• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    分光光度滴定法測(cè)某些多齒配體與Ni(Ⅱ)配合物的穩(wěn)定常數(shù)

    2012-09-15 11:45:02HavaOzayAhmetUlgenYakupBaran
    關(guān)鍵詞:化學(xué)系文理學(xué)院滴定法

    Hava OzayAhmet UlgenYakup Baran*,

    (1Onsekiz Mart大學(xué),文理學(xué)院,化學(xué)系,恰納卡萊 17100,土耳其)

    (2Erciyes大學(xué),文理學(xué)院,化學(xué)系,開(kāi)塞利,土耳其)

    分光光度滴定法測(cè)某些多齒配體與Ni(Ⅱ)配合物的穩(wěn)定常數(shù)

    Hava Ozay1Ahmet Ulgen2Yakup Baran*,1

    (1Onsekiz Mart大學(xué),文理學(xué)院,化學(xué)系,恰納卡萊 17100,土耳其)

    (2Erciyes大學(xué),文理學(xué)院,化學(xué)系,開(kāi)塞利,土耳其)

    制備了多齒大環(huán)配體 1,4,7,10-四氮雜環(huán)十二烷(L1);1,4,8,11-四(2-羥乙基)-1,4,8,11-四氮雜環(huán)十四烷(L2)和無(wú)環(huán)多齒配體;3-(2-氨基環(huán)己氨基)-2-(2-氨基環(huán)己氨基甲基)丙酸(L3),4,7,10-十三烷二腈三氫氯化物(L4),2,2′-(1,2-二乙基-雙((甲基二氮雜烷基)二乙醇(L5)and 1,1′-(1,2-二乙基-雙((2-氨基乙基)二氮雜烷基))-2-二丙醇 (L6),并用 FTIR,NMR 和 MS 進(jìn)行了表征,用配有二極管陣列檢測(cè)器、蠕動(dòng)泵和pH計(jì)的UV-VIS光度儀,經(jīng)分光光度滴定法測(cè)定了它們與Ni(Ⅱ)的配合物的穩(wěn)定常數(shù)。將穩(wěn)定常數(shù)的數(shù)據(jù)與配體的開(kāi)鏈和環(huán)狀結(jié)構(gòu)特性進(jìn)行了關(guān)聯(lián)討論。還討論了側(cè)基對(duì)配合物穩(wěn)定常數(shù)的影響。

    配合物;多齒;分光光度滴定;Ni(Ⅱ)

    0 Introduction

    Forthe pastdecade,linearormacrocyclic polyamines have been studied extensively.They are an important class of compounds due to their role as polyprotic bases[1],biologically important compounds[2-3],sensors for the detection of metal ions and metal ion complexation[4-8].Transition metal complexes of multidentate ligands with N and O donors are used as model systems for many metalloenzymes[9-11],luminescencesensing,light-emitting devices,inter-metallic communication,catalysts,molecular electronics,chromotropic compounds,non-linear chromophores[12-16]and in coordination polymer chemistry[17].

    Nickel has a very rich coordination chemistry[18].Nickel(Ⅱ)complexes are rich in color variation.They have coordination structures containing square-planar,tetrahedral,square-pyramidal,trigonal-bipyramidal and octahedral forms.Due to these properties of nickel(Ⅱ)complexes,a great number of studies relating to chromotropic metal complexes with applications as multi functional molecular devices have been carried out[19-20].In addition to these properties,metal ions may be part of the active sites of enzymes.There has been a great interest in the preparation of metal complexes which could mimic these metalloprotein′s active sites[21].

    Potentiometric and spectrophotometric titration methods are generally used to investigate the equilibria in solutions to determine the acid-base constants[22-23].The potentiometric titration is used frequently due to the simplicity ofequipmentand minimaltime requirement[24].However,this method does not include all aspects of solution chemistry.In order to gain complete information about the species formed during titration,spectrophotometric titrations are usually carried out simultaneously[25].This technique shows how much equilibrium exists in the solution during the study and can be applied to structural analysis of compounds.A great number of studies have reported on the stability of nickel(Ⅱ)complexes with nitrogen and oxygen donor atoms.Basallote and co-workers reported equilibrium constants of mono-and bi-nuclear nickel complexes of the hexaazamacrocycle ligand.The equilibrium constants of complexes were obtained from potentiometric titration studies[26].Krot and co-workers investigated the stability constants of copper,nickel,silver and mercury complexes of a tetra amide ligand using the potentiometric titration method and determined that the nickel complexesarelessstablethantheircopperanalogues[27].

    Here we report the synthesis of L1,L2,L3,L4,L5and L6and present the stability constants of nickel(Ⅱ)complexes obtained by spectrophotometric titration and subsequent global analysis of the data with Specfit/32 software package.
    Fig.1 shows the structures of ligands.

    1 Experimental

    1.1 Chemicals and methods

    All reagents were obtained commercially and used as received without further purification.Solvents were purified according to the standard methods prior to use.L1waspurchased from Sigma-Aldrich Chemical Company.Mass spectra were measured with a GC-MS,Thermo Finnigan Trace DSQ.NMR spectra were obtained with a Varian 300 MHzspectrometer.Spectrophotometric titration was measured with a UVVis,HP 8453 Diode Array Spectrophotometer.For the spectrophotometric titration acid or base solution was added to 1 cm quartz cell with a peristaltic pump(Cole Palmer,Masterflex)and the pH value of the solutions was measured with an Orion pH meter combined with a Metrohm semi-micro electrode.FTIR spectra were recorded with a Perkin Elmer BXII spectrometer.The molar magnetic susceptibilities of the complexes were measured on powdered sample at room temperature using a Sherwood Scientific Magnetic Susceptibility Balance.

