,化學(xué)系,開(kāi)塞利,土耳其)

    分光光度滴定法測(cè)某些多齒配體與Ni(Ⅱ)配合物的穩(wěn)定常數(shù)

    Hava Ozay1Ahmet Ulgen2Yakup Baran*,1

    (1Onsekiz Mart大學(xué),文理學(xué)院,化學(xué)系,恰納卡萊 17100,土耳其)

    (2Erciyes大學(xué),文理學(xué)院,化學(xué)系,開(kāi)塞利,土耳其)

    制備了多齒大環(huán)配體 1,4,7,10-四氮雜環(huán)十二烷(L1);1,4,8,11-四(2-羥乙基)-1,4,8,11-四氮雜環(huán)十四烷(L2)和無(wú)環(huán)多齒配體;3-(2-氨基環(huán)己氨基)-2-(2-氨基環(huán)己氨基甲基)丙酸(L3),4,7,10-十三烷二腈三氫氯化物(L4),2,2′-(1,2-二乙基-雙((甲基二氮雜烷基)二乙醇(L5)and 1,1′-(1,2-二乙基-雙((2-氨基乙基)二氮雜烷基))-2-二丙醇 (L6),并用 FTIR,NMR 和 MS 進(jìn)行了表征,用配有二極管陣列檢測(cè)器、蠕動(dòng)泵和pH計(jì)的UV-VIS光度儀,經(jīng)分光光度滴定法測(cè)定了它們與Ni(Ⅱ)的配合物的穩(wěn)定常數(shù)。將穩(wěn)定常數(shù)的數(shù)據(jù)與配體的開(kāi)鏈和環(huán)狀結(jié)構(gòu)特性進(jìn)行了關(guān)聯(lián)討論。還討論了側(cè)基對(duì)配合物穩(wěn)定常數(shù)的影響。

    配合物;多齒;分光光度滴定;Ni(Ⅱ)

    0 Introduction

    Forthe pastdecade,linearormacrocyclic polyamines have been studied extensively.They are an important class of compounds due to their role as polyprotic bases[1],biologically important compounds[2-3],sensors for the detection of metal ions and metal ion complexation[4-8].Transition metal complexes of multidentate ligands with N and O donors are used as model systems for many metalloenzymes[9-11],luminescencesensing,light-emitting devices,inter-metallic communication,catalysts,molecular electronics,chromotropic compounds,non-linear chromophores[12-16]and in coordination polymer chemistry[17].

    Nickel has a very rich coordination chemistry[18].Nickel(Ⅱ)complexes are rich in color variation.They have coordination structures containing square-planar,tetrahedral,square-pyramidal,trigonal-bipyramidal and octahedral forms.Due to these properties of nickel(Ⅱ)complexes,a great number of studies relating to chromotropic metal complexes with applications as multi functional molecular devices have been carried out[19-20].In addition to these properties,metal ions may be part of the active sites of enzymes.There has been a great interest in the preparation of metal complexes which could mimic these metalloprotein′s active sites[21].

    Potentiometric and spectrophotometric titration methods are generally used to investigate the equilibria in solutions to determine the acid-base constants[22-23].The potentiometric titration is used frequently due to the simplicity ofequipmentand minimaltime requirement[24].However,this method does not include all aspects of solution chemistry.In order to gain complete information about the species formed during titration,spectrophotometric titrations are usually carried out simultaneously[25].This technique shows how much equilibrium exists in the solution during the study and can be applied to structural analysis of compounds.A great number of studies have reported on the stability of nickel(Ⅱ)complexes with nitrogen and oxygen donor atoms.Basallote and co-workers reported equilibrium constants of mono-and bi-nuclear nickel complexes of the hexaazamacrocycle ligand.The equilibrium constants of complexes were obtained from potentiometric titration studies[26].Krot and co-workers investigated the stability constants of copper,nickel,silver and mercury complexes of a tetra amide ligand using the potentiometric titration method and determined that the nickel complexesarelessstablethantheircopperanalogues[27].

    Here we report the synthesis of L1,L2,L3,L4,L5and L6and present the stability constants of nickel(Ⅱ)complexes obtained by spectrophotometric titration and subsequent global analysis of the data with Specfit/32 software package.
    Fig.1 shows the structures of ligands.

    1 Experimental

    1.1 Chemicals and methods

    All reagents were obtained commercially and used as received without further purification.Solvents were purified according to the standard methods prior to use.L1waspurchased from Sigma-Aldrich Chemical Company.Mass spectra were measured with a GC-MS,Thermo Finnigan Trace DSQ.NMR spectra were obtained with a Varian 300 MHzspectrometer.Spectrophotometric titration was measured with a UVVis,HP 8453 Diode Array Spectrophotometer.For the spectrophotometric titration acid or base solution was added to 1 cm quartz cell with a peristaltic pump(Cole Palmer,Masterflex)and the pH value of the solutions was measured with an Orion pH meter combined with a Metrohm semi-micro electrode.FTIR spectra were recorded with a Perkin Elmer BXII spectrometer.The molar magnetic susceptibilities of the complexes were measured on powdered sample at room temperature using a Sherwood Scientific Magnetic Susceptibility Balance.

    1.2 Synthesis of ligands

    1.2.1 Synthesis of 1,4,8,11-tetra(2-hydroxyethyl)-1,4,8,11-tetraazacyclo decane,L2·4H2O

    Ethylene oxide(2.01 mL,40 mmol)was added to a solution of cyclam(1.38 g,4 mmol)in water(15 mL)at 0℃on a magnetic stirrer for six hours and warmed to room temperature.Solvent volume was reduced by a rotary evaporatorand the solution wasleftfor crystallization.Clear colorless crystals formed and werewashed with ice-cold water (2 mL)and dried under vacuum.Yield 1.1 g,63%.1H NMR (300 MHz,25 ℃,CDCl3,δ,J(Hz)):5.11(s),3.59(t,J=5.45,2H),2.27(s),2.49(s),2.43(t,J=6.12),2.13(m).13C NMR(300 MHz,25 ℃,CDCl3,δ):58.9,56.5,51.4,51.7,21.5,m/z:377(M+),FTIR(ATR,cm-1):Ⅴ(OH):3 349.

