• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩步沉淀法制備耐高溫和優(yōu)異還原性能CeO2材料

    2012-09-13 06:12:30陳山虎閆朝陽(yáng)曹毅蘭麗趙明龔茂初陳耀強(qiáng)
    關(guān)鍵詞:還原性耐高溫沉淀法

    陳山虎 閆朝陽(yáng) 曹毅 蘭麗 趙明 龔茂初 陳耀強(qiáng)*

    (四川大學(xué)化學(xué)學(xué)院,綠色化學(xué)與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,成都610064)

    兩步沉淀法制備耐高溫和優(yōu)異還原性能CeO2材料

    陳山虎 閆朝陽(yáng) 曹毅 蘭麗 趙明 龔茂初 陳耀強(qiáng)*

    (四川大學(xué)化學(xué)學(xué)院,綠色化學(xué)與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,成都610064)

    分別采用兩種沉淀方法制備了CeO2:以傳統(tǒng)的氨水為沉淀劑,在氨水沉淀法前引入碳銨沉淀步驟(兩步沉淀法)。采用熱重-差熱(TG-DTA)、傅里葉變換紅外(FTIR)、X光電子能譜(XPS)等手段對(duì)沉淀及其分解過(guò)程進(jìn)行了研究。結(jié)果表明,在兩步沉淀法中的第一步,碳酸物種為主要沉淀物種,而在第二步中被氫氧根取代。X射線(xiàn)衍射(XRD)和透射電子顯微鏡(TEM)結(jié)果表明,兩步沉淀法生成的沉淀顆粒粒徑更大。通過(guò)兩步沉淀法制備的CeO2與氨水沉淀相比具有更好的抗高溫老化性能和還原性能。經(jīng)過(guò)900℃焙燒3 h后,仍然具有25 m2·g-1和0.11 cm3·g-1的比表面和孔容。

    兩步沉淀法;傳統(tǒng)沉淀法;耐高溫;氧化還原性能

    Abstract:Two series of CeO2samples were prepared by two different synthetic routes:one was conventional precipitation route employing ammonia as reactant,and the other was a two-step precipitation procedure,using ammonium carbonate((NH4)2CO3)as precipitant at the first step and ammonia as reagent at the second step.The precipitates and their decomposition processes were characterized by thermogravimetric and differential thermal analysis(TG/DTA),Fourier transform infrared spectroscopy(FTIR),and X-ray photoelectron spectra(XPS).The results show that the precipitate produced at the(NH)4CO3precipitation step mainly consists of carbonate species, however,after the second precipitation step by ammonia,the carbonate species are replaced by hydroxyl species. By introducing the intermediate carbonate precipitation process,the nucleation rate of CeO2can be controlled.X-ray diffraction(XRD)and transmission electron microscopy(TEM)results indicate that the grain size of the precipitate prepared by two-precipitation route is larger than that of the precipitate prepared by conventional route.CeO2prepared by this two-precipitation route exhibits higher thermal stability and better reduction property than that obtained by traditional procedure.After the heat treatment at 900℃for 3 h,the surface area and pore volume are 25 m2·g-1and 0.11 cm·g-1,respectively.

    Key words:two-step precipitation;conventional precipitation;high thermal stability;redox properties

    CeO2-based materials have important roles in many commercial catalytic processes.For example, CeO2has been used for catalytic wet oxidation[1],for removalofsootfrom dieselengine exhaust[2]and forfuel celltechnology[3].In addition,they have been one ofthe mostimportantcommercialsupports for the purification of exhaust gases[4].Generally,a three-way catalyst (TWC)is required to simultaneously convert the hydrocarbons,CO and NO x present in the automotive exhaust to harmless H2O,CO2and N2[5].However,high conversion ofthe pollutants can be achieved only when the air-to-fuel(A/F)ratio oscillates around the stoichiometric value(14.6)[5].Adding of CeO2-based materials can balance the oxygen concentration due to their abilities to store and release oxygen under lean and rich operation conditions,respectively[6].Under usual TWC working conditions,the above-mentioned performance is essentially related to the surface area of the CeO2support[7-8].As soon as significantsintering of CeO2particles occurs,both redox property and metalsupportinteractions appearinhibited[9-10].So,to improve the thermal stability of CeO2-based materials used in TWC is a challenge for researchers and TWC companies.

    Differentstrategieshave been used to prepare CeO2-based materials,including precipitation method[11-12], hydrothermal route[13-14],sol-gel techniques[15-16], surfactant-assisted approach[17-18],and combustion synthesis[19-20].Among these methods,the most convenient one is precipitation.Usually,the precipitation can be carried out via the reaction of cerium(ⅢorⅣ)saltsolution and a base solution such as ammonia[21],ammonium carbonate[22],and alkaline hydroxide[23].It has been established that,surface area, particle morphology and even the lattice structure of CeO2-based materials are strongly affected by the synthesis conditions[24].Woodhead[25]firstly developed an H2O2-assitated method based on precipitation method in order to produce CeO2,and after that,the method was adopted by many researchers[26-29]. Investigations have also been carried out by some groups to study the effectof H2O2on the preparation of CeO2-based materials.Djurii et al[26]found that the presence of H2O2could change the precursor of CeO2, leading to differentdecomposition processes.Scholes et al[23,27]investigated the effect of the amount of H2O2on the physico-chemical properties of precursors and proposed the formation of Ce(O2)(OH)2on the basis of titration results.