    1.2 Synthesis of ligands

    1.2.1 Synthesis of 1,4,8,11-tetra(2-hydroxyethyl)-1,4,8,11-tetraazacyclo decane,L2·4H2O

    Ethylene oxide(2.01 mL,40 mmol)was added to a solution of cyclam(1.38 g,4 mmol)in water(15 mL)at 0℃on a magnetic stirrer for six hours and warmed to room temperature.Solvent volume was reduced by a rotary evaporatorand the solution wasleftfor crystallization.Clear colorless crystals formed and werewashed with ice-cold water (2 mL)and dried under vacuum.Yield 1.1 g,63%.1H NMR (300 MHz,25 ℃,CDCl3,δ,J(Hz)):5.11(s),3.59(t,J=5.45,2H),2.27(s),2.49(s),2.43(t,J=6.12),2.13(m).13C NMR(300 MHz,25 ℃,CDCl3,δ):58.9,56.5,51.4,51.7,21.5,m/z:377(M+),FTIR(ATR,cm-1):Ⅴ(OH):3 349.

    1.2.2 Synthesis of 3-(2-aminocyclohexylamino)-2-(2-aminocyclohexylaminomethyl)propionic acid,L3·4HCl·2H2O

    L3was prepared by template synthesis from bis(cyclohexane-1,2-diamine)copper(Ⅱ),triethylamine,diethylmalonate and formaldehyde in methanol.The aqueous solution of copper(Ⅱ)perchlorate hexahydrate(11.28 g,30.00 mmol)was added to a solution of 1,2-diaminocyclohexane (6.85 g,60.00 mol)in deionized water (300 mL)on a magnetic stirrer.The reaction mixture was warmed to 50℃and was stirred at this temperature for 2 h.Then the solution was cooled to room temperature and Bis(cyclohexane-1,2-diamine)copper(Ⅱ) perchlorate was separated by filtering.

    The solution ofbis(cyclohexane-1,2-diamine)copper(Ⅱ) perchlorate(6.00 g,12.00 mmol)in 250 mL methanol was heated to 50℃while stirring magnetically and to this solution,triethylamine (6 mL,43.05 mmol)and diethylmalonate(1.90 mL,12.00 mmol)were added.Then,a solution of formaldehyde(37%aqueous solution,3 mL)in methanol(50 mL)was added drop wise to the reaction mixture and the solution was stirred for 16 h at 50℃.The color of the reaction mixture converted to purple-red during to this time.This solution was diluted to 2 L with distilled water and then the solution was passed through a column (35×3.5 cm)of SP Sephadex C-25 resin (Na+form)and eluted with 0.2 mol·L-1NaClO4solution.After a while,two bands,one narrow and one broad,were observed.Both bands were collected and controlled.It was observed that a small amount of macrocyclic compound formed.The solvent of the acyclic compound was evaporated and dried.5 mL of triethylamine was diluted to 25 mL with deionized water and added to the solution of acyclic compound(3.5 g)in methanol(200 mL).The reaction mixture was stirred on a magnetic stirrer at 60℃for 12 h.Then the mixture was cooled to room temperature and diluted to 2 L with deionized water.The diluted solution was passed through a column (35×4 cm)of SP Sephadex C-25 resin (Na+form)and the column was elutedwith0.2mol·L-1NaClO4solution.Bands observed in the column were collected and the solution was concentrated to 300 mL by rotary evaporation.This solution and 3 mol·L-1HCl solution were simultaneously added over 2 hours drop wise from dropping funnels to Zn powder while stirring on a magnetic stirrer at room temperature.Then the solution was heated to 50 ℃ and stirred 30 min at this temperature.The solution was cooled to room temperature and was filtered on celite to remove Cu and residual Zn.The clear solution was diluted to 2 L with deionized water and the solution was passed through a column (35×3 cm)of Dowex 50 W×2 resin(H+form)and the column was eluted for a while with deionized water and afterwards with 1 mol·L-1HCl solution to remove Zn2+ions.Elution continued until no further Zn2+ions were present(checked by the addition of NaOH solution to eluent in order to observe Zn(OH)2).When the formation of jelly Zn(OH)2finished,the column was eluted with 3 mol·L-1HCl.After evaporation of the solvent by a rotary evaporator,the white colored crude product was obtained.Then the crude product was recrystallized in hot methanol and L3was obtained as a white powder(C16H32N4O2·4HCl·H2O),L3.Yield:2.1 g,52%.C16H35Cl4N4O2·4HCl·2H2O (Calcd.C,38.95;H,7.97;N,11.36)found%:C,38.79;H,7.81;N,11.44).1H NMR(300 MHz,D2O,δ,J(Hz)):1.28~2.11(m,16 H),2.13~2.46(m,6H),3.31~3.73(m,9H).13C NMR(300 MHz,D2O,δ):19.3,(2C);19.4(2C);22.8;23,1;26.1(2C);33.7;40.6;41.6;47.4 (2C);54.6;56.4;and 173.3.m/z:314(M+),FTIR(ATR,cm-1):Ⅴ(COOH):1 711 vs(br),2 017 m,1 612 s,1 514 s,Ⅴ(NH):3 369,3 152.

    1.2.3 Synthesis of 4,7,10-triazatridecanedinitrile trihydrochloride,L4·3HCl

    4,7,10-Triazatridecanedinitrile trihydrochloride was synthesized by condensation of diethylenetriamine(dien)and acrylonitrile according to the literature[27].Acrylonitrile(3.19 g,60.00 mmol)was added drop wise to a magnetically stirred dien solution (2.58 g,25 mmol),and the mixture was stirred for 20 h at roomtemperature.The crude product was purified as the trihydrochloride by recrystallization from methanol/water/HCl and L4·3HCl was obtained as a white powder.Yield:3.20 g,40%.C10H19N53HCl(Calc.C,37.69;H,6.96;N,21.98)found%:C,37.43;H,7.11;N,21.84).1H NMR(300 MHz,D2O,δ,J(Hz)):2.49(t,J=6.81,4H),2.55(t,J=5.97,4H),2.83(t,J=4.45,4H),2.89(t,J=5.77,4H).13C NMR(300 MHz,D2O,δ):120.2(2C);46.9(2C);46.5(2C);46.3(2C);17.9(2C);m/z:210(M+),FTIR(ATR,cm-1):Ⅴ(NH3+):2667,2435;Ⅴ(CN):2661.