    1.2.2 Synthesis of 3-(2-aminocyclohexylamino)-2-(2-aminocyclohexylaminomethyl)propionic acid,L3·4HCl·2H2O

    L3was prepared by template synthesis from bis(cyclohexane-1,2-diamine)copper(Ⅱ),triethylamine,diethylmalonate and formaldehyde in methanol.The aqueous solution of copper(Ⅱ)perchlorate hexahydrate(11.28 g,30.00 mmol)was added to a solution of 1,2-diaminocyclohexane (6.85 g,60.00 mol)in deionized water (300 mL)on a magnetic stirrer.The reaction mixture was warmed to 50℃and was stirred at this temperature for 2 h.Then the solution was cooled to room temperature and Bis(cyclohexane-1,2-diamine)copper(Ⅱ) perchlorate was separated by filtering.

    The solution ofbis(cyclohexane-1,2-diamine)copper(Ⅱ) perchlorate(6.00 g,12.00 mmol)in 250 mL methanol was heated to 50℃while stirring magnetically and to this solution,triethylamine (6 mL,43.05 mmol)and diethylmalonate(1.90 mL,12.00 mmol)were added.Then,a solution of formaldehyde(37%aqueous solution,3 mL)in methanol(50 mL)was added drop wise to the reaction mixture and the solution was stirred for 16 h at 50℃.The color of the reaction mixture converted to purple-red during to this time.This solution was diluted to 2 L with distilled water and then the solution was passed through a column (35×3.5 cm)of SP Sephadex C-25 resin (Na+form)and eluted with 0.2 mol·L-1NaClO4solution.After a while,two bands,one narrow and one broad,were observed.Both bands were collected and controlled.It was observed that a small amount of macrocyclic compound formed.The solvent of the acyclic compound was evaporated and dried.5 mL of triethylamine was diluted to 25 mL with deionized water and added to the solution of acyclic compound(3.5 g)in methanol(200 mL).The reaction mixture was stirred on a magnetic stirrer at 60℃for 12 h.Then the mixture was cooled to room temperature and diluted to 2 L with deionized water.The diluted solution was passed through a column (35×4 cm)of SP Sephadex C-25 resin (Na+form)and the column was elutedwith0.2mol·L-1NaClO4solution.Bands observed in the column were collected and the solution was concentrated to 300 mL by rotary evaporation.This solution and 3 mol·L-1HCl solution were simultaneously added over 2 hours drop wise from dropping funnels to Zn powder while stirring on a magnetic stirrer at room temperature.Then the solution was heated to 50 ℃ and stirred 30 min at this temperature.The solution was cooled to room temperature and was filtered on celite to remove Cu and residual Zn.The clear solution was diluted to 2 L with deionized water and the solution was passed through a column (35×3 cm)of Dowex 50 W×2 resin(H+form)and the column was eluted for a while with deionized water and afterwards with 1 mol·L-1HCl solution to remove Zn2+ions.Elution continued until no further Zn2+ions were present(checked by the addition of NaOH solution to eluent in order to observe Zn(OH)2).When the formation of jelly Zn(OH)2finished,the column was eluted with 3 mol·L-1HCl.After evaporation of the solvent by a rotary evaporator,the white colored crude product was obtained.Then the crude product was recrystallized in hot methanol and L3was obtained as a white powder(C16H32N4O2·4HCl·H2O),L3.Yield:2.1 g,52%.C16H35Cl4N4O2·4HCl·2H2O (Calcd.C,38.95;H,7.97;N,11.36)found%:C,38.79;H,7.81;N,11.44).1H NMR(300 MHz,D2O,δ,J(Hz)):1.28~2.11(m,16 H),2.13~2.46(m,6H),3.31~3.73(m,9H).13C NMR(300 MHz,D2O,δ):19.3,(2C);19.4(2C);22.8;23,1;26.1(2C);33.7;40.6;41.6;47.4 (2C);54.6;56.4;and 173.3.m/z:314(M+),FTIR(ATR,cm-1):Ⅴ(COOH):1 711 vs(br),2 017 m,1 612 s,1 514 s,Ⅴ(NH):3 369,3 152.

    1.2.3 Synthesis of 4,7,10-triazatridecanedinitrile trihydrochloride,L4·3HCl

    4,7,10-Triazatridecanedinitrile trihydrochloride was synthesized by condensation of diethylenetriamine(dien)and acrylonitrile according to the literature[27].Acrylonitrile(3.19 g,60.00 mmol)was added drop wise to a magnetically stirred dien solution (2.58 g,25 mmol),and the mixture was stirred for 20 h at roomtemperature.The crude product was purified as the trihydrochloride by recrystallization from methanol/water/HCl and L4·3HCl was obtained as a white powder.Yield:3.20 g,40%.C10H19N53HCl(Calc.C,37.69;H,6.96;N,21.98)found%:C,37.43;H,7.11;N,21.84).1H NMR(300 MHz,D2O,δ,J(Hz)):2.49(t,J=6.81,4H),2.55(t,J=5.97,4H),2.83(t,J=4.45,4H),2.89(t,J=5.77,4H).13C NMR(300 MHz,D2O,δ):120.2(2C);46.9(2C);46.5(2C);46.3(2C);17.9(2C);m/z:210(M+),FTIR(ATR,cm-1):Ⅴ(NH3+):2667,2435;Ⅴ(CN):2661.

    1.2.4 Synthesis of 2,2′-(ethane-1,2-diyl)bis(methylazanediyl))diethanol,L5

    Ethylene oxide (3.02 g,60.00 mmol)was added dropwise to a solution of N,N′-dimethylethylenediamine(2.00 g,22.68 mmol)in methanol(50 mL)at 0 C and the reaction mixture was stirred for 12 h.Then the reaction mixture was warmed to the room temperature and solvent volume was reduced by a rotary evaporator.The solution was left for crystallization and L5was obtained as a viscose oil.Yield:2.7 g,76%.C8H20N2O2(Calcd.C,38.88;H,8.16;N,11.33)found%:C,38.79;H,7.88;N,11.28).).1H NMR (300 MHz,D2O,δ,J(Hz)):3.83(t,J=6.0,4H),2.78(t,J=6.0,4H),2.53(t,J=6.0,4H),2.23(s,6H).13C NMR (300 MHz,D2O,δ):58.6(2C);58.1(2C);53.6(2C);41.7(2C);m/z:176.99(M+),FTIR(ATR,cm-1):Ⅴ(OH):3270 br.

