• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于Keggin陰離子鏈鎳化合物的結構和質子導電性

    2012-09-09 07:28:18魏梅林王曉湘李會華
    無機化學學報 2012年11期
    關鍵詞:分析表明河南師范大學煙酸

    魏梅林王曉湘 李會華

    (河南師范大學化學與環(huán)境科學學院,新鄉(xiāng) 453007)

    基于Keggin陰離子鏈鎳化合物的結構和質子導電性

    魏梅林*王曉湘 李會華

    (河南師范大學化學與環(huán)境科學學院,新鄉(xiāng) 453007)

    由H+(H2O)2.5陽離子,[Ni(H2O)8]2+陽離子,[PW12O40]3-陰離子和異煙酸氮氧化物(HINO)自組裝成一個具有質子導電性的化合物{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n。293 K的單晶X-射線衍射分析表明標題化合物形成1個帶有一維通道的三維氫鍵網(wǎng)絡結構。[PW12O40]3-陰離子填充在一維通道內并且自組裝成多陰離子鏈。熱重分析表明在20~100℃范圍內化合物沒有失重,表明化合物結構單元內所有的水分子在100℃以下不易失去。標題化合物在85~100℃范圍內表現(xiàn)出好的離子導電性(1×10-3~2× 10-3S·cm-1)。

    雜多酸;晶體結構;鎳(Ⅱ)配合物;異煙酸氮氧化物

    Keggin-type heteropolyacids(HPAs),possessing a unique discrete ionic structure including heteropoly anions and countercations(H+,H3O+,H5O2+,etc.),are widely known as proton conducting electrolytes for low-temperaturehydrogen-oxygen fuel cells[1].However, the application of HPAs is limited by the extreme sensitivity of their conductivity to the relative humidity(RH)and the temperature of the surrounding atmosphere[2].To overcome these problems,various attempts have been made to immobilize HPAs in silica gel and to disperse it in an organicallymodified electrolyte membrane and organic/inorganic hybrid membranes[3-4].In addition,to enable fast ionic conduction in the hybrid materials,themolecularmodification of organic ligands to inorganic structures of HPAs has been continuously investigated[5].For a long time,we have focused on the proton conductivity of organic/ inorganic complexes based-on the transition metal salts of HPAs dispersing in self-ordered hydrogenbonded networks.Salts crystallize with fewer water molecules than the acids,and are more stable. Incorporation of salts into the self-ordered hydrogenbonded networks protects them from dehydration and enhanced their thermal stability.Moreover,each transition metal ion could form an ionized water cluster with a special hydration number and a special structure.In this work,we have succeeded in constructing a proton-conductive organic/inorganic hybrid complex by a self-assembly of protonated water clusters,transition metal aqua ions,[PW12O40]3-anions and isonicotinic acid N-oxide(HINO).Here,we report its synthesis,crystal structure,and proton conductivity as a function of temperature.

    1 Experimental

    1.1 M aterials and instruments

    All organic solvents and material used for synthesis were of reagent grade and used without further purification.α-H3PW12O40·6H2O was prepared according to a literaturemethod[6]and characterized by IR spectra and TG analyses.HINO was synthesized according to a literaturemethod and characterized by IR spectra[7].Elemental analyses(C,H,and N)were carried out on a Perkin-Elmer 240C analyzer.X-ray powder diffraction(XRD)was performed on a Bruker D8 Advanced Instrument using Cu Kαradiation and a fixed power source(40 kV,40 mA).IR spectra were recorded on a VECTOR 22 Bruker spectrophotometer with KBr pellets in the 400~4 000 cm-1region at room temperature.Thermogravimetric analysis was performed on a Perkin-Elmer thermal analyzer under nitrogen at a heating rate of 10℃·min-1.For an electrical conductivity study,the powdered crystalline samples were compressed to about 1.0 mm in thickness and 12.0 mm in diameter under a pressure of 12~14 MPa.Ac impedance spectroscopy measurementwas performed on a chi660b(Shanghai chenhua) electrochemical impedance analyzer with copper electrodes[8](the purity of Cu ismore than 99.8%) over the frequency range from 105to 10 Hz.Samples were placed in a temperature-humidity controlled chamber(GT-TH-64Z,Dongwan Gaotian Corp).The conductivity was calculated asσ=(1/R)×(h/S),where R is the resistance,h is the thickness,and S is the area of the tablet.