    1.2.4 Synthesis of 2,2′-(ethane-1,2-diyl)bis(methylazanediyl))diethanol,L5

    Ethylene oxide (3.02 g,60.00 mmol)was added dropwise to a solution of N,N′-dimethylethylenediamine(2.00 g,22.68 mmol)in methanol(50 mL)at 0 C and the reaction mixture was stirred for 12 h.Then the reaction mixture was warmed to the room temperature and solvent volume was reduced by a rotary evaporator.The solution was left for crystallization and L5was obtained as a viscose oil.Yield:2.7 g,76%.C8H20N2O2(Calcd.C,38.88;H,8.16;N,11.33)found%:C,38.79;H,7.88;N,11.28).).1H NMR (300 MHz,D2O,δ,J(Hz)):3.83(t,J=6.0,4H),2.78(t,J=6.0,4H),2.53(t,J=6.0,4H),2.23(s,6H).13C NMR (300 MHz,D2O,δ):58.6(2C);58.1(2C);53.6(2C);41.7(2C);m/z:176.99(M+),FTIR(ATR,cm-1):Ⅴ(OH):3270 br.

    1.2.5 Synthesis of 1,1′-(ethane-1,2-diylbis((2-aminoethyl)azanediyl))dipropan-2-ol,L6

    Propylene oxide (2.32 g,40 mmol)was added dropwise to solution of triethylenetetraamine(2.92 g,20 mmol)in methanol(50 mL)at 0℃and the reaction mixture was stirred for 12 h.Then,the reaction mixture was warmed to room temperature and solvent volume was reduced by a rotary evaporator.The solution was left for crystallization and L5was obtained as a viscose oil.Yield:2.9 g,55%.C12H30N4O2(Calcd.C,54.93;H,11.52;N,21.35 found%:C,54.73;H,11.48;N,21.28).1H NMR(300 MHz,D2O,δ,J(Hz)):3.89(m,2H),3.28(t,J=6 Hz,4H),2.71(t,J=6,4H),2.49(t,J=6 Hz,4H),2.43(t,J=3,4H),1.22(d J=6,6H).13C NMR(300 MHz,D2O,δ):66.1(2C);61.1(2C);58.6(2C);53.7(2C);41.8(2C);21.5(2C)m/z:263.11(M+),FTIR(ATR,cm-1):Ⅴ(OH):3275 br,(NH):3357,3190.

    1.3 Synthesis of the NiL1complex

    A solution containing (1.13 mmol,0.36g)L1and 1.15 mmol,0.27g)NiCl26H2O in 80 mL argon saturated water was stirred and heated at 60℃for several hours.The green solution was then diluted to 500 mL with water,filtered and sorbed onto a column of SP Sephadex C25(Na+form)resin(20×5 cm).Upon elution 0.125 mol·L-1NaClO4,two bands were separated.A green band eluted with 0.2 mol·L-1NaClO4.This band was stable in acidic medium which was the initial indication of macrocyclic complex.The green band was reduced in volume by rotary evaporation and left to crystallize.The solid product was dried in vacuum desiccators.Anal.Calcd.for:[NiL1]Cl2·2H2O;C8H24Ni Cl2N4O2(%):C,28.44;H,7.16;N,16.58.Found(%)C,28.37;H,7.11;N,16.49.FTIR(cm-1,KBr):Ⅴ(N-H),3178,Ⅴ(Ni-N),543.

    1.3.1 Synthesis of the NiL2complex

    All the other complexes are prepared by the same method.Yield:68%,Anal.Calcd.for[NiL2]Cl2.H2O:C18H42NiCl2N4O5(%)C,41.25;H,8.08;N,10.69.Found(%):C,41.37;H,8.11;N,10.51.FTIR(cm-1,KBr):Ⅴ(NH),3166,Ⅴ(Ni-N),566.

    1.3.2 Synthesis of the NiL3complex

    Yield:73%,FTIR (KBr,cm-1):Anal.Calcd.for:[NiL3]Cl2·H2O;C16H36NiCl2N4O(%):C,44.68;H,8.44;N,13.03.Found(%)C,44.57;H,8.41;N,13.09.FTIR(cm-1,KBr):Ⅴ(N-H),3149,Ⅴ(Ni-N),577.

    1.3.3 Synthesis of the NiL4complex

    Yield:66%,Anal.Calcd.For%:[NiL4Cl]Cl·2H2O;C10H23NiCl2N5O2(%)C,32.04;H,6.18;N,18.64.Found(%):C,32.13;H,6.11;N,18.59.FTIR(cm-1,KBr):Ⅴ(NH),3182,Ⅴ(Ni-N),559.

    1.3.4 Synthesis of the NiL5complex

    Yield:75%,Anal.Calcd.For%:[NiL5]Cl2·H2O;C8H22NiCl2N2O3(%):C,29.67;H,6.85;N,8.65.Found(%)C,29.57;H,7.01;N,8.69.FTIR(cm-1,KBr):Ⅴ(NH),3176,Ⅴ(Ni-N),571.

    1.3.5 Synthesis of the NiL6complex

    Yield:58%,Anal.Calcd.For%:[NiL6]Cl2·H2O;C12H32NiCl2N4O3(%):C,35.15;H,7.87;N,13.66.Found(%):C,35.27;H,7.71;N,13.59.FTIR(cm-1,KBr):Ⅴ(NH),3174,Ⅴ(Ni-N),579.

    1.4 Electronic spectra

    The electronic spectra data for the Ni(Ⅱ)complexes are given in Table 1.There are four bands for the Ni(Ⅱ)complexes in UV-Vis spectrum.The low intensity bands around 560 and 950 nm could be assigned to dd,Laporte forbidden,spin allowed transitions of Ni(Ⅱ)ions.The medium intensity bands around 380 nm are due to metal-ligand charge transfer processes.

    Table 1 Absorbance changes in Ni-L complexes during spectrophotometric titration

    1.5 Magnetic measurements

    The Ni(Ⅱ)complexes with the allligands are diamagnetic indicating the square planer structure of the complex.