    1.2.5 Synthesis of 1,1′-(ethane-1,2-diylbis((2-aminoethyl)azanediyl))dipropan-2-ol,L6

    Propylene oxide (2.32 g,40 mmol)was added dropwise to solution of triethylenetetraamine(2.92 g,20 mmol)in methanol(50 mL)at 0℃and the reaction mixture was stirred for 12 h.Then,the reaction mixture was warmed to room temperature and solvent volume was reduced by a rotary evaporator.The solution was left for crystallization and L5was obtained as a viscose oil.Yield:2.9 g,55%.C12H30N4O2(Calcd.C,54.93;H,11.52;N,21.35 found%:C,54.73;H,11.48;N,21.28).1H NMR(300 MHz,D2O,δ,J(Hz)):3.89(m,2H),3.28(t,J=6 Hz,4H),2.71(t,J=6,4H),2.49(t,J=6 Hz,4H),2.43(t,J=3,4H),1.22(d J=6,6H).13C NMR(300 MHz,D2O,δ):66.1(2C);61.1(2C);58.6(2C);53.7(2C);41.8(2C);21.5(2C)m/z:263.11(M+),FTIR(ATR,cm-1):Ⅴ(OH):3275 br,(NH):3357,3190.

    1.3 Synthesis of the NiL1complex

    A solution containing (1.13 mmol,0.36g)L1and 1.15 mmol,0.27g)NiCl26H2O in 80 mL argon saturated water was stirred and heated at 60℃for several hours.The green solution was then diluted to 500 mL with water,filtered and sorbed onto a column of SP Sephadex C25(Na+form)resin(20×5 cm).Upon elution 0.125 mol·L-1NaClO4,two bands were separated.A green band eluted with 0.2 mol·L-1NaClO4.This band was stable in acidic medium which was the initial indication of macrocyclic complex.The green band was reduced in volume by rotary evaporation and left to crystallize.The solid product was dried in vacuum desiccators.Anal.Calcd.for:[NiL1]Cl2·2H2O;C8H24Ni Cl2N4O2(%):C,28.44;H,7.16;N,16.58.Found(%)C,28.37;H,7.11;N,16.49.FTIR(cm-1,KBr):Ⅴ(N-H),3178,Ⅴ(Ni-N),543.

    1.3.1 Synthesis of the NiL2complex

    All the other complexes are prepared by the same method.Yield:68%,Anal.Calcd.for[NiL2]Cl2.H2O:C18H42NiCl2N4O5(%)C,41.25;H,8.08;N,10.69.Found(%):C,41.37;H,8.11;N,10.51.FTIR(cm-1,KBr):Ⅴ(NH),3166,Ⅴ(Ni-N),566.

    1.3.2 Synthesis of the NiL3complex

    Yield:73%,FTIR (KBr,cm-1):Anal.Calcd.for:[NiL3]Cl2·H2O;C16H36NiCl2N4O(%):C,44.68;H,8.44;N,13.03.Found(%)C,44.57;H,8.41;N,13.09.FTIR(cm-1,KBr):Ⅴ(N-H),3149,Ⅴ(Ni-N),577.

    1.3.3 Synthesis of the NiL4complex

    Yield:66%,Anal.Calcd.For%:[NiL4Cl]Cl·2H2O;C10H23NiCl2N5O2(%)C,32.04;H,6.18;N,18.64.Found(%):C,32.13;H,6.11;N,18.59.FTIR(cm-1,KBr):Ⅴ(NH),3182,Ⅴ(Ni-N),559.

    1.3.4 Synthesis of the NiL5complex

    Yield:75%,Anal.Calcd.For%:[NiL5]Cl2·H2O;C8H22NiCl2N2O3(%):C,29.67;H,6.85;N,8.65.Found(%)C,29.57;H,7.01;N,8.69.FTIR(cm-1,KBr):Ⅴ(NH),3176,Ⅴ(Ni-N),571.

    1.3.5 Synthesis of the NiL6complex

    Yield:58%,Anal.Calcd.For%:[NiL6]Cl2·H2O;C12H32NiCl2N4O3(%):C,35.15;H,7.87;N,13.66.Found(%):C,35.27;H,7.71;N,13.59.FTIR(cm-1,KBr):Ⅴ(NH),3174,Ⅴ(Ni-N),579.

    1.4 Electronic spectra

    The electronic spectra data for the Ni(Ⅱ)complexes are given in Table 1.There are four bands for the Ni(Ⅱ)complexes in UV-Vis spectrum.The low intensity bands around 560 and 950 nm could be assigned to dd,Laporte forbidden,spin allowed transitions of Ni(Ⅱ)ions.The medium intensity bands around 380 nm are due to metal-ligand charge transfer processes.

    Table 1 Absorbance changes in Ni-L complexes during spectrophotometric titration

    1.5 Magnetic measurements

    The Ni(Ⅱ)complexes with the allligands are diamagnetic indicating the square planer structure of the complex.

    1.6 Spectrophotometric titrations

    Stability constants of the complexes were measured with an automatic titration set up consisting of a computer interfaced to an Agilent HP 8453 Diode ArraySpectro-photometerwith astirrerundera thermostated cell holder,a peristaltic pump,Cole Palmer and an Orion pH meter combined with an Metrohm semi-micro electrode.The electrode was calibrated with pH value of 4.0 and 7.0 buffers for measurements in aqueous solutions.Argon-saturated solutions of the ligands(1.2 mmol)and the nickel(Ⅱ)(1.2 mmol)containing 0.1 mol·L-1NaClO4for the adjustment of ionic strength were titrated with base,0.1 mol·L-1NaOH,in 1 cm quartz cell and the cell compartment was thermostated to (25±0.1)℃ during titration.The cell was containing a pH electrode and a capillary tip from peristaltic pump.The UV-Vis spectrum was determined during the titration at 60 sec intervals over the wavelength range of 350~1 100 nm Fig.2 shows typical 2D absorption spectra of NiL3during spectrophotometric titration as a function of pH value.Fig.3 shows speciation graph for the complex formation of Ni(Ⅱ) with L5.The measurements were made over the pH value range of 2.0 to 11.0.Triplicate data analyses were performed for each complex.Data analysis was carried out using the nonlinear leastsquare fitting program Specfit/32.An initial guess for the equilibrium constants were entered and these values iteratively refined until the best fit was achieved.