    In the present work,we developed a two-step precipitation route based on the H2O2-asistated method to prepare CeO2material,aiming atpreparing CeO2with improved thermal stability and reduction property.In this two-step route,ammonium carbonate and ammonia were used as reagents at the first and second steps, respectively.The formation process of the sample was also investigated.By introducing an carbonate intermediate precipitation procedure,the crystallite size ofthe precipitate,as wellas the pore size oftargetCeO2, were enlarged,which are crucial for preparing CeO2-based materials with improved thermalstability and red uction property[28-29].

    1 Experimental

    1.1 Synthesis

    1.1.1 Preparation ofprecipitate by conventionalroute

    Ce(NO3)3·6H2O was dissolved into distilled water, and H2O2(30wt%)was added.The molar ratio of Ce (NO3)3∶H2O2was 1∶1.A ammonia solution(25wt%)was added into the saltsolution to adjustthe pH value to 12 under stirring.The obtained precipitate was filtered out and washed with distilled water untilno changes in pH value,and dried at 80℃for 5 h to obtain CeC precipitate.

    1.1.2 Preparation of precipitate by ammonium carbonate

    The preparation procedure was according to experiment(1.1.1),except the base solution was ammonium carbonate(25wt%)and the pH value was adjusted to 8.2.The precipitate was denoted as CeM.

    1.1.3 Preparation of precipitate by two-step precipitation route

    First,a solution ofammonium carbonate(25wt%) was added into the salt solution prepared according to experiment(1.1.1),tillthe pH value to 8 under stirring, and keptatroom temperature for 2 h.Then an ammoniasolution(25wt%)was added to adjusted the pH value to 12,and then stirred for 12 h.The precipitate was filtered outand washed with distilled water;then itwas dried at80℃for5 h to produce CeT precipitate.

    1.1.4 Calcination ofprecipitates

    The CeT and CeC precipitates were calcined at different temperatures in the range of 500~900℃for 3 h.The target samples were labeled as CeT-t and CeC-t where t stands for the calcination temperature.1.2 Characterizations

    TG/DTA was carried out by a HCT-2 analyzer (Beijing Science Apparatus Factory,Beijing,China) under a flowing N2atmosphere(30 mL·min-1).The sample was heated to 600℃with a heating rate of10℃·min-1.The alumina was taken as the reference material.

    FTIR spetra were recorded atroom temperature in the range of 400~4 000 cm-1using KBr pellet with a Nicolet6700 FT spectrometer.

    X-ray photoelectron spectra data were collected on a XSAM 800 spectrometer(KRATOS Corp.)with a Mg Kαsource working at 13 kV and 20 mA,and the C1s peak was used as an internal standard for calculating binding energy values.

    The nitrogen adsorption-desorption isotherms were measured on Quantachrome SIinstrument.The specific surface areas and pore size distribution were calculated according to Brunauer-Emmett-Teller(BET)method and Barret-Joyner-Halenda(BJH)method,respectively.The measurement was carried outat-196℃,after the sample was degassed at300℃for3 h undervacuum.

    The X-ray diffraction patterns were determined on a D/max-rA diffractometer(RIGAKU Corporation) equipped with Cu Kα(λ=0.154 18 nm)radiation and Graphite monochromator.The anode X-ray target was operated at40 kV and 25 mA.The X-ray was detected by scintillation counter and recorded for 2θvalues between 10°and 80°with a step of0.03°.

    The size of the precipitates was observed with transmission electron microscopy(TEM)using a Tecnai G2F20 S-TWIN apparatus operated at200 kV.

    TPR profiles were determined in a conventional reactor equipped with a thermal conductivity detector. Allsamples(100 mg)were pretreated in a flow ofN2at 450℃for 45 min,and then cooled down to room temperature.The reduction was carried outin a flow of 20 mL·min-1of5%H2/N2from room temperature to 900℃with a heating rate of10℃·min-1.

    2 Results and discussion

    2.1 Formation processes ofprecipitates

    Composition of the precipitates depends on the kinds of cations and anions present in the solution.In this work,Ce3+is employed as metal salt precursor, while OH-or CO32-is used as precipitants,in the presence of H2O2.When ammonia is utilized as precipitant,the following equilibria are expected in the precipitation process[27]:

    Whereas,in the case of two-step precipitation process,the reaction is very complex since different anions might enter into the precipitate.In the first precipitation step,although the carbonate species is used as reagent,considering the following hydration process[30]:

    We can reasonably assume that the component of the precipitate is Ce(O2)(OH)x(CO3)1-x/2.In the second precipitation step,the OH-is added,thus the CO32-species is entirely replaced by OH-:

    The dehydration process might occur in the operation procedure due to the O22-and OH groups are notstable enough[26,29].

    Fig.1 presents the thermalbehavior ofprecipitates prepared by differentmethods.From Fig.1a,we can see that the precipitate prepared by ammonia only shows one continuous decomposition process.The totalweight loss is 13.13%,which does not correspond to the decomposition of Ce(OH)4or Ce(O2)(OH)2,indicating that the dehydration event has occurred under our operation condition.The DTA curve shows one endothermic peak atabout80℃due to the elimination of physical-adsorbed water[26].It seems that the crystallization of the hydroxide is a slow process,thus the exothermal phenomenon,as reported in previous study[26],can notbe observed.Fig.1b shows the thermal decomposition of the precipitate prepared by ammonium carbonate.The evolution behavior proceeds through three stages at the temperature ranges of 50~200℃,250~350℃and 350~450℃,respectively.By comparing with literatures[23,26],we attribute the firstone to the desorption ofwater and the decomposition of O22-containing species,and the second one to the crystallization of hydroxide particles,while the last one to the decomposition of carbonate species.Fig.1c displays the thermalevents ofsample CeT.Itis clearly observed that its decomposition process is very similar to that of CeC,indicating they possess the same or similar chemical components.Interestingly,the total weightloss of CeT is 12.7%,which is very close to that of CeC(13%).In addition,the DTA behavior of CeT is also in accordance with CeC,presenting an endothermic peak at about 80℃.From the above results,we can conclude that in the second precipitation step of two-step precipitation route,the carbonate species are replaced by OH-groups,indicating the occurrence of following reactions:Ce(O2)(OH)x(CO3)1-x/2+OH-→Ce(O2)(OH)2/Ce(OH)4→CeO2·n H2O.