    1.6 Spectrophotometric titrations

    Stability constants of the complexes were measured with an automatic titration set up consisting of a computer interfaced to an Agilent HP 8453 Diode ArraySpectro-photometerwith astirrerundera thermostated cell holder,a peristaltic pump,Cole Palmer and an Orion pH meter combined with an Metrohm semi-micro electrode.The electrode was calibrated with pH value of 4.0 and 7.0 buffers for measurements in aqueous solutions.Argon-saturated solutions of the ligands(1.2 mmol)and the nickel(Ⅱ)(1.2 mmol)containing 0.1 mol·L-1NaClO4for the adjustment of ionic strength were titrated with base,0.1 mol·L-1NaOH,in 1 cm quartz cell and the cell compartment was thermostated to (25±0.1)℃ during titration.The cell was containing a pH electrode and a capillary tip from peristaltic pump.The UV-Vis spectrum was determined during the titration at 60 sec intervals over the wavelength range of 350~1 100 nm Fig.2 shows typical 2D absorption spectra of NiL3during spectrophotometric titration as a function of pH value.Fig.3 shows speciation graph for the complex formation of Ni(Ⅱ) with L5.The measurements were made over the pH value range of 2.0 to 11.0.Triplicate data analyses were performed for each complex.Data analysis was carried out using the nonlinear leastsquare fitting program Specfit/32.An initial guess for the equilibrium constants were entered and these values iteratively refined until the best fit was achieved.

    2 Results and discussion

    2.1 Stability of the complexes

    All the macrocyclic and acyclic complexes are colored solid and stable at room temperature.They are soluble in water.Each Ni(Ⅱ) ion is coordinated to four nitrogen atoms in the NiL1,NiL2,NiL3and NiL6complexes.The Ni(Ⅱ) ion is incorporated into ligands to form square planer environment.The other ligands L4and L5which have N3and N2O2donor atoms form also square planer geometry.Magnetic measurements of thecomplexes support for the square planer geometry.All the complexes exhibit diamagnetism in solid state at room temperature.Pendant groups in L2,L4and L6ligands do not involve in coordination and stay as dangling group in the complexes.This is supported by FTIR study of the complexes and ligands.The O-H stretching vibration of the ligands does not change after complex formation.The trend in stability order for diamagnetic Ni(Ⅱ) complexes are observed that Ni(Ⅱ)ions prefer the smallest macrocycle L1.The same effect is found for the open-chain tetraazaamines L6~L3.The larger the cavity,the more their complexes are destabilized by the presence of six membered rings.Large differences in stability constants within the series are observed for the nickel(Ⅱ)complexes of macrocyclic and acyclic ligands.When NiL1stability is compared with open chain analogue NiL6,stability decreases from 21.61 to 17.93.As the number of chelate rings increase,stability of the complexes decrease for the Ni(Ⅱ)ions[28].When the intermediate in a five-membered chelate ring is compared with the six-membered chelate ring,it is observed that in the five-membered chelate ring,the free donor group will possess increased entropy.As a result,the small size chelate ring will show greatest entropy increase while the larger ring chelate will show a decrease in entropy.This effect may be observed when NiL1is compared with NiL2.NiL2has two six membered rings while NiL1has no six membered ring,as a result stability decrease from 21.61 to 19.52.The enhanced stability of the macrocyclic ligand over its acyclic analogue is explained by the macrocyclic effect.Solvation of the ligands is also important during complexation.Macrocycles are thought to be less solvated than their acyclic analogues which leads to an enhancement of the thermodynamic stability for cyclic ligands over their acyclic analogues.Pendant groups on the nitrogen atoms will cause a decrease in the basicity of the nitrogen donor atoms and as a result of this,the stability of the complexes will decrease.There is a wealth of stability constant data for the polyazamacrocycles with different metal ions[29-32].Macrocycles can be organized to select particular metal ions from solution and can be used in metal ion extractions.Selectivity of the macrocycles can be altered in different ways.By changing cavity size and adding pendant groups to the nitrogen atom in the ring,the selectivity of the macrocycles changes.

    3 Conclusions

    For the most of the complexation titrations,one protonated complex species is observed which can be assigned to protonation of the primary amine or one of the secondary amines in the macrocycle.It is expected that the stability and selectivity of the ligands with nickel(Ⅱ)can be classified according to the parameters mentioned.NiL1complex is the most stable.The macrocyclic effect,number of rings and ring size cause nickel(Ⅱ) to bind to L1selectively.The stability of the NiL2decreases when compared to the NiL1.The cavity size,change in basicity of the donor atoms and steric effect cause a decrease in the stability of the nickel(Ⅱ)complex with L2.L6and L5ligands are the acyclic analogue of L1and L2,respectively.The stabilities of NiL6and NiL5decrease as expected.The least stable complex is NiL5with an alkylated secondary amine and two oxygen donor atoms.The stability constant of NiL4is 12.31 with three donor nitrogens which do not saturate the coordination sphere of the nickel(Ⅱ).Tetradentate coordination has been established for nickel(Ⅱ) with all of the ligands studied.Similar complex formation constants are observed for macrocyclic NiL1and NiL2since nickel(Ⅱ)is bound to the macrocyclic plane in the same manner.Table 2 shows the stability constants of the complexes at 20℃,I=0.1 mol·L-1NaClO4.

    Table 2 Stability constants of the complexes at 20 ℃,I=0.1 mol·L-1NaClO4

    Continued Table 2

    Acknowledgements:The authors thank the Scientific and Technological Research Council of Turkey (TUBITAK)for financial support(Project No.104T389).