    2 Results and discussion

    2.1 Stability of the complexes

    All the macrocyclic and acyclic complexes are colored solid and stable at room temperature.They are soluble in water.Each Ni(Ⅱ) ion is coordinated to four nitrogen atoms in the NiL1,NiL2,NiL3and NiL6complexes.The Ni(Ⅱ) ion is incorporated into ligands to form square planer environment.The other ligands L4and L5which have N3and N2O2donor atoms form also square planer geometry.Magnetic measurements of thecomplexes support for the square planer geometry.All the complexes exhibit diamagnetism in solid state at room temperature.Pendant groups in L2,L4and L6ligands do not involve in coordination and stay as dangling group in the complexes.This is supported by FTIR study of the complexes and ligands.The O-H stretching vibration of the ligands does not change after complex formation.The trend in stability order for diamagnetic Ni(Ⅱ) complexes are observed that Ni(Ⅱ)ions prefer the smallest macrocycle L1.The same effect is found for the open-chain tetraazaamines L6~L3.The larger the cavity,the more their complexes are destabilized by the presence of six membered rings.Large differences in stability constants within the series are observed for the nickel(Ⅱ)complexes of macrocyclic and acyclic ligands.When NiL1stability is compared with open chain analogue NiL6,stability decreases from 21.61 to 17.93.As the number of chelate rings increase,stability of the complexes decrease for the Ni(Ⅱ)ions[28].When the intermediate in a five-membered chelate ring is compared with the six-membered chelate ring,it is observed that in the five-membered chelate ring,the free donor group will possess increased entropy.As a result,the small size chelate ring will show greatest entropy increase while the larger ring chelate will show a decrease in entropy.This effect may be observed when NiL1is compared with NiL2.NiL2has two six membered rings while NiL1has no six membered ring,as a result stability decrease from 21.61 to 19.52.The enhanced stability of the macrocyclic ligand over its acyclic analogue is explained by the macrocyclic effect.Solvation of the ligands is also important during complexation.Macrocycles are thought to be less solvated than their acyclic analogues which leads to an enhancement of the thermodynamic stability for cyclic ligands over their acyclic analogues.Pendant groups on the nitrogen atoms will cause a decrease in the basicity of the nitrogen donor atoms and as a result of this,the stability of the complexes will decrease.There is a wealth of stability constant data for the polyazamacrocycles with different metal ions[29-32].Macrocycles can be organized to select particular metal ions from solution and can be used in metal ion extractions.Selectivity of the macrocycles can be altered in different ways.By changing cavity size and adding pendant groups to the nitrogen atom in the ring,the selectivity of the macrocycles changes.

    3 Conclusions

    For the most of the complexation titrations,one protonated complex species is observed which can be assigned to protonation of the primary amine or one of the secondary amines in the macrocycle.It is expected that the stability and selectivity of the ligands with nickel(Ⅱ)can be classified according to the parameters mentioned.NiL1complex is the most stable.The macrocyclic effect,number of rings and ring size cause nickel(Ⅱ) to bind to L1selectively.The stability of the NiL2decreases when compared to the NiL1.The cavity size,change in basicity of the donor atoms and steric effect cause a decrease in the stability of the nickel(Ⅱ)complex with L2.L6and L5ligands are the acyclic analogue of L1and L2,respectively.The stabilities of NiL6and NiL5decrease as expected.The least stable complex is NiL5with an alkylated secondary amine and two oxygen donor atoms.The stability constant of NiL4is 12.31 with three donor nitrogens which do not saturate the coordination sphere of the nickel(Ⅱ).Tetradentate coordination has been established for nickel(Ⅱ) with all of the ligands studied.Similar complex formation constants are observed for macrocyclic NiL1and NiL2since nickel(Ⅱ)is bound to the macrocyclic plane in the same manner.Table 2 shows the stability constants of the complexes at 20℃,I=0.1 mol·L-1NaClO4.

    Table 2 Stability constants of the complexes at 20 ℃,I=0.1 mol·L-1NaClO4

    Continued Table 2

    Acknowledgements:The authors thank the Scientific and Technological Research Council of Turkey (TUBITAK)for financial support(Project No.104T389).

    [1]Cascio S,Robertis A D,Foti C.Fluid Phase Equilibr.,2000,170:167-181

    [2]Silva J A,Felcman A L R,Lopes C C,et al.Inorg.Chim.Acta,2003,356:155-166

    [3]Herve A C,Yaouanc J J,Toupet L,et al.J.Organomet.Chem.,2002,664:214-222

    [4]Lai R A,Chakraborty M,Chanu O B,et al.J.Coord.Chem.,2010,63:1239-1251

    [5]Ajibade A P,Zulu H N.J.Coord.Chem.,2010,63:3229-3239

    [6]Ozay H,Baran Y.J.Coord.Chem.,2010,63:4299-4308

    [7]Yamada Y,Takenoudhi S I,Okamoto K I,et al.J.Coord.Chem.,2010,63:996-1012

    [8]Basallote M G,Domenech A,Verdejo B,et al.Inorg.Chim.Acta,2006,359:2004-2014

    [9]Jubert C,Mohamadou A,Barbier J P,et al.Inorg.Chem.Commun.,2003,6:900-907

    [10]Ambrosi G,Formica M,Pontellini R,et al.Inorg.Chim.Acta,2009,362:2667-2677

    [11]Sarma M,Singh A,Mondal B,et al.Inorg.Chim.Acta,2010,363:63-70

    [12]Shirase H,MiuraY,Fukuda Y.Monatsh Chem.,2009,140:807-814

    [13]Shirase H,Mori Y,Uchiyama M,et al.Monatsh Chem.,2009,140:801-805

    [14]Deplano P,Marchio L,Yagubski E B,et al.Monatsh Chem.,2009,140:775-781

    [15]Amatore C,Jutand A,Rollin Y,et al.Monatsh Chem.,2000,131:1293-1304

    [16]Panda G,Selim M,Mukherjea K K,et al.Monatsh Chem.,2009,140:281-286

    [17]Kirillov A M,Kopylovich M N,Pombeiro A J L,et al.Angew Chem.Int.Ed.,2005,44:4345-4349