    The FTIR spectra for CeO2precipitates prepared by differentmethods are shown in Fig.2.Generally,the intense bands around 3 000~3 650 cm-1region are attributed to the O-H stretching of H-bound hydroxyl groups or molecularly chemisorbed water[31-32].The bands at this region of CeC and CeT show three different adsorption signals centered at about 3 540, 3 480 and 3 420 cm-1,respectively,indicating the presence of mono-coordinated,bi-coordinated and tricoordinated hydroxylgroups[31-32].However,in the case of CeM,only a characteristic broad adsorption can be observed.The distinction ofthis region suggests thatthe content of surface OH in CeC and CeT is higher than thatin CeM.The band at1 620 cm-1is assigned to the adsorption of H2O[33].On the basis of literatures[31,34-35], the bands around 1 555,1 347,1 142,1 056,913,851 and 722 cm-1are representative ofcarbonate species.It should be noted thatthe bands around 1 555 and 1 347 cm-1are likely attributed to the carbonate species generated from the precipitant,since they are not observed in CeC and CeT,while the others are related to the carbonate species caused by the interaction of precipitates with atmospheric carbon dioxide[36].It is obvious that the IR spectra of CeC and CeT are almost the same,indicating that they possess similar chemical structure,which is consistentwith the TG-DTA results.The results further prove that,in the secondprecipitation step of two-step precipitation method,theis superseded by OH-groups.

    The XPS spectra for precipitates are shown in Fig.3.In the spectrum of Ce3d,six peaks are all present for the samples from different synthesis routes. According to the literature[37],all the peaks may be attributed to the diversified states of Ce4+,indicating that Ce3+ions are all oxidized by H2O2′in agreement with the previous report[23].In the O1s of precipitates (Fig.4),the peak around 529.7 eV is assigned to the oxygen in the lattice[37],while the binding energy around 531.5 and 532.7 eV are related to the hydroxyl and C=O oxygen,respectively[38-39].It is noted that,the 532.7 eV signal of CeM is much stronger than that of CeC and CeT,suggesting the existence of larger amount of carbonate species,which provides another evidence for the occurrence of the substitution of CO32-by OH-,in accordance with DTA-TG and IR results.The relative amounts of Ce,O and C are listed in Table 1.The amount of CeC and CeT is almost the same,implying that they possess the same chemical compositions,whereas the atom ratio is much different for CeM.The content of carbon in CeM is significantly higher than the other two samples due to the participation of carbonate during precipitation process. The amount of carbon cannot be evaluated accurately because the adventitious organic compounds generated from vacuum system are not easily excluded[23].

    Table 1 Relative amount of Ce,O,and C,obtained from XPS spectra

    2.2 Texturalproperties of CeO2samples

    The surface areas and pore volumes of CeO2samples calcined at various temperatures are shown in Fig.5.Itcan be seen thatthe CeO2samples prepared by the two-step precipitation method presentlarger surface area and pore volume than that produced by conventional precipitation method.A severe drop in surface area can be observed for conventionally prepared CeO2at different calcination temperatures, whereas the use of two-precipitation route effectively improves the thermal stability to 900℃,where a surface area of 25 m2·g-1and a pore volume of 0.11 cm3·g-1can still be obtained.To the best of our knowledge,the surface area and pore volume obtained in this work are the highest values reported for CeO2prepared by precipitation method and calcined at such a high temperature[11,17,31].The CeO2samples calcined at 500℃feature isothermals of typeⅣaccording to IUPAC definition,and the curves show a characteristic of cylindrical-ink-bottle-type pores(Fig.6a),through which the gas and thermal diffusion can proceed more easily than any other pore structure[40].BJH pore sizerange of2~8 nm,while for sample CeC,the value is 2~6 nm(Fig.6b).Note also that,the peak position ofCeC centers at around 2~3 nm,while for CeT,the value is larger(4.0 nm),from which we can conclude that, through the novel two-step precipitation method,larger pores can be created.CeO2-based material with larger pore size exhibits better thermal stability due to its long-range migration while sintering[29].

    X-ray diffraction patterns indicate the presence of a single phase with the cubic fluorite structure typical of CeO2,regardless of preparation routes(Fig.7).Crystallite sizes of the precipitates were calculated using(111)plane.The crystallite size of CeC is about 1.9 nm,which is smaller than thatof CeT(3.8 nm).In other words,although the chemical components of CeC and CeT are almost the same the crystal dimensions present a glaring discrepancy.With progressively increasing concentration of the reaction solutions,the mean magnitude for the individual crystals will decrease[41].In the process of(1.1.1)precipitation,the OH-with high concentration can attack Ce■directly, resulting in crystals with smaller size.However,in the case of two-step precipitation method(1.1.3), crystallization of CeO2proceeds through gradual replacementofCO32-by OH-,thus makes the crystallite size larger,which may facilitates the formation of CeO2with improved thermal resistance because coarser powders require a higher temperature to sinter[28].

    TEM images ofthe precipitates are shown in Fig.8.It is apparent that the particles are approximately sphericaland the grain size ofCeT is larger than thatof CeC.The results confirm the formation of CeO2, indicating thatthe replacementof CO32-by OH-and the crystallization of CeO2(OH)2have occurred.The results are in agreement with XRD outcomes,indicating thatthe growth ofCeO2is affected by the preparation route.