    1.2 Synthesis of the title com plex

    The formation of heteropolyacid nickel salts was accomplished by neutralization of the acids.α-H3PW12O40·6H2O(180 mg,0.06 mmol)and adding NiCl2·6H2O(15 mg,0.06 mmol)dissolved in water(4 mL).The solution was heated at 80℃in a water bath.Light green crystals were formed by cooling the saturated solution and slow evaporation at room temperature,and characterized by IR spectrum.A mixture of result heteropolyacid nickel salts(90 mg, 0.03 mmol)and HINO(17 mg,0.12 mmol)was dissolved in enough acetonitrile/water(1∶1,V/V)to form a homogeneous solution.Finally,the solution was filtered and the solvent left to evaporate at room temperature.A week later,lightblue crystals appeared and were collected and dried in air after quickly being washed with water.Yield:76.4 mg,85%based onα-H3PW12O40·6H2O.Molecular formula is C24H42Ni W12N4O62.5P.Elemental analysis calcd.(%):C,7.83;H, 1.15;N,1.52.Found(%):C,7.92;H,1.28;N,1.61. Main IR bands(cm-1):four characteristic vibrations resulting from heteropolyanions with the Keggin structure:813ν(W-Oc),896ν(W-Ob),981ν(W=Ot), 1 081ν(P-Oa);and another vibrations resulting from theHINOmolecules:3 326ν(O-H),1704ν(C=O),1 618 ν(C=C),1 280ν(N-O),1 172δ(C-H,in plane).

    1.3 X-ray diffraction analysis

    Intensity data of the title complex was collected on a Bruker SMART-CCD area detector with graphitemonochromatic Mo Kαradiationλ=0.071 073 nm using SMARTand SAINTprograms[9].The structurewas solved by directmethods and refined on F2by using full-matrix least-squares methods with SHELXTL version 5.1[10].All non-hydrogen atoms except solvent water molecules were refined anisotropically.Two O (3W)centers are crystallographically disordered into four symmetrical positions with each oxygen site half-occupied,and two O(2W)centers are also crystallographically disordered into four symmetrical positions with each oxygen site half-occupied.The O(5W)with the occupancy of 50%is placed in a symmetry center and located in a tetragonal environment built from two watermolecules(O(6W)and O(7W)centers),which are crystallographically disordered into two symmetrical positions with each oxygen site half-occupied, respectively.Hydrogen atoms of the organicmolecules were localized in their calculated positions and refined using a ridingmodel.Hydrogen atoms ofwater molecules(O(1W)and O(4W))were localized by difference Fourier maps and refined by fixing the isotropic temperature factors 1.2 times that ofmother atoms attached.Hydrogen atoms of coordination water molecules(O(2W)and O(3W))and solvent water molecules were not treated because these oxygens are crystallographically disordered.The biggish absolute values of the final(Δρ)maxand(Δρ)minmight result from the many heavy metal atoms(W)in the title compound.The final(Δρ)maxand(Δρ)minare located the W atoms.The crystal parameters,data collection and refinement results for the title complex are summarized in Table 1,the selected bond lengths and bond angles are listed in Table 2,and the selected hydrogen bond parameters in Table 3.

    Table 1 Crystal and structure refinement data for 1

    Table 2 Selected bond lengths(nm)and angles(°)for 1

    CCDC:825709.

    2 Results and discussion

    2.1 IR spectra

    Comparison of the IR spectra of heteropolyacid nickel salts,isonicotinic acid N-oxide and the studied crystal shows that theν(C=O)band at 1710 cm-1and theν(N-O)band around 1280 cm-1in spectrum of free HINOmolecules[11]remains around the similar position in the complex,indicating that these groups are not involved in complex formation.The IR spectroscopic studies show that there are not strong interactionsbetween themetal ions and the organic groups in the solid state.The proton polarizabilities are particularly large in the case of hydrogen-bonded chains because in such chains a collective proton-tunnelling occurs. In the FT-IR spectra,these hydrogen bonds or hydrogen-bonded chains are manifested as continua because they interact very strongly with their environments because of large proton polarizabilities, and vice versa hydrogen bonds and hydrogen-bonded chains with large proton polarizabilities are indicated by these IR continua.Thus,such hydrogen-bonded chains are very effective proton pathways.They conduct protons within picoseconds.Water molecules are highly ordered for the entropic reasons if they are in a hydrophobic environment.Therefore,they build up a particularly stable pathway.An IR continuum indicates that this system shows proton polarizability due to collective protonmotion.