    [1]Cascio S,Robertis A D,Foti C.Fluid Phase Equilibr.,2000,170:167-181

    [2]Silva J A,Felcman A L R,Lopes C C,et al.Inorg.Chim.Acta,2003,356:155-166

    [3]Herve A C,Yaouanc J J,Toupet L,et al.J.Organomet.Chem.,2002,664:214-222

    [4]Lai R A,Chakraborty M,Chanu O B,et al.J.Coord.Chem.,2010,63:1239-1251

    [5]Ajibade A P,Zulu H N.J.Coord.Chem.,2010,63:3229-3239

    [6]Ozay H,Baran Y.J.Coord.Chem.,2010,63:4299-4308

    [7]Yamada Y,Takenoudhi S I,Okamoto K I,et al.J.Coord.Chem.,2010,63:996-1012

    [8]Basallote M G,Domenech A,Verdejo B,et al.Inorg.Chim.Acta,2006,359:2004-2014

    [9]Jubert C,Mohamadou A,Barbier J P,et al.Inorg.Chem.Commun.,2003,6:900-907

    [10]Ambrosi G,Formica M,Pontellini R,et al.Inorg.Chim.Acta,2009,362:2667-2677

    [11]Sarma M,Singh A,Mondal B,et al.Inorg.Chim.Acta,2010,363:63-70

    [12]Shirase H,MiuraY,Fukuda Y.Monatsh Chem.,2009,140:807-814

    [13]Shirase H,Mori Y,Uchiyama M,et al.Monatsh Chem.,2009,140:801-805

    [14]Deplano P,Marchio L,Yagubski E B,et al.Monatsh Chem.,2009,140:775-781

    [15]Amatore C,Jutand A,Rollin Y,et al.Monatsh Chem.,2000,131:1293-1304

    [16]Panda G,Selim M,Mukherjea K K,et al.Monatsh Chem.,2009,140:281-286

    [17]Kirillov A M,Kopylovich M N,Pombeiro A J L,et al.Angew Chem.Int.Ed.,2005,44:4345-4349

    [18]Chattopadhyay T,Mukherjee M,Das D,et al.Inorg.Chem.,2010,49:3121-3125

    [19]Murata F,Arakawa M,Fukuda Y,et al.Polyhedron,2007,26:1570-1578

    [20]Koner S,Tsutake M,Banerjee S,et al.J.Mol.Struct.,2002,608:63-69

    [21]Hubert S,Mohamadou A,Gerard C.Inorg.Chim.Acta,2007,360:1702-1710

    [22]Ibanez G A,Escander G M.Polyhedron,1998,17:4433-4441

    [23]Kadar M,Biro A,Huszthy P.Spectrochim Acta A,2005,62:1032-1038

    [24]Dyson R M,Kaderli S,Zuberbühler A D,et al.Anal.Chim.Acta,1997,353:381-393

    [25]Dyson R M,Lawrance G A,Maeder M,et al.Polyhedron,1999,18:3243-3251

    [26]Basallote M G,Fernandez-Trujillo M J,Manez M A.Dalton Trans.,2002:3691-3695

    [27]Krot K A,Namor A F D,Nolan K B,et al.Inorg.Chim.Acta,2005,358:3497-3505

    [28]Polster J,Lachmann H.Spectrometric Titrations:Analysis of Chemical Equilibria,VCH,1989.

    [29]Luckay R C,Hancock R D.Dalton Trans.,1991:1491-1494

    [30]Martel A E,Smith R M.The Critical Stability Constants:Vol.1-6,N Y:Plenum Press,1974-1989.

    [31]Bianchi A,Micheloni M,Paoletti P.Coord.Chem.Rev.,1991,110:17-113

    [32]Izzat R M,Pawlak P,Breuning R L,et al.Chem.Rev.,1991,91:1721-1733

    Stability Constants of Some Polydentate Ligands with Nickel(Ⅱ)by Spectrophotometric Titration

    Hava Ozay1Ahmet Ulgen2Yakup Baran*,1
    (1Onsekiz Mart University,Art and Science Faculty,Department of Chemistry,Canakkale 17100,Turkey)
    (2Erciyes University,Art and Science Faculty,Department of Chemistry,Kayseri,Turkey)

    The polydentate macrocyclic ligands,1,4,7,10-tetraazacyclododecane (L1),1,4,8,11-tetra(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane (L2);and acyclicpolydentate ligands;3-(2-aminocyclohexylamino)-2-(2-aminocyclohexylaminomethyl)propionic acid(L3),4,7,10-triazatridecane dinitrile trihydrochloride(L4),2,2′-(1,2-diyl)bis(methylazanediyl)diethanol(L5)and 1,1′-(ethane-1,2-diylbis((2-aminoethyl)azanediyl))dipropan-2-ol,(L6)were prepared and their structures were investigated by FTIR,NMR and MS.The stability constants of the nickel(Ⅱ)complexes with these ligands were determined by spectrophotometric titration using a diode array UV-VIS spectrophotometer equipped with peristaltic pump and pH meter.The values of the stability constants are discussed in terms of the open chain or cyclic nature of the ligands.The effect of pendant group on the stability of the complexes is discussed.

    complex;polydentate;stability constants;spectrophotometric titration;nickel(Ⅱ)

    O614.4;O614.81+3

    A

    1001-4861(2012)08-1680-07

    2011-12-20。收修改稿日期(Date revised):2011-03-06。

    The Scientific and Technological Research Council of Turkey(TUBITAK)(Project No.104T389)資助項(xiàng)目。