    2.3 Reduction behavior of CeO2samples

    A crucial requirement of CeO2-based materials, especially when used in three-way catalyst for auto exhaust treatment,is their reduction behavior.Fig.9 displays the TPR profiles of the CeO2samples.The reduction of CeO2samples shows two peaks,the lower one is ascribed to the reduction of surface oxygen species,while the higher one corresponds to the contribution of bulk oxygen species[42].The onset and the reduction peaks ofCeT-t are lowerthan thatofCeC-t,indicating thatthe former is more reducible,which is likely to be related to the disparity of surface areas[22]. Moreover,by comparing the integrated peak area ofthe TPR profiles,we can estimate that the oxygen storage capacity ofCeT-t is larger than thatofCeC-t[43].

    3 Conclusions

    A two-step precipitation route was developed using ammonium carbonate and ammonia as precipitants successively.The formation mechanism of the CeO2precipitates was also investigated.The chemical compositions were the same for the precipitates prepared by the two-step method and conventional precipitation route employing ammonia as reactant.However,the crystallite size and the pore size of the as-prepared CeO2from two-step procedure are larger,which facilitate producing CeO2with improved thermal stability,textural properties and reduction behavior.After calcination at 900℃for 3 h,the surface area and pore volume are 25 m2·g-1and 0.11 cm3·g-1,respectively,which is the highestreported for CeO2atthe temperature investigated.

    [1]Matatov-Meytal Y I,Sheintuch M.Ind.Eng.Chem.Res., 1998,37(2):309-326

    [2]Tikhomirov K,Krocher O,Elsener M,et al.A.Appl.Catal. B,2006,64(1/2):72-78

    [3]Sahibzada M,Steele B C H,Zheng K,et al.Catal.Today, 1997,38(4):459-466

    [4]Ka?par J,Fornasiero P,Graziani M.Catal.Today,1999,50 (2):285-298

    [5]Farrauto R J,Heck R M.Catal.Today,1999,51(3/4):351-360

    [6]Muraki H,Zhang G.Catal.Today,2000,63(2/3/4):337-345

    [7]Bunluesin T,Gorte R J,Graham G W.Appl.Catal.B, 1997,14(1/2):105-115

    [8]Cordatos H,Bunluesin T,Stubenrauch J,et al.J.Phys. Chem.,1996,100(2):785-789

    [9]Nagai Y,Hirabayashi T,Dohmae K,et al.J.Catal.,2006, 242(1):103-109

    [10]Bueno-Lopez A,Such-Basanez I,de Lecea C S M.J.Catal., 2006,244(1):102-112

    [11]Bruce L A,Hoang M,Hughes A E,et al.Appl.Catal.A, 1996,134(2)351-362

    [12]Karakoti A S,Kuchibhatla S V N T,Babu K S,et al.J. Phys.Chem.C,2007,111(46):17232-17240

    [13]Ahniyaz A,Watanabe T,Yoshimura M.J.Phys.Chem.B, 2005,109(13):6136-6139

    [14]Si R,Zhang Y W,Wang L M,et al.J.Phys.Chem.C,2007, 111(2):787-794

    [15]Thammachart M,Meeyoo V,Risksomboon T,et al.Catal. Today,2001,68(1/2/3):53-61

    [16]Fan J,Wu X D,Yang L,et al.Catal.Today,2007,126(3/4): 303-312

    [17]Terribile D,Trovarelli A,de Leitenburg C,et al.Chem. Mater.,1997,9(12):2676-2678

    [18]Terribile D,Trovarelli A,Llorca J,et al.J.Catal.,1998, 178(1):299-308

    [19]Mokkelbost T,Kaus I,Grande T,et al.Chem.Mater.,2004, 16(25):5489-5494

    [20]Heo I,Choung J W,Kim P S,et al.Appl.Catal.B,2009,92 (1/2):114-125

    [21]Deshpande A S,Pinna N,Beato P,et al.Chem.Mater., 2004,16(13):2599-2604

    [22]Bruce L A,Hoang M,Hughes A E,et al.Appl.Catal.A,1996,134(2):351-362

    [23]Scholes F H,Hughes A E,Hardin S G,et al.Chem.Mater., 2007,19(9):2321-2328

    [24]Letichevsky S,Tellez C A,de Avillez R R,et al.Appl. Catal.B,2005,58(3/4):203-210

    [25]Woodhead J L.Process for Preparing Aqueous Dispersion of Ceria and Resulting Product:US,4231893[P].1980-11-04