    [18]Chattopadhyay T,Mukherjee M,Das D,et al.Inorg.Chem.,2010,49:3121-3125

    [19]Murata F,Arakawa M,Fukuda Y,et al.Polyhedron,2007,26:1570-1578

    [20]Koner S,Tsutake M,Banerjee S,et al.J.Mol.Struct.,2002,608:63-69

    [21]Hubert S,Mohamadou A,Gerard C.Inorg.Chim.Acta,2007,360:1702-1710

    [22]Ibanez G A,Escander G M.Polyhedron,1998,17:4433-4441

    [23]Kadar M,Biro A,Huszthy P.Spectrochim Acta A,2005,62:1032-1038

    [24]Dyson R M,Kaderli S,Zuberbühler A D,et al.Anal.Chim.Acta,1997,353:381-393

    [25]Dyson R M,Lawrance G A,Maeder M,et al.Polyhedron,1999,18:3243-3251

    [26]Basallote M G,Fernandez-Trujillo M J,Manez M A.Dalton Trans.,2002:3691-3695

    [27]Krot K A,Namor A F D,Nolan K B,et al.Inorg.Chim.Acta,2005,358:3497-3505

    [28]Polster J,Lachmann H.Spectrometric Titrations:Analysis of Chemical Equilibria,VCH,1989.

    [29]Luckay R C,Hancock R D.Dalton Trans.,1991:1491-1494

    [30]Martel A E,Smith R M.The Critical Stability Constants:Vol.1-6,N Y:Plenum Press,1974-1989.

    [31]Bianchi A,Micheloni M,Paoletti P.Coord.Chem.Rev.,1991,110:17-113

    [32]Izzat R M,Pawlak P,Breuning R L,et al.Chem.Rev.,1991,91:1721-1733

    Stability Constants of Some Polydentate Ligands with Nickel(Ⅱ)by Spectrophotometric Titration

    Hava Ozay1Ahmet Ulgen2Yakup Baran*,1
    (1Onsekiz Mart University,Art and Science Faculty,Department of Chemistry,Canakkale 17100,Turkey)
    (2Erciyes University,Art and Science Faculty,Department of Chemistry,Kayseri,Turkey)

    The polydentate macrocyclic ligands,1,4,7,10-tetraazacyclododecane (L1),1,4,8,11-tetra(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane (L2);and acyclicpolydentate ligands;3-(2-aminocyclohexylamino)-2-(2-aminocyclohexylaminomethyl)propionic acid(L3),4,7,10-triazatridecane dinitrile trihydrochloride(L4),2,2′-(1,2-diyl)bis(methylazanediyl)diethanol(L5)and 1,1′-(ethane-1,2-diylbis((2-aminoethyl)azanediyl))dipropan-2-ol,(L6)were prepared and their structures were investigated by FTIR,NMR and MS.The stability constants of the nickel(Ⅱ)complexes with these ligands were determined by spectrophotometric titration using a diode array UV-VIS spectrophotometer equipped with peristaltic pump and pH meter.The values of the stability constants are discussed in terms of the open chain or cyclic nature of the ligands.The effect of pendant group on the stability of the complexes is discussed.

    complex;polydentate;stability constants;spectrophotometric titration;nickel(Ⅱ)

    O614.4;O614.81+3

    A

    1001-4861(2012)08-1680-07

    2011-12-20。收修改稿日期(Date revised):2011-03-06。

    The Scientific and Technological Research Council of Turkey(TUBITAK)(Project No.104T389)資助項(xiàng)目。