    *通訊聯(lián)系人(Corresponding Author)。E-mail:yakupbaran@yahoo.com

    猜你喜歡
    化學(xué)系文理學(xué)院滴定法
    一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
    電位滴定法測(cè)定聚丙烯酰胺中氯化物
    云南化工(2021年11期)2022-01-12 06:06:18
    電位滴定法在食品安全檢測(cè)中的應(yīng)用
    長(zhǎng)江大學(xué)文理學(xué)院作品選登
    湖北師范大學(xué)文理學(xué)院作品
    大眾文藝(2020年15期)2020-09-11 02:28:04
    淺析采用滴定法解題的策略
    黑夜的獻(xiàn)詩(shī)
    大眾文藝(2019年23期)2019-12-15 09:59:08
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    西安文理學(xué)院高萍教授
    亚洲欧美日韩卡通动漫| 免费高清在线观看视频在线观看| 美女国产视频在线观看| 一二三四中文在线观看免费高清| 久久99热6这里只有精品| 中文字幕久久专区| 欧美区成人在线视频| 街头女战士在线观看网站| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 国产69精品久久久久777片| 免费人成在线观看视频色| 插逼视频在线观看| 搡女人真爽免费视频火全软件| 爱豆传媒免费全集在线观看| 成人亚洲精品av一区二区| 日韩成人伦理影院| 久久99精品国语久久久| 麻豆国产97在线/欧美| 久久久久九九精品影院| 国产 一区 欧美 日韩| 岛国毛片在线播放| 日日啪夜夜撸| 亚洲自偷自拍三级| 午夜爱爱视频在线播放| 天堂av国产一区二区熟女人妻| 免费观看av网站的网址| 日韩大片免费观看网站| 国产亚洲av嫩草精品影院| 99久久人妻综合| 成人高潮视频无遮挡免费网站| 久久99精品国语久久久| av在线播放精品| 啦啦啦啦在线视频资源| 亚洲在久久综合| 亚洲自拍偷在线| 狂野欧美激情性xxxx在线观看| 简卡轻食公司| 中文字幕av在线有码专区| 男的添女的下面高潮视频| 亚洲av.av天堂| 色综合站精品国产| 亚洲国产精品成人综合色| 亚洲av免费高清在线观看| 亚洲精品日本国产第一区| 亚洲欧美一区二区三区国产| 久久久久性生活片| 九九爱精品视频在线观看| 乱码一卡2卡4卡精品| 日韩视频在线欧美| 日韩电影二区| 久久精品熟女亚洲av麻豆精品 | 直男gayav资源| 久久久久久久国产电影| 国产成人a区在线观看| 国产成人精品一,二区| 国产又色又爽无遮挡免| 中国美白少妇内射xxxbb| 欧美激情久久久久久爽电影| 欧美最新免费一区二区三区| 91aial.com中文字幕在线观看| 中国国产av一级| 午夜激情欧美在线| 麻豆成人av视频| 汤姆久久久久久久影院中文字幕 | 色尼玛亚洲综合影院| 免费大片黄手机在线观看| 日韩欧美 国产精品| 亚洲欧美日韩无卡精品| 99热网站在线观看| 久久久久久伊人网av| 久久久久久伊人网av| 91久久精品国产一区二区三区| 麻豆国产97在线/欧美| 国产精品日韩av在线免费观看| 成人特级av手机在线观看| 综合色丁香网| 18禁在线无遮挡免费观看视频| 天天躁日日操中文字幕| 美女cb高潮喷水在线观看| 在线免费十八禁| 高清毛片免费看| 亚洲天堂国产精品一区在线| 欧美变态另类bdsm刘玥| 街头女战士在线观看网站| 国产黄色小视频在线观看| 国产69精品久久久久777片| 欧美+日韩+精品| 中文欧美无线码| 国产黄色小视频在线观看| 欧美极品一区二区三区四区| 国产一级毛片七仙女欲春2| 亚洲自偷自拍三级| 国产乱来视频区| av在线亚洲专区| 亚洲精品,欧美精品| 日本av手机在线免费观看| 欧美极品一区二区三区四区| 寂寞人妻少妇视频99o| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲最大成人手机在线| 真实男女啪啪啪动态图| 男女啪啪激烈高潮av片| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 深爱激情五月婷婷| 亚洲精品一区蜜桃| 肉色欧美久久久久久久蜜桃 | 亚洲av免费高清在线观看| 成人一区二区视频在线观看| 国产精品福利在线免费观看| 久久午夜福利片| 国产大屁股一区二区在线视频| 国内精品美女久久久久久| 国产国拍精品亚洲av在线观看| 国产黄色视频一区二区在线观看| 黄色配什么色好看| 黑人高潮一二区| 男人爽女人下面视频在线观看| 国产欧美日韩精品一区二区| 美女主播在线视频| 亚洲av免费高清在线观看| 国产伦精品一区二区三区四那| freevideosex欧美| 丰满少妇做爰视频| 赤兔流量卡办理| 免费高清在线观看视频在线观看| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| 黄色日韩在线| 日韩av免费高清视频| 久久久久性生活片| 亚洲经典国产精华液单| 久久久国产一区二区| 51国产日韩欧美| 久久亚洲国产成人精品v| 看非洲黑人一级黄片| 18禁在线播放成人免费| 直男gayav资源| 三级国产精品欧美在线观看| 天美传媒精品一区二区| 久久精品国产亚洲av天美| 全区人妻精品视频| 丰满乱子伦码专区| 亚洲精品乱码久久久v下载方式| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 一级黄片播放器| 亚洲性久久影院| 男人舔女人下体高潮全视频| 在线免费十八禁| av在线亚洲专区| 精品国产三级普通话版| 成年人午夜在线观看视频 | 精品午夜福利在线看| 国产黄色视频一区二区在线观看| 夫妻性生交免费视频一级片| 少妇的逼好多水| 在线免费观看不下载黄p国产| 亚洲,欧美,日韩| 国产伦精品一区二区三区视频9| 午夜福利视频1000在线观看| 久久亚洲国产成人精品v| 黄片无遮挡物在线观看| 2021少妇久久久久久久久久久| 啦啦啦韩国在线观看视频| 全区人妻精品视频| 国产 一区精品| 黑人高潮一二区| 久久精品综合一区二区三区| 性插视频无遮挡在线免费观看| 久久精品夜色国产| 蜜桃亚洲精品一区二区三区| 真实男女啪啪啪动态图| 岛国毛片在线播放| 天堂中文最新版在线下载 | 老司机影院毛片| 