    [26]Djurii B,Pickering S.J.Eur.Ceram.Soc.,1999,19(11): 1925-1934

    [27]Scholes F H,Soste C,Hughes A E,et al.Appl.Surf.Sci., 2006,253(4):1770-1780

    [28]Chen P L,Chen I W.J.Am.Ceram.Soc.,1997,80(3):637-645

    [29]Ka?par J,Fornasiero P.J.Solid State Chem.,2003,171 (1/2):19-29

    [30]Li J G,Ikegami T,Mori T,et al.Chem.Mater.,2001,13(9): 2913-2920

    [31]Natile M M,Boccaletti G,Glisenti A.Chem.Mater.,2005, 17(25):6272-6286

    [32]Binet C,Daturi M,Lavalley J C.Catal.Today,1999,50(2): 207-225

    [33]Lin W Y,Frei H.J.Am.Chem.Soc.,2002,124(31):9292-9298

    [34]Klissurski D G,Uzunova E L.Chem.Mater.,1991,3(6): 1060-1063

    [35]Jobbagy M,Marino F,Schobrod B,et al.Chem.Mater., 2006,18(7):1945-1950

    [36]Rebellato J,Natile M M,Glisenti A.Appl.Catal.A, 2008,339(2):108-120

    [37]Zhang G J,Shen Z R,Liu M,et al.J.Phys.Chem.B,2006, 110(51):25782-25790

    [38]Alifanti M,Baps B,Blangenois N,etal.Chem.Mater.,2003, 15(2):395-403

    [39]Darnyanova S,Pawelec B,Arishtirova K,et al.Appl.Catal. A,2008,337(1):86-96

    [40]Wang J,Wen J,Shen M Q.J.Phys.Chem.C,2008,112(13): 5113-5122

    [41]Von Weimarn P P.Chem.Rev.,1925,2(2):217-242

    [42]Daturi M,Finocchio E,Binet C,etal.J.Phys.Chem.B,2000, 104(39):9186-9194

    [43]Masui T,Peng Y M,Machida K,et al.Chem.Mater.,1998, 10(12):4005-4009

    A Two-Step Precipitation Route to CeO2Material with Improved Thermal Stability and Reduction Property

    CHEN Shan-Hu YAN Chao-Yang CAO Yi LAN Li ZHAO Ming GONG Mao-Chu CHEN Yao-Qiang*
    (Key Laboratory of Green Chemistry and Technology of the Ministry of Education,College of Chemistry, Sichuan University,Chengdu 610064,China)

    O614.33+2

    A

    1001-4861(2012)05-1001-08

    2011-11-11。收修改稿日期:2011-12-23。

    國(guó)家自然科學(xué)基金(No.20803049)和教育部博士點(diǎn)新教師基金(No.20070610026)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:nic7501@scu.edu.cn;Tel/Fax:+86-28-85418451;會(huì)員登記號(hào):S06N4556M1006。