    *通訊聯(lián)系人(Corresponding Author)。E-mail:yakupbaran@yahoo.com

    猜你喜歡
    化學(xué)系文理學(xué)院滴定法
    一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
    電位滴定法測(cè)定聚丙烯酰胺中氯化物
    云南化工(2021年11期)2022-01-12 06:06:18
    電位滴定法在食品安全檢測(cè)中的應(yīng)用
    長(zhǎng)江大學(xué)文理學(xué)院作品選登
    湖北師范大學(xué)文理學(xué)院作品
    大眾文藝(2020年15期)2020-09-11 02:28:04
    淺析采用滴定法解題的策略
    黑夜的獻(xiàn)詩(shī)
    大眾文藝(2019年23期)2019-12-15 09:59:08
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    西安文理學(xué)院高萍教授
    九九爱精品视频在线观看| 大香蕉97超碰在线| 三上悠亚av全集在线观看| 国产午夜精品一二区理论片| 亚洲一区二区三区欧美精品| 啦啦啦在线观看免费高清www| 色视频在线一区二区三区| 日韩av免费高清视频| www.色视频.com| 精品国产乱码久久久久久小说| 天天躁夜夜躁狠狠久久av| 这个男人来自地球电影免费观看 | 久久久a久久爽久久v久久| 国产色爽女视频免费观看| av在线老鸭窝| 人妻 亚洲 视频| 人人妻人人爽人人添夜夜欢视频| 日韩成人伦理影院| 国产白丝娇喘喷水9色精品| 国产av精品麻豆| 一区在线观看完整版| 亚洲国产精品一区三区| 飞空精品影院首页| 久久精品国产鲁丝片午夜精品| 最近手机中文字幕大全| 精品久久久精品久久久| 精品卡一卡二卡四卡免费| 热99国产精品久久久久久7| 欧美丝袜亚洲另类| 丁香六月天网| 在线播放无遮挡| 欧美人与善性xxx| 国产精品.久久久| 午夜福利网站1000一区二区三区| 亚洲精品亚洲一区二区| 国产精品无大码| 精品国产一区二区久久| 久久人人爽人人爽人人片va| 青春草亚洲视频在线观看| 大片免费播放器 马上看| 99热6这里只有精品| 天天影视国产精品| 久久热精品热| 久久久精品94久久精品| 热re99久久精品国产66热6| 日日摸夜夜添夜夜添av毛片| 国产精品成人在线| 啦啦啦视频在线资源免费观看| 国产乱来视频区| 少妇的逼水好多| 国产成人精品无人区| 亚洲国产欧美在线一区| 久久精品夜色国产| 亚洲久久久国产精品| 亚洲美女黄色视频免费看| 久久综合国产亚洲精品| 18禁动态无遮挡网站| 十八禁网站网址无遮挡| 日日撸夜夜添| 99久久精品国产国产毛片| 亚洲精品一区蜜桃| 人妻夜夜爽99麻豆av| 一级片'在线观看视频| 精品一区二区三区视频在线| 日本欧美国产在线视频| 久久人人爽人人片av| 精品亚洲成国产av| 亚洲性久久影院| 色网站视频免费| 黄片无遮挡物在线观看| 一级毛片 在线播放| 久久午夜综合久久蜜桃| 一本大道久久a久久精品| 亚洲成人一二三区av| 国产免费又黄又爽又色| 岛国毛片在线播放| 2022亚洲国产成人精品| 中文精品一卡2卡3卡4更新| 国产成人免费无遮挡视频| 亚洲欧美日韩另类电影网站| 亚洲av成人精品一区久久| av有码第一页| 如日韩欧美国产精品一区二区三区 | 又大又黄又爽视频免费| 亚洲四区av| 国产成人精品一,二区| 成人毛片60女人毛片免费| 高清av免费在线| 国产精品99久久99久久久不卡 | 日韩强制内射视频| 少妇 在线观看| 日日摸夜夜添夜夜添av毛片| 午夜av观看不卡| 日本爱情动作片www.在线观看| 亚洲av综合色区一区| 久久精品国产亚洲av涩爱| av福利片在线| 高清欧美精品videossex| 日韩电影二区| av播播在线观看一区| 国产av国产精品国产| 狠狠精品人妻久久久久久综合| 十八禁网站网址无遮挡| 国产精品秋霞免费鲁丝片| 人妻人人澡人人爽人人| 两个人免费观看高清视频| 这个男人来自地球电影免费观看 | 女性生殖器流出的白浆| 五月玫瑰六月丁香| 国产 精品1| 亚洲欧美成人精品一区二区| av免费观看日本| 嫩草影院入口| 国产免费又黄又爽又色| 亚洲美女黄色视频免费看| 久久韩国三级中文字幕| 日韩精品免费视频一区二区三区 | 日韩中字成人| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 国产精品一区二区在线观看99| 亚洲精品aⅴ在线观看| 国产成人精品福利久久| 高清在线视频一区二区三区| 免费少妇av软件| 久久久久久久久久人人人人人人| 免费高清在线观看视频在线观看| av福利片在线| 午夜久久久在线观看| 王馨瑶露胸无遮挡在线观看| 国产亚洲一区二区精品| 青春草视频在线免费观看| 99精国产麻豆久久婷婷| 亚洲天堂av无毛| 精品久久久久久久久av| 一二三四中文在线观看免费高清| 欧美精品亚洲一区二区| 精品人妻一区二区三区麻豆| 不卡视频在线观看欧美| 三级国产精品欧美在线观看| 日韩中字成人| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| 美女中出高潮动态图| 国产免费一级a男人的天堂| 如日韩欧美国产精品一区二区三区 | 欧美精品国产亚洲| 卡戴珊不雅视频在线播放| 日本黄色片子视频| 精品一品国产午夜福利视频| 亚洲欧美一区二区三区黑人 | 麻豆精品久久久久久蜜桃| 老熟女久久久| 精品少妇黑人巨大在线播放| 久久热精品热| 免费不卡的大黄色大毛片视频在线观看| 色视频在线一区二区三区| 秋霞在线观看毛片| 黄色欧美视频在线观看| 伦理电影大哥的女人| 国产永久视频网站| 各种免费的搞黄视频| 亚洲高清免费不卡视频| 嘟嘟电影网在线观看| 亚洲在久久综合| 亚洲美女黄色视频免费看| 国产高清国产精品国产三级| 国产视频内射| 国产有黄有色有爽视频| 亚洲情色 制服丝袜| 自线自在国产av| 国产女主播在线喷水免费视频网站| 国产视频首页在线观看| videos熟女内射| 日韩av不卡免费在线播放| 人人妻人人添人人爽欧美一区卜| 在线观看人妻少妇| 制服诱惑二区| 亚洲国产色片| 欧美人与善性xxx| 亚洲怡红院男人天堂| 亚洲国产精品成人久久小说| 特大巨黑吊av在线直播| 成年美女黄网站色视频大全免费 | 黄色配什么色好看| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 欧美+日韩+精品| 亚洲欧美成人综合另类久久久| 最近手机中文字幕大全| 久久鲁丝午夜福利片| 久久久久视频综合| 婷婷色av中文字幕| 伊人亚洲综合成人网| 免费观看无遮挡的男女| 亚洲精华国产精华液的使用体验| 国产成人91sexporn| 国产精品一区www在线观看| 黄色配什么色好看| 欧美少妇被猛烈插入视频| 亚洲美女搞黄在线观看| 亚洲精品久久久久久婷婷小说| 日本爱情动作片www.