国产真实伦视频高清在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产 亚洲一区二区三区 | 亚洲最大成人手机在线| 成人高潮视频无遮挡免费网站| 亚洲精品色激情综合| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 日日撸夜夜添| 午夜爱爱视频在线播放| 精品不卡国产一区二区三区| 国产精品爽爽va在线观看网站| 欧美 日韩 精品 国产| 九九在线视频观看精品| 亚洲精品国产成人久久av| 高清毛片免费看| 国产免费福利视频在线观看| 校园人妻丝袜中文字幕| 青春草视频在线免费观看| av播播在线观看一区| 成人无遮挡网站| 免费av观看视频| 热99在线观看视频| 久久人人爽人人片av| 99久久九九国产精品国产免费| 中文精品一卡2卡3卡4更新| 久久草成人影院| 国产熟女欧美一区二区| 校园人妻丝袜中文字幕| 日韩欧美一区视频在线观看 | 又爽又黄无遮挡网站| 亚洲最大成人中文| 亚洲av福利一区| 超碰97精品在线观看| 欧美区成人在线视频| 最近视频中文字幕2019在线8| 亚洲不卡免费看| 久久久久久九九精品二区国产| 丝袜美腿在线中文| 中国美白少妇内射xxxbb| 高清日韩中文字幕在线| 久久草成人影院| 我的老师免费观看完整版| 国产av国产精品国产| 日韩电影二区| 免费av毛片视频| 亚洲精品第二区| 亚洲av二区三区四区| 久久精品综合一区二区三区| 高清在线视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 成人无遮挡网站| 日韩成人伦理影院| 国产亚洲午夜精品一区二区久久 | 久久久久久久久中文| 精品一区二区免费观看| 国产精品蜜桃在线观看| 国产黄色免费在线视频| 国产片特级美女逼逼视频| 国产毛片a区久久久久| 丰满乱子伦码专区| 99热这里只有是精品50| 久久99热这里只有精品18| 最近的中文字幕免费完整| 欧美日韩综合久久久久久| 成人特级av手机在线观看| 亚洲天堂国产精品一区在线| 久久精品久久久久久噜噜老黄| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 久久久久久久久大av| 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 久久97久久精品| 欧美潮喷喷水| 久久久久久久久久黄片| 内地一区二区视频在线| av播播在线观看一区| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 卡戴珊不雅视频在线播放| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 国产精品伦人一区二区| 久久久久久九九精品二区国产| 成人无遮挡网站| 特级一级黄色大片| 夫妻午夜视频| 色尼玛亚洲综合影院| 日日啪夜夜撸| 能在线免费看毛片的网站| 91狼人影院| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av天美| 日本与韩国留学比较| 亚洲最大成人手机在线| 国产av码专区亚洲av| 最近中文字幕高清免费大全6| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 亚洲图色成人| 3wmmmm亚洲av在线观看| 久久久久性生活片| 亚洲精品乱码久久久久久按摩| 性色avwww在线观看| 国产在线男女| 天堂√8在线中文| 精品久久久久久久久久久久久| 免费看a级黄色片| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 国产高清有码在线观看视频| 国产探花极品一区二区| 欧美另类一区| 欧美变态另类bdsm刘玥| 床上黄色一级片| 国产在视频线在精品| 美女主播在线视频| 国产精品久久久久久久久免| 美女大奶头视频| 亚洲精品第二区| 亚洲欧美精品自产自拍| 毛片女人毛片| 在线a可以看的网站| 中国国产av一级| 天堂网av新在线| 亚洲av成人精品一二三区| 色视频www国产| 日韩欧美 国产精品| 婷婷色综合www| 国产精品一区二区在线观看99 | 中文字幕av在线有码专区| 亚洲精品乱久久久久久| 十八禁国产超污无遮挡网站| 亚洲怡红院男人天堂| 18禁动态无遮挡网站| 免费高清在线观看视频在线观看| 人妻系列 视频| 三级国产精品欧美在线观看| 国产老妇伦熟女老妇高清| 三级经典国产精品| 26uuu在线亚洲综合色| 亚洲欧美日韩卡通动漫| 免费看日本二区| 麻豆成人av视频| 久久精品夜夜夜夜夜久久蜜豆| 国模一区二区三区四区视频| 中文在线观看免费www的网站| 一个人看的www免费观看视频| 26uuu在线亚洲综合色| 69av精品久久久久久| 国产大屁股一区二区在线视频| 亚洲成人av在线免费| 2018国产大陆天天弄谢| 亚洲成人久久爱视频| 80岁老熟妇乱子伦牲交| 国产高清不卡午夜福利| av国产免费在线观看| 综合色丁香网| 一本一本综合久久| 欧美潮喷喷水| 中文欧美无线码| 能在线免费看毛片的网站| 成人一区二区视频在线观看| 国产黄频视频在线观看| 久久综合国产亚洲精品| 特级一级黄色大片| 久久99热这里只频精品6学生| 国产午夜精品论理片| 我要看日韩黄色一级片| 麻豆成人av视频| av在线天堂中文字幕| 欧美潮喷喷水| 久久精品综合一区二区三区| 国产精品人妻久久久久久| 一级毛片电影观看| 中文字幕av在线有码专区| 97在线视频观看| 久久这里有精品视频免费| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久 | 大又大粗又爽又黄少妇毛片口| 久久99热这里只有精品18| 亚洲美女搞黄在线观看| 国产伦精品一区二区三区视频9| 蜜桃久久精品国产亚洲av| 男人舔女人下体高潮全视频| 午夜精品国产一区二区电影 | 精品久久久久久久久亚洲| 国产视频内射| 日韩精品青青久久久久久| 精品欧美国产一区二区三| 亚洲第一区二区三区不卡| 高清av免费在线| 日韩视频在线欧美| 97超视频在线观看视频| 直男gayav资源| 亚洲精品,欧美精品| 欧美xxxx黑人xx丫x性爽| 国内精品一区二区在线观看| 综合色av麻豆| 天堂av国产一区二区熟女人妻| 亚洲国产av新网站| 国产乱来视频区| 2022亚洲国产成人精品| 久久99热6这里只有精品| 亚洲乱码一区二区免费版| 干丝袜人妻中文字幕| 国产精品无大码| 亚洲人与动物交配视频| 日产精品乱码卡一卡2卡三| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 