    猜你喜歡
    還原性耐高溫沉淀法
    物質(zhì)氧化性與還原性的影響因素分析
    硝酸銀沉淀法去除高鹽工業(yè)廢水中鹵化物對(duì)COD測(cè)定的干擾
    巧用化學(xué)中的“經(jīng)驗(yàn)規(guī)律”化繁為簡(jiǎn)
    耐高溫線(xiàn)椒新品種辛香16號(hào)的選育
    新型耐高溫超氧化物歧化酶SOD的產(chǎn)業(yè)化
    濕法磷酸化學(xué)沉淀法除鎂工藝
    一種新型的耐高溫碳化硅超結(jié)晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    混凝沉淀法處理含鉛礦坑涌水
    氧在離子液體中電化學(xué)還原性能研究
    非負(fù)載Pt納米顆粒催化劑的電催化氧還原性能研究
    成人鲁丝片一二三区免费| 超碰成人久久| 成年免费大片在线观看| 一夜夜www| 久久99热这里只有精品18| 99久久久亚洲精品蜜臀av| 亚洲精品乱码久久久v下载方式 | 精华霜和精华液先用哪个| 亚洲精品在线美女| 三级男女做爰猛烈吃奶摸视频| 好看av亚洲va欧美ⅴa在| 久久伊人香网站| 少妇的丰满在线观看| 真人一进一出gif抽搐免费| 免费人成视频x8x8入口观看| 网址你懂的国产日韩在线| 久久国产精品人妻蜜桃| 香蕉国产在线看| 男女之事视频高清在线观看| 人人妻人人澡欧美一区二区| 国产熟女xx| 国产激情欧美一区二区| 亚洲欧洲精品一区二区精品久久久| 国产精品永久免费网站| 又爽又黄无遮挡网站| 久久久久性生活片| 99热只有精品国产| 久久99热这里只有精品18| 日韩欧美一区二区三区在线观看| av国产免费在线观看| 啦啦啦免费观看视频1| 一级a爱片免费观看的视频| 2021天堂中文幕一二区在线观| 久久精品人妻少妇| 亚洲欧美精品综合一区二区三区| 观看免费一级毛片| 美女cb高潮喷水在线观看 | 久久中文字幕人妻熟女| 九九久久精品国产亚洲av麻豆 | 婷婷六月久久综合丁香| 免费在线观看影片大全网站| 白带黄色成豆腐渣| 不卡av一区二区三区| 久久精品亚洲精品国产色婷小说| 日韩欧美在线乱码| 真人做人爱边吃奶动态| 精品久久久久久久人妻蜜臀av| 看片在线看免费视频| 母亲3免费完整高清在线观看| 久久精品aⅴ一区二区三区四区| 999久久久国产精品视频| 国产精品一区二区三区四区免费观看 | 久久久色成人| 99在线视频只有这里精品首页| 欧美日韩一级在线毛片| 午夜精品久久久久久毛片777| 男插女下体视频免费在线播放| 制服丝袜大香蕉在线| 在线观看美女被高潮喷水网站 | x7x7x7水蜜桃| 两性夫妻黄色片| 亚洲精品在线美女| av福利片在线观看| 国产成人av激情在线播放| 精品久久久久久成人av| 国内久久婷婷六月综合欲色啪| 欧美成人免费av一区二区三区| 级片在线观看| 精品久久久久久久人妻蜜臀av| 白带黄色成豆腐渣| 国内少妇人妻偷人精品xxx网站 | 久久精品夜夜夜夜夜久久蜜豆| 国产成人福利小说| 日本免费a在线| 麻豆av在线久日| 精品国产乱码久久久久久男人| 在线观看美女被高潮喷水网站 | 美女高潮的动态| 夜夜夜夜夜久久久久| 亚洲av电影不卡..在线观看| 国产精品 欧美亚洲| 午夜成年电影在线免费观看| 久久草成人影院| 天堂影院成人在线观看| 成年女人毛片免费观看观看9| 国产淫片久久久久久久久 | 亚洲欧洲精品一区二区精品久久久| 中文字幕久久专区| 国产熟女xx| 国产乱人视频| 九色成人免费人妻av| 国产精华一区二区三区| 真实男女啪啪啪动态图| 亚洲电影在线观看av| 国产精品久久久久久精品电影| 一个人免费在线观看的高清视频| 亚洲中文日韩欧美视频| 熟妇人妻久久中文字幕3abv| av欧美777| 精品国产乱码久久久久久男人| 亚洲人成伊人成综合网2020| 黑人操中国人逼视频| 日本免费一区二区三区高清不卡| 国产黄a三级三级三级人| 青草久久国产| 国产精品一区二区免费欧美| 亚洲色图av天堂| 亚洲av美国av| 麻豆国产97在线/欧美| 黄片大片在线免费观看| 啦啦啦观看免费观看视频高清| 女同久久另类99精品国产91| 亚洲18禁久久av| 精品欧美国产一区二区三| 国产人伦9x9x在线观看| 国产极品精品免费视频能看的| 色吧在线观看| 丝袜人妻中文字幕| 免费观看精品视频网站| 大型黄色视频在线免费观看| 久久久久久大精品| 美女 人体艺术 gogo| 国产探花在线观看一区二区| 日本免费一区二区三区高清不卡| 黄色视频,在线免费观看| 美女高潮的动态| 国产伦在线观看视频一区| 午夜福利在线在线| 久久中文字幕人妻熟女| 午夜福利成人在线免费观看| 国产精品一区二区三区四区免费观看 | 亚洲在线自拍视频| 国产视频一区二区在线看| 亚洲美女视频黄频| 十八禁人妻一区二区| 一本精品99久久精品77| 不卡一级毛片| 亚洲狠狠婷婷综合久久图片| 99riav亚洲国产免费| 狂野欧美激情性xxxx| 国产伦在线观看视频一区| 每晚都被弄得嗷嗷叫到高潮| 亚洲av电影在线进入| 一进一出抽搐动态| 亚洲自偷自拍图片 自拍| 日本五十路高清| 欧美激情在线99| www.精华液| 亚洲午夜精品一区,二区,三区| 国产精品免费一区二区三区在线| 可以在线观看的亚洲视频| 一级毛片高清免费大全| 男人舔女人下体高潮全视频| 久久九九热精品免费| 国产高清三级在线| 亚洲中文字幕日韩| 99在线人妻在线中文字幕| 精品久久久久久久末码| 欧美中文日本在线观看视频| 激情在线观看视频在线高清| 国产av不卡久久| 国产精品美女特级片免费视频播放器 | 精品国产超薄肉色丝袜足j| 长腿黑丝高跟| 两人在一起打扑克的视频| 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 熟女人妻精品中文字幕| 国产午夜精品论理片| 国产精品久久久av美女十八| 欧美黑人巨大hd| 亚洲在线观看片| 成人av一区二区三区在线看| 俄罗斯特黄特色一大片| 久久久国产成人精品二区| 亚洲专区字幕在线| 国产精品一及| 久久九九热精品免费| 99久久99久久久精品蜜桃| 波多野结衣高清无吗| 岛国在线免费视频观看| 脱女人内裤的视频| av国产免费在线观看| 高清毛片免费观看视频网站| 国产av一区在线观看免费| 亚洲成人免费电影在线观看| 香蕉丝袜av| 亚洲avbb在线观看| 