在线观看| av在线app专区| 亚洲精品乱码久久久久久按摩| 日韩成人av中文字幕在线观看| 久久精品国产鲁丝片午夜精品| 人成视频在线观看免费观看| xxxhd国产人妻xxx| 久久狼人影院| 99热网站在线观看| 午夜激情av网站| 国产白丝娇喘喷水9色精品| xxx大片免费视频| 91精品国产九色| 中文字幕人妻丝袜制服| 亚洲情色 制服丝袜| 国产色爽女视频免费观看| freevideosex欧美| 性色avwww在线观看| 赤兔流量卡办理| 久久精品国产自在天天线| 热99国产精品久久久久久7| 久久精品国产亚洲av涩爱| 中文精品一卡2卡3卡4更新| 欧美 日韩 精品 国产| 人成视频在线观看免费观看| 亚洲精品国产av成人精品| 亚洲,欧美,日韩| 亚洲av.av天堂| 少妇人妻精品综合一区二区| 国产熟女欧美一区二区| 丰满迷人的少妇在线观看| 久久久a久久爽久久v久久| 欧美日韩视频精品一区| 麻豆乱淫一区二区| 国产永久视频网站| 日韩亚洲欧美综合| 亚洲中文av在线| 黑人猛操日本美女一级片| 99久久人妻综合| 最新的欧美精品一区二区| 夜夜骑夜夜射夜夜干| 亚洲,欧美,日韩| 各种免费的搞黄视频| 欧美 日韩 精品 国产| 22中文网久久字幕| 午夜老司机福利剧场| 国产又色又爽无遮挡免| 欧美精品国产亚洲| 蜜桃久久精品国产亚洲av| 18在线观看网站| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av涩爱| 国产男女内射视频| 丝袜喷水一区| 久久久久久久久大av| 久久精品夜色国产| 人成视频在线观看免费观看| 热99国产精品久久久久久7| 女性生殖器流出的白浆| 免费观看性生交大片5| 赤兔流量卡办理| 日本vs欧美在线观看视频| 成人二区视频| 午夜日本视频在线| 简卡轻食公司| 国产成人精品在线电影| 国产av国产精品国产| 18+在线观看网站| 色吧在线观看| 18禁动态无遮挡网站| 国产黄色免费在线视频| 简卡轻食公司| 精品熟女少妇av免费看| 午夜91福利影院| 99国产精品免费福利视频| 一级a做视频免费观看| 免费黄频网站在线观看国产| 最新中文字幕久久久久| 天堂俺去俺来也www色官网| 永久免费av网站大全| 大片免费播放器 马上看| 91精品三级在线观看| 欧美国产精品一级二级三级| 精品视频人人做人人爽| 五月玫瑰六月丁香| 午夜影院在线不卡| 女人精品久久久久毛片| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 国国产精品蜜臀av免费| 51国产日韩欧美| 欧美激情 高清一区二区三区| 国产午夜精品久久久久久一区二区三区| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 国产永久视频网站| 亚洲高清免费不卡视频| 欧美变态另类bdsm刘玥| 欧美亚洲 丝袜 人妻 在线| 综合色丁香网| av黄色大香蕉| 国产av码专区亚洲av| 夫妻午夜视频| 久热久热在线精品观看| 99视频精品全部免费 在线| 777米奇影视久久| 热re99久久精品国产66热6| 免费高清在线观看日韩| 多毛熟女@视频| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 丰满乱子伦码专区| 成人二区视频| 黑丝袜美女国产一区| 久久久国产一区二区| av在线app专区| 搡女人真爽免费视频火全软件| 国产乱来视频区| 日韩一本色道免费dvd| 成人无遮挡网站| 欧美激情国产日韩精品一区| 欧美另类一区| 日韩精品免费视频一区二区三区 | 一级a做视频免费观看| 一级爰片在线观看| 亚州av有码| 18禁观看日本| 国产伦精品一区二区三区视频9| 欧美3d第一页| 制服诱惑二区| 国产69精品久久久久777片| 天天操日日干夜夜撸| 国语对白做爰xxxⅹ性视频网站| 国产探花极品一区二区| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 亚洲精品乱久久久久久| 日本欧美视频一区| 亚洲综合色网址| 天天影视国产精品| 2018国产大陆天天弄谢| 一级毛片aaaaaa免费看小| 少妇高潮的动态图| 久久久国产一区二区| 亚洲av成人精品一区久久| 一本—道久久a久久精品蜜桃钙片| 国产69精品久久久久777片| 精品人妻偷拍中文字幕| 国产片特级美女逼逼视频| 制服丝袜香蕉在线| 亚洲精品日本国产第一区| 国产成人精品久久久久久| 99九九在线精品视频| 国产白丝娇喘喷水9色精品| 黄色怎么调成土黄色| 人妻一区二区av| 久久影院123| 18+在线观看网站| 国产男女内射视频| 热99久久久久精品小说推荐| 国产亚洲最大av| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区| 在线观看一区二区三区激情| 免费人妻精品一区二区三区视频| 观看av在线不卡| 亚洲欧美精品自产自拍| 久久人人爽人人爽人人片va| 亚洲欧美日韩另类电影网站| 熟女av电影| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡 | 国产成人免费无遮挡视频| 亚洲人成网站在线播| 国产白丝娇喘喷水9色精品| 十分钟在线观看高清视频www| 国产亚洲精品久久久com| 国产精品人妻久久久久久| 欧美bdsm另类| 热99国产精品久久久久久7| 免费看光身美女| 日韩大片免费观看网站| 热re99久久精品国产66热6| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| av在线老鸭窝| 免费人妻精品一区二区三区视频| 国产成人a∨麻豆精品| 男女无遮挡免费网站观看| 看非洲黑人一级黄片| 午夜激情av网站| 夫妻性生交免费视频一级片| 成人影院久久| 国产精品麻豆人妻色哟哟久久| 91aial.com中文字幕在线观看| 午夜91福利影院| 亚洲欧美成人精品一区二区| 黄色怎么调成土黄色| 黄色配什么色好看| 国产成人a∨麻豆精品| 久久国产精品大桥未久av| 亚洲综合精品二区| 成人毛片60女人毛片免费| 九色亚洲精品在线播放| 只有这里有精品99| 女的被弄到高潮叫床怎么办| 七月丁香在线播放| av专区在线播放| 多毛熟女@视频| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 免费av不卡在线播放| 毛片一级片免费看久久久久| 全区人妻精品视频| 男人爽女人下面视频在线观看| 日本黄大片高清| 国产精品99久久99久久久不卡 | 久久久久网色| 2022亚洲国产成人精品| 亚洲av不卡在线观看| 91aial.com中文字幕在线观看| 国产69精品久久久久777片| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美 | 美女中出高潮动态图| 丰满乱子伦码专区| 亚洲国产精品999| 日本av手机在线免费观看| 国产精品.