• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      A Note on the Proof of the M oduli of Continuity for Stochastic Processes

      2012-09-13 01:44:06ZHANGJiesong
      關(guān)鍵詞:年刊淮北細(xì)化

      ZHANG Jie-song

      (School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

      A Note on the Proof of the M oduli of Continuity for Stochastic Processes

      ZHANG Jie-song

      (School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

      Abstract:There exists an ambiguous part in the proof ofmoduli of continuity and increments for stochastic processes in the article which was published on the Annals of Probability in 1992,while,this mistake can be remedied.In this paper,we give a specific proof by the method of decomposing and detailing.

      Key words:stochastic processes;moduli of continuity;monotone nondecreasing

      CLC number:O 211.4Document code:AArticle ID:2095-0691(2012)02-0015-03

      1 Introducion

      In many papers and monographs referring to the moduli of continuity of Wiener process,O-U process,fractional Wiener process etc.(e.g.[1-4]),a similar ambiguous conclusion is used.In other words,it is a mistake for us to consider that Ahis monotone nondecreasing.In fact,when h1≥h2,there is no inclusion between the region(0≤s≤1-h(huán)1,0≤t≤h1)and the region(0≤s≤1-h(huán)2,0≤t≤h2),so the function Ahwith respect to h may not be monotone nondecreasing.Here,we give a proof which does not use the ambiguous conclusion.

      2 Some prelim inaries

      Let B be a separable Banach space with norm‖‖ and let{Г(t),-∞<t<∞}be a stochastic process with values in B.Let P be the probability measure generated byΓ(·).Assume thatΓ(·)is P-almost surely continuous with respect to‖‖and that,with some t0,x*,h0,for|t|≤t0,0<x*≤x and 0<h≤h0,there exists a monotone nondecreasing functionσ(h)such that

      with some K,γ,β>0.

      Lemma 1[5]Assume that the stochastic process{Γ(t),-∞<t<∞}is as mentioned above and σ (·)is a regularly varying function at zero with a positive exponentα,namely

      where L(·)is a slowly varying function at zero,that is,it is measurable,positive and

      Then for anyε>0,there exist C=C(ε)>0 and 0<h0(ε)<1 such thatfor every x≥x*and 0<h≤h0(ε).

      The inequality(1)can be extended to any finite interval(T1,T2),-∞<T1<T2<∞,as follows.

      Lemma 2[5]Under the conditions of lemma 1,we have

      Remark The method of dealing with the difficulty caused by the generalization from the interval(0,1) to any finite interval(T1,T2)can refer to[6].

      3 M oduli of continuity for stochastic processes

      Theorem 1[5]Let{Γ(t),-∞<t<∞}and σ(h)be as in lemma 1.Then for any -∞<T1<T2<∞,we have

      Proof Without loss of generality,we take T1=0 and T2=1.Now we let

      and apply the inequality of(1)with x=(1+ε)2/β[(1/γ)log(1/h)]1/β>0.Then

      ChooseΛ>1/εand let h=hn=n-Λ,then

      and it follows from the Borel-Cantelli lemma that

      for allε>0.

      Because of(3),on considering now the case of hn+1<h<hn,and by letting Δhn=hn-h(huán)n+1,similar to [7],we have

      Obviously,I1≤Ahn+1,while,

      Hence

      By the definition of hn,when n is sufficiently large,

      Apply the equality of(2)with x=(1+ε)2/β[(1/γ)log(1/Δhn)]1/β,ε>0,and taking T1=0,T2=2,then

      And it follows from the Borel-Cantelli lemma that

      Consequently,by the inequalities of(4),(5)and(6),we obtain

      for allε>0,where the last inequality follows from the fact that for any given δ>0,when n is sufficiently large,then

      and

      This completes the proof of theorem 1.

      [1]LIN Zhengyan,LU Chuanrong,SU Zhonggen.Foundation of the theory of probability limit[M].Beijing:Higher Education Press,1999.

      [2]CSORGO M,REVESZ P.Strong approximations in probalility and stastistics[M].New York:Academic Press,1981.

      [3]LIN Zhengyan,LU Chuanrong,ZHANG Lixin.Property of trajectory of Gauss processes[M].Beijing:Science Press,2001.

      [4]CSAKI E,CSORGO M,LIN Zhengyan,et al.On infinite series of independent Ornstein-Uhlenbeck processes[J].Stochastic Process and their Applications,1991,39(1):25-44.

      [5]CSAKIE,CSORGO M.Inequalities for increments of stochastic processes and moduli of continuity[J].Annals of Probability,1992,20(2):1 031-1 052.

      [6]ZHANG Jiesong,YANG Lifeng.More result on the tail probability of Brown motion[J].Journal of Fuyang Teachers College:Natural Science,2008,25(1):29-31.

      [7]MIAO Baiqi,LU Jun.A Note on the proof of the modulus of continuity of Wiener process[J].Journal of Huaibei Coal Industry Teachers College:Natural Science,1992,13(2):1-3.

      關(guān)于隨機(jī)過程連續(xù)模定理證明的一個(gè)注記

      張節(jié)松

      (淮北師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,安徽 淮北 235000)

      1992年發(fā)表在概率年刊上關(guān)于隨機(jī)過程連續(xù)模及增量一文的證明中,存在一處模糊不清的地方,該漏洞是可以補(bǔ)救的,文章通過分解細(xì)化的辦法給出一個(gè)確定的證明.

      隨機(jī)過程;連續(xù)模;單調(diào)不減

      O 211.4

      A

      2095-0691(2012)02-0015-03

      Recieved date:2011-09-09

      Foundation item:The teaching and research project of Huaibei Normal University(jy09222)

      Biography:ZHANG Jie-song(1981- ),male,native of Qianshan,Anhui,lecturer,master,major in probability limit.

      猜你喜歡
      年刊淮北細(xì)化
      歡迎訂閱2022年刊
      歡迎訂閱2022年刊
      歡迎訂閱2021年刊
      歡迎訂閱2021年刊
      《淮北師范大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
      《淮北師范大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
      中小企業(yè)重在責(zé)任細(xì)化
      “細(xì)化”市場(chǎng),賺取百萬(wàn)財(cái)富
      “住宅全裝修”政策亟需細(xì)化完善
      《淮北枳》
      绥宁县| 东乡县| 汾阳市| 垫江县| 屏东县| 蛟河市| 芦山县| 武陟县| 大城县| 大厂| 芮城县| 含山县| 政和县| 澜沧| 龙游县| 铜梁县| 横峰县| 离岛区| 徐水县| 铜陵市| 马山县| 乌兰县| 东宁县| 东山县| 通许县| 惠东县| 两当县| 清河县| 土默特左旗| 陕西省| 巴马| 丽江市| 淅川县| 廉江市| 偃师市| 沂源县| 麟游县| 齐河县| 九龙城区| 阳谷县| 安吉县|