999久久久精品免费观看国产| 国产一区二区在线av高清观看| 亚洲成人久久爱视频| 亚洲国产精品合色在线| 在线免费观看的www视频| 成人午夜高清在线视频| 欧美色欧美亚洲另类二区| 日日摸夜夜添夜夜添小说| 午夜视频精品福利| 日韩三级视频一区二区三区| svipshipincom国产片| 成人特级黄色片久久久久久久| 色综合亚洲欧美另类图片| 国产真实乱freesex| 两个人看的免费小视频| 欧美日本亚洲视频在线播放| 俺也久久电影网| 在线国产一区二区在线| 热99在线观看视频| 国产成人aa在线观看| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 久久久久九九精品影院| 少妇的逼水好多| 久久国产乱子伦精品免费另类| 嫩草影院入口| 真人做人爱边吃奶动态| 最新中文字幕久久久久 | 精品久久久久久久人妻蜜臀av| 最好的美女福利视频网| 国产精品av久久久久免费| 国产综合懂色| av天堂在线播放| 亚洲av熟女| 国内精品久久久久精免费| 亚洲专区中文字幕在线| 日韩av在线大香蕉| 国产97色在线日韩免费| 欧美日韩乱码在线| 久久国产精品人妻蜜桃| 搡老岳熟女国产| 后天国语完整版免费观看| 少妇的逼水好多| 一a级毛片在线观看| 天天躁日日操中文字幕| 看免费av毛片| 国产真人三级小视频在线观看| 十八禁人妻一区二区| 一本综合久久免费| 亚洲国产欧洲综合997久久,| 无人区码免费观看不卡| 国产成人精品久久二区二区免费| 国产精品久久久久久精品电影| 在线观看免费午夜福利视频| 全区人妻精品视频| 视频区欧美日本亚洲| 精品午夜福利视频在线观看一区| 成人高潮视频无遮挡免费网站| 19禁男女啪啪无遮挡网站| 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产97在线/欧美| 91麻豆av在线| 午夜福利高清视频| 日本免费a在线| 真人一进一出gif抽搐免费| 国产91精品成人一区二区三区| 琪琪午夜伦伦电影理论片6080| 噜噜噜噜噜久久久久久91| 久久精品91无色码中文字幕| 国产美女午夜福利| xxx96com| 1000部很黄的大片| 一个人观看的视频www高清免费观看 | 免费人成视频x8x8入口观看| 国产免费男女视频| 免费高清视频大片| 一级作爱视频免费观看| 美女高潮的动态| 精品一区二区三区四区五区乱码| 欧美大码av| 无限看片的www在线观看| 亚洲午夜精品一区,二区,三区| 日本五十路高清| 俄罗斯特黄特色一大片| 怎么达到女性高潮| 久久天堂一区二区三区四区| 首页视频小说图片口味搜索| 一区二区三区高清视频在线| 久久九九热精品免费| 99国产精品一区二区三区| 99精品欧美一区二区三区四区| 欧美日韩一级在线毛片| 久久国产精品影院| 亚洲九九香蕉| 久久久精品大字幕| 人人妻,人人澡人人爽秒播| 俺也久久电影网| 国产伦在线观看视频一区| 亚洲片人在线观看| 搡老妇女老女人老熟妇| 后天国语完整版免费观看| 好男人在线观看高清免费视频| 色av中文字幕| 日韩欧美在线乱码| 久久久久亚洲av毛片大全| 十八禁人妻一区二区| 亚洲国产欧美网| 最好的美女福利视频网| 亚洲七黄色美女视频| 国产视频内射| 日韩大尺度精品在线看网址| 婷婷亚洲欧美| 人人妻,人人澡人人爽秒播| 欧美黄色片欧美黄色片| 麻豆av在线久日| 最新美女视频免费是黄的| 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线| 夜夜爽天天搞| 亚洲国产中文字幕在线视频| 午夜日韩欧美国产| 三级男女做爰猛烈吃奶摸视频| 人人妻,人人澡人人爽秒播| 深夜精品福利| 母亲3免费完整高清在线观看| 欧美色欧美亚洲另类二区| 99久久精品一区二区三区| 久久久久久九九精品二区国产| 亚洲无线在线观看| 最新在线观看一区二区三区| 国产激情欧美一区二区| 小说图片视频综合网站| 岛国视频午夜一区免费看| 后天国语完整版免费观看| 亚洲在线观看片| 国产精品综合久久久久久久免费| 成年女人永久免费观看视频| 美女 人体艺术 gogo| 国产午夜精品论理片| 欧美日本亚洲视频在线播放| 两个人视频免费观看高清| 一区二区三区国产精品乱码| 97超视频在线观看视频| 国内久久婷婷六月综合欲色啪| 精华霜和精华液先用哪个| 很黄的视频免费| 日本黄色视频三级网站网址| 搡老妇女老女人老熟妇| 波多野结衣巨乳人妻| 亚洲,欧美精品.| 久久性视频一级片| 亚洲电影在线观看av| 欧美激情在线99| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看成人毛片| 精品电影一区二区在线| 国产精品 国内视频| 免费看光身美女| 午夜福利免费观看在线| 免费在线观看日本一区| 亚洲av成人av| 亚洲天堂国产精品一区在线| 少妇丰满av| www国产在线视频色| 欧美三级亚洲精品| 久久精品综合一区二区三区| 真人一进一出gif抽搐免费| 两个人看的免费小视频| 三级男女做爰猛烈吃奶摸视频| 久久久成人免费电影| 男女视频在线观看网站免费| 好看av亚洲va欧美ⅴa在| 亚洲av电影在线进入| 高潮久久久久久久久久久不卡| 少妇丰满av| 久久久久九九精品影院| 亚洲一区二区三区色噜噜| 欧美xxxx黑人xx丫x性爽| 国产精品99久久久久久久久| 国产伦人伦偷精品视频| a在线观看视频网站| 欧美最黄视频在线播放免费| 亚洲精品美女久久久久99蜜臀| 午夜福利成人在线免费观看| 日本成人三级电影网站| 久久精品aⅴ一区二区三区四区| 国产精品av久久久久免费| 日本黄色片子视频| 国产亚洲精品综合一区在线观看| 国产精品影院久久| 琪琪午夜伦伦电影理论片6080| 国产v大片淫在线免费观看| 亚洲av成人不卡在线观看播放网| 91久久精品国产一区二区成人 | 一进一出抽搐动态| 亚洲无线观看免费| 色噜噜av男人的天堂激情| 一边摸一边抽搐一进一小说| 在线播放国产精品三级| 国产高清视频在线播放一区| 老鸭窝网址在线观看| 免费一级毛片在线播放高清视频| 日本 av在线| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 88av欧美| 久久久久性生活片| 成年女人看的毛片在线观看| 国产精品久久久久久人妻精品电影| 国产伦精品一区二区三区四那| 97人妻精品一区二区三区麻豆| 亚洲黑人精品在线| 脱女人内裤的视频| 欧美日本亚洲视频在线播放| 一本一本综合久久| 日韩国内少妇激情av| 国产黄a三级三级三级人| e午夜精品久久久久久久| 亚洲专区国产一区二区| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 国产精品一及| 怎么达到女性高潮| АⅤ资源中文在线天堂| 久久久精品大字幕| 成年女人永久免费观看视频| 成人精品一区二区免费| 哪里可以看免费的av片| 一级毛片精品| 国产精品爽爽va在线观看网站| 午夜精品一区二区三区免费看| 亚洲,欧美精品.