久久久| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 日韩 亚洲 欧美在线| 久久热精品热| 天堂俺去俺来也www色官网| 日本午夜av视频| 久久精品国产鲁丝片午夜精品| 久久久久久久久大av| 久久久a久久爽久久v久久| 精品久久久久久久久av| 日韩在线高清观看一区二区三区| 观看美女的网站| 看免费成人av毛片| 久久韩国三级中文字幕| 国产免费福利视频在线观看| 久久精品国产亚洲网站| 欧美日韩视频精品一区| 涩涩av久久男人的天堂| 免费av中文字幕在线| 亚洲性久久影院| 久久精品久久精品一区二区三区| 国产免费现黄频在线看| 性色avwww在线观看| 亚洲欧美一区二区三区黑人 | 大片免费播放器 马上看| 成年美女黄网站色视频大全免费 | 69精品国产乱码久久久| 精品亚洲成a人片在线观看| 国产亚洲欧美精品永久| 日韩成人伦理影院| 美女内射精品一级片tv| 高清黄色对白视频在线免费看| 国产成人aa在线观看| 黄片无遮挡物在线观看| 极品少妇高潮喷水抽搐| 欧美少妇被猛烈插入视频| 国产探花极品一区二区| 好男人视频免费观看在线| 在线看a的网站| 99热这里只有是精品在线观看| 成人黄色视频免费在线看| 丝瓜视频免费看黄片| 久久人人爽人人爽人人片va| videossex国产| 亚洲国产欧美日韩在线播放| 日韩制服骚丝袜av| 在线观看免费视频网站a站| 99九九线精品视频在线观看视频| 国产成人freesex在线| 插阴视频在线观看视频| 亚洲精品亚洲一区二区| 国产精品久久久久久久久免| 日本vs欧美在线观看视频| 亚洲丝袜综合中文字幕| 最近中文字幕高清免费大全6| 国产精品一区二区在线观看99| 最后的刺客免费高清国语| 久久99一区二区三区| 国产69精品久久久久777片| av免费观看日本| 少妇精品久久久久久久| 9色porny在线观看| 熟女电影av网| 青春草国产在线视频| 日韩精品有码人妻一区| 亚洲av成人精品一区久久| 青春草亚洲视频在线观看| 亚洲成色77777| 国产 精品1| 日本午夜av视频| 午夜影院在线不卡| 欧美国产精品一级二级三级| 久久这里有精品视频免费| 中文天堂在线官网| 亚洲情色 制服丝袜| 一区二区三区免费毛片| 在线观看免费视频网站a站| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线 | 久久久亚洲精品成人影院| 久久人人爽av亚洲精品天堂| 人妻一区二区av| 校园人妻丝袜中文字幕| 国产极品天堂在线| 国国产精品蜜臀av免费| 久久精品国产亚洲av天美| av播播在线观看一区| 蜜桃国产av成人99| 国产一区二区在线观看日韩| 亚洲av综合色区一区| 哪个播放器可以免费观看大片| 欧美3d第一页| 精品久久久久久久久亚洲| 久久久久久久国产电影| 亚洲国产av影院在线观看| 高清在线视频一区二区三区| 十分钟在线观看高清视频www| 97在线人人人人妻| 日韩大片免费观看网站| 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 亚洲国产色片| 最近中文字幕2019免费版| 夜夜骑夜夜射夜夜干| 国产在线免费精品| 久久久久人妻精品一区果冻| 中国美白少妇内射xxxbb| √禁漫天堂资源中文www| 午夜视频国产福利| 精品久久久久久久久亚洲| 亚洲人成网站在线播| 亚洲欧美成人综合另类久久久| 中文字幕亚洲精品专区| av福利片在线| 国产深夜福利视频在线观看| 九九久久精品国产亚洲av麻豆| 少妇 在线观看| 亚洲激情五月婷婷啪啪| 久久人人爽人人片av| 国产精品成人在线| 晚上一个人看的免费电影| 亚洲欧美成人综合另类久久久| 欧美亚洲日本最大视频资源| 日韩精品有码人妻一区| 久久精品国产亚洲av天美| 亚洲国产精品专区欧美| 久久国产精品男人的天堂亚洲 | 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品古装| 成人手机av| 蜜桃国产av成人99| 久久精品国产自在天天线| 欧美成人精品欧美一级黄| 搡女人真爽免费视频火全软件| 免费黄网站久久成人精品| 日韩中字成人| 久久久久久久大尺度免费视频| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 亚洲综合色惰| 99久久人妻综合| 爱豆传媒免费全集在线观看| 国产淫语在线视频| 97在线视频观看| 蜜桃在线观看..| 91在线精品国自产拍蜜月| 大香蕉久久网| 一级毛片我不卡| 亚洲av欧美aⅴ国产| 三级国产精品片| 五月伊人婷婷丁香| videos熟女内射| 啦啦啦在线观看免费高清www| 在线观看一区二区三区激情| a级毛片免费高清观看在线播放| 久久亚洲国产成人精品v| 久久97久久精品| 中文字幕人妻丝袜制服| 狂野欧美白嫩少妇大欣赏| 日产精品乱码卡一卡2卡三| 嘟嘟电影网在线观看| 少妇人妻久久综合中文| 男人添女人高潮全过程视频| 黄色毛片三级朝国网站| 国产精品国产三级专区第一集| 日日啪夜夜爽| 黄片播放在线免费| 在线看a的网站| av线在线观看网站| 色视频在线一区二区三区| 久久热精品热| 久久久久久久久久久丰满| 视频中文字幕在线观看| 亚洲精品aⅴ在线观看| 精品人妻一区二区三区麻豆| 亚洲精品久久午夜乱码| 日韩av在线免费看完整版不卡| 老熟女久久久| 色视频在线一区二区三区| 一级,二级,三级黄色视频| 国产一区有黄有色的免费视频| 久久99热这里只频精品6学生| 亚洲精品aⅴ在线观看| 涩涩av久久男人的天堂|