人妻系列 视频| 久久99蜜桃精品久久| 男人狂女人下面高潮的视频| 成人国产麻豆网| 国产久久久一区二区三区| 日韩精品有码人妻一区| 最近最新中文字幕大全电影3| 国产 亚洲一区二区三区 | 日韩欧美国产在线观看| 精品午夜福利在线看| 成年av动漫网址| 少妇人妻一区二区三区视频| 欧美极品一区二区三区四区| 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 欧美三级亚洲精品| 亚洲国产色片| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲网站| 美女主播在线视频| 日韩欧美国产在线观看| 床上黄色一级片| 久久久精品免费免费高清| a级毛片免费高清观看在线播放| 亚洲人成网站在线观看播放| 日本av手机在线免费观看| 看免费成人av毛片| 天天躁日日操中文字幕| 国产av码专区亚洲av| 老司机影院成人| 一区二区三区高清视频在线| 成年免费大片在线观看| 亚洲精品成人久久久久久| 如何舔出高潮| 我的女老师完整版在线观看| 日韩视频在线欧美| 国产精品精品国产色婷婷| 日韩在线高清观看一区二区三区| 99九九线精品视频在线观看视频| 岛国毛片在线播放| 99久久精品国产国产毛片| 亚洲精品aⅴ在线观看| 亚洲精品成人av观看孕妇| 精品人妻视频免费看| 午夜福利成人在线免费观看| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| 亚洲自偷自拍三级| 可以在线观看毛片的网站| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| 精品国产一区二区三区久久久樱花 | 欧美最新免费一区二区三区| 日本av手机在线免费观看| 80岁老熟妇乱子伦牲交| 免费看美女性在线毛片视频| 尤物成人国产欧美一区二区三区| 在线观看一区二区三区| 五月玫瑰六月丁香| 久热久热在线精品观看| 国产精品无大码| 高清毛片免费看| 日韩大片免费观看网站| 午夜免费男女啪啪视频观看| 日本爱情动作片www.在线观看| 亚洲色图av天堂| 亚洲婷婷狠狠爱综合网| 欧美精品一区二区大全| 国产亚洲一区二区精品| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 亚洲av.av天堂| 成人欧美大片| 一级二级三级毛片免费看| 亚洲在久久综合| 欧美xxxx黑人xx丫x性爽| 国产精品一区二区性色av| 午夜激情欧美在线| 最新中文字幕久久久久| 99热这里只有是精品50| 成人漫画全彩无遮挡| 国产探花极品一区二区| 婷婷色综合www| 亚洲精品视频女| 男人爽女人下面视频在线观看| 亚洲精品日韩在线中文字幕| 如何舔出高潮| 五月玫瑰六月丁香| 大又大粗又爽又黄少妇毛片口| 听说在线观看完整版免费高清| 97超碰精品成人国产| 国产成人精品婷婷| 99热这里只有是精品50| 黑人高潮一二区| 夜夜爽夜夜爽视频| av在线天堂中文字幕| 色综合色国产| 日本欧美国产在线视频| 亚洲真实伦在线观看| 熟妇人妻不卡中文字幕| 床上黄色一级片| 搞女人的毛片| 大香蕉97超碰在线| 国产黄频视频在线观看| 亚洲天堂国产精品一区在线| 噜噜噜噜噜久久久久久91| 亚洲最大成人中文| 美女cb高潮喷水在线观看| 国产永久视频网站| 极品教师在线视频| 97超视频在线观看视频| 国产午夜精品论理片| 国精品久久久久久国模美| 国产有黄有色有爽视频| 国产黄色视频一区二区在线观看| 久久精品久久久久久噜噜老黄| 午夜精品一区二区三区免费看| 淫秽高清视频在线观看| 色综合色国产| 久99久视频精品免费| 少妇人妻一区二区三区视频| 亚洲人成网站高清观看| 美女xxoo啪啪120秒动态图| 国产男女超爽视频在线观看| 在线免费观看不下载黄p国产| 又大又黄又爽视频免费| 真实男女啪啪啪动态图| 男女边吃奶边做爰视频| 成年版毛片免费区| av女优亚洲男人天堂| 亚洲激情五月婷婷啪啪| 91精品国产九色| 男女下面进入的视频免费午夜| 精品久久久噜噜| 亚洲熟妇中文字幕五十中出| 国产色婷婷99| 五月玫瑰六月丁香| 国产在线男女| 又粗又硬又长又爽又黄的视频| 国产在线一区二区三区精| 国产精品三级大全| 免费看不卡的av| 国产精品久久久久久av不卡| 精品酒店卫生间| 国产片特级美女逼逼视频| 亚洲精品视频女| 亚洲精品第二区| 亚洲美女视频黄频| 中文字幕av在线有码专区| 久久99热这里只频精品6学生| 日本黄大片高清| 99久国产av精品| 亚洲国产欧美在线一区| 搞女人的毛片| 久久久久网色| 久久精品久久久久久噜噜老黄| 免费观看精品视频网站| 91久久精品国产一区二区成人| 麻豆久久精品国产亚洲av| 国产精品久久久久久久久免| 亚洲国产欧美在线一区| 人妻一区二区av| 欧美成人a在线观看| 午夜日本视频在线| 狠狠精品人妻久久久久久综合| 七月丁香在线播放| 日韩成人伦理影院| 2021少妇久久久久久久久久久| 国产黄频视频在线观看| 免费少妇av软件| 搡老妇女老女人老熟妇| 国产成人精品久久久久久| 晚上一个人看的免费电影| 床上黄色一级片| 一个人看的www免费观看视频| 非洲黑人性xxxx精品又粗又长| 亚洲av.av天堂| 亚洲,欧美,日韩| 成年人午夜在线观看视频 | 日韩一区二区三区影片| 亚洲精品乱久久久久久| 久久久久国产网址| 日韩 亚洲 欧美在线| 日本wwww免费看| 日韩成人伦理影院| 久久久色成人| 日韩不卡一区二区三区视频在线| 欧美高清成人免费视频www| 一级毛片我不卡| 2021天堂中文幕一二区在线观| 国产成人a区在线观看| 亚洲欧美日韩卡通动漫| 亚洲精品视频女| 免费黄频网站在线观看国产| 国产综合精华液| 边亲边吃奶的免费视频| 中文字幕免费在线视频6| 国产亚洲最大av| 亚洲电影在线观看av| 特大巨黑吊av在线直播| 久久久精品94久久精品| 色网站视频免费| 麻豆av噜噜一区二区三区| 亚洲精品色激情综合| 欧美不卡视频在线免费观看| 久久精品夜色国产| 免费电影在线观看免费观看| 中文资源天堂在线| 2021少妇久久久久久久久久久| 男人舔女人下体高潮全视频| 欧美一级a爱片免费观看看| 一个人免费在线观看电影| 久久热精品热| 日日啪夜夜爽| 日本爱情动作片www.在线观看| 日韩人妻高清精品专区| 高清在线视频一区二区三区| 一夜夜www| 日韩精品青青久久久久久| 99热这里只有是精品50| 在线观看免费高清a一片| 2022亚洲国产成人精品| 成人综合一区亚洲| 欧美xxxx黑人xx丫x性爽|