| 午夜久久久久精精品| 美女午夜性视频免费| 欧美xxxx黑人xx丫x性爽| 非洲黑人性xxxx精品又粗又长| 亚洲av成人精品一区久久| 12—13女人毛片做爰片一| 视频区欧美日本亚洲| 免费一级毛片在线播放高清视频| 长腿黑丝高跟| 中文字幕久久专区| 亚洲精品国产精品久久久不卡| 两个人看的免费小视频| 日韩欧美国产一区二区入口| 热99re8久久精品国产| 一区二区三区高清视频在线| 两人在一起打扑克的视频| 久久人人精品亚洲av| 欧美3d第一页| 久久亚洲精品不卡| 国产视频内射| av国产免费在线观看| 国内久久婷婷六月综合欲色啪| 99久久精品热视频| 九色国产91popny在线| 日韩三级视频一区二区三区| 中文字幕av在线有码专区| 90打野战视频偷拍视频| 国产av麻豆久久久久久久| or卡值多少钱| 搞女人的毛片| 欧美日韩乱码在线| www日本在线高清视频| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 1024手机看黄色片| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影院精品99| 国产精品电影一区二区三区| 久久久成人免费电影| 亚洲在线观看片| 亚洲av成人av| 成人精品一区二区免费| 亚洲欧美一区二区三区黑人| 亚洲av五月六月丁香网| 亚洲精华国产精华精| 国产一区二区三区视频了| 99久久无色码亚洲精品果冻| 啦啦啦韩国在线观看视频| 国产成人系列免费观看| 欧美日韩一级在线毛片| 我的老师免费观看完整版| 国产成人aa在线观看| 免费看a级黄色片| 亚洲精品久久国产高清桃花| 999精品在线视频| 两性夫妻黄色片| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| 国产日本99.免费观看| 天天一区二区日本电影三级| 黄片小视频在线播放| 国产视频内射| 免费无遮挡裸体视频| 色综合站精品国产| 午夜日韩欧美国产| 偷拍熟女少妇极品色| 亚洲av五月六月丁香网| 黄片大片在线免费观看| 夜夜看夜夜爽夜夜摸| 别揉我奶头~嗯~啊~动态视频| 国内少妇人妻偷人精品xxx网站 | 熟女少妇亚洲综合色aaa.| 日本 av在线| 三级毛片av免费| www日本在线高清视频| 久久久久久久午夜电影| 免费在线观看成人毛片| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 国产亚洲av嫩草精品影院| 亚洲无线观看免费| 长腿黑丝高跟| 色综合婷婷激情| 99久久无色码亚洲精品果冻| 999久久久精品免费观看国产| 女警被强在线播放| av欧美777| 亚洲在线自拍视频| 国产精品爽爽va在线观看网站| 精品福利观看| 成年人黄色毛片网站| 成人国产一区最新在线观看| 亚洲男人的天堂狠狠| 性色avwww在线观看| 神马国产精品三级电影在线观看| 午夜激情欧美在线| 老汉色∧v一级毛片| 精品欧美国产一区二区三| 日韩成人在线观看一区二区三区| 国产精品 欧美亚洲| 中文字幕人妻丝袜一区二区| 国产高清videossex| 老汉色av国产亚洲站长工具| 国产熟女xx| 长腿黑丝高跟| 亚洲欧美日韩高清在线视频| 国产91精品成人一区二区三区| 一本精品99久久精品77| or卡值多少钱| 精品福利观看| 美女 人体艺术 gogo| 美女免费视频网站| 窝窝影院91人妻| 免费大片18禁| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 日韩成人在线观看一区二区三区| 国产精品 欧美亚洲| 国产精品爽爽va在线观看网站| 在线观看舔阴道视频| 最近最新中文字幕大全免费视频| 欧美乱码精品一区二区三区| 国产三级黄色录像| 国产精品 欧美亚洲| av国产免费在线观看| 狂野欧美激情性xxxx| 国产不卡一卡二| 久久久久国产一级毛片高清牌| 免费看a级黄色片| 中文字幕精品亚洲无线码一区| 老熟妇乱子伦视频在线观看| 久久久久久久午夜电影| 中文在线观看免费www的网站| 欧美在线黄色| 免费看日本二区| 免费看a级黄色片| 欧美色欧美亚洲另类二区| 国产野战对白在线观看| 国内久久婷婷六月综合欲色啪| 19禁男女啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 精品国产超薄肉色丝袜足j| 在线看三级毛片| 欧美在线黄色| 国产激情偷乱视频一区二区| 观看美女的网站| 亚洲色图av天堂| 午夜激情福利司机影院| 久久精品夜夜夜夜夜久久蜜豆| 国产aⅴ精品一区二区三区波| 亚洲性夜色夜夜综合| 免费av不卡在线播放| 午夜福利视频1000在线观看| 国产三级在线视频| 日韩欧美国产在线观看| 成年女人永久免费观看视频| 亚洲欧美精品综合一区二区三区| 日韩有码中文字幕| 亚洲成人中文字幕在线播放| 国产激情偷乱视频一区二区| 日日干狠狠操夜夜爽| 人妻夜夜爽99麻豆av| 又爽又黄无遮挡网站| 精品乱码久久久久久99久播| 亚洲自偷自拍图片 自拍| 黄片大片在线免费观看| av天堂中文字幕网| www国产在线视频色| 亚洲av免费在线观看| 国产亚洲精品av在线| 男人的好看免费观看在线视频| 亚洲精品一区av在线观看| 欧美一级毛片孕妇| 久久久水蜜桃国产精品网| 特级一级黄色大片| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 精品午夜福利视频在线观看一区| 琪琪午夜伦伦电影理论片6080| 国产乱人伦免费视频| bbb黄色大片| 亚洲av免费在线观看| 国产精品99久久久久久久久| 精品久久久久久久末码| 成人三级黄色视频| 精品国内亚洲2022精品成人| 18美女黄网站色大片免费观看| 国产av在哪里看|