    Table 3 Selected hydrogen bond lengths and bond angles for 1

    2.2 Structure description

    The title complex,{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n,was synthesized by the reaction of NiHPW12O40·n H2O and HINO at room temperature.It was characterized by single-crystal X-ray diffraction, infrared spectroscopy,TG and elemental analyses.X-ray diffraction analysis at 293 K revealed that the title complex presented a 3D supramolecular framework built from non-covalent interactions among HINO molecules,[Ni(H2O)8]2+and H+(H2O)2.5cations,and [PW12O40]3-anions.Interestingly,[PW12O40]3-anions self-assembled into poly-Keggin-anion chains in the supramolecular framework.

    In[Ni(H2O)8]2+cations(Fig.1a),the Ni2+ion is placed in a symmetry center and located in a coordination octahedral environment built from six water molecules(two O(1W)centers,two O(2W)centers and two O(3W)centers),as well as two O(4W)centers are situated outside the coordination shell through short hydrogen-bonding interaction with the coordination water molecule.It should be noted that two O(3W)centers are crystallographically disordered into four symme-trical positions with each oxygen site half-occupied,and two O(2W)centers are also crystallographically disordered into four symmetrical positions with each oxygen site half-occupied[12].In the H+(H2O)2.5(the proton added to balance the charge)[11](Fig.1b),2.5 watermolecules,O(5W),O(6W) and O(7W),formed an tetragon structure.

    Fig.1 Views of[Ni(H2O)8]2+(a)and H+(H2O)2.5(b)cations

    Fig.2 View of the 1D HINOs chain along the b axis

    HINO is a goodmono-or bidentate ligand for the construction of supramolecular complexes with versatile bindingmodes.Until now,a large number of metal-organic framework structures containing HINO ligands have been reported[11].Interesting,in the title complex,HINO molecules are not bound to the Ni2+ion,but remaining outside the coordination shell to form hydrogen-bonded chains along the b axis(Fig.2). Two oxygen atoms O(15)(N-O)and O(17)(O-H)of each HINO molecule are involved in the hydrogen-bonded chains.As shown in Fig.3,these HINO hydrogenbonded chains are linked together by[Ni(H2O)8]2+aqua-complexes and small H+(H2O)2.5cations into a 3D cationic network with large 1D channels through hydrogen bonds between coordination watermoleculesO(2W)and oxygen atoms O(15)of HINO molecules, as well as through weak hydrogen bonds between coordination water molecules and oxygen atoms of HINO molecules.Thus,all O atoms of each HINO molecule are involved in the hydrogen bonds,creating a 3D supramolecular assembly with 1D channels. Moreover,there are weakly hydrogen-bonding interaction between watermolecules O(7W)in the H+(H2O)2.5cations and O(1W)center of the[Ni(H2O)8]2+cations. The section size of the channels based on the Ni…Ni separations is ca.1.04 nm×1.60 nm×1.98 nm for the title complex(these separations are equal to three axial lengths respectively),indicating that each pore could only accommodate a single Keggin anion. Interestingly,the adjacent Ni…Ni separation along the a axis ismuch shorter than other two separations along the b and c axes,and even shorter than the diameter of the discrete[PW12O40]3-anion(ca.1.05 nm),resul-ting in each cavity being heavily condensed along the a axis.In addition,the presence of positively charged species,[Ni(H2O)8]2+and H+(H2O)2.5cations,could attract the polyanions,as a result,the Keggin-type[PW12O40]3-anions for charge compensation are embedded in the voids of the 3D cationic framework and connect to one another leading to poly-Keggin-anion chains in the channel along the a axis(Fig.4).In the polymeric polyanion,there are some short atomatom separations of 0.279(2)nm,such as O(7A)…O(8BB),O(8A)…O(7BB),O(7AA)…O (8CB),O(7CB)…O(8AA).

    Fig.4 3D hydrogen-bonded network showing the 1D channels filled by poly-anion chains down the a axis(a),and view of the poly-anion chain along the a axis(b)

    In the[PW12O40]3-unit,the central P atom is surrounded by a cube of eight oxygen atomswith each oxygen site half-occupied.These eight oxygen atoms are all crystallographically disordered,and this case can be found inmany compounds[13].In the title complex, the bond lengths of P-O and W-O are 0.151(2)~0.156 4(19)and 0.166 6(8)~0.249 6(18)nm respectively. The bond lengths of P-O and W-O in the title complex are respectively comparable to those in the 3D porous polyoxometalates-based organic-inorganic hybrid materials with Keggin anions as guests[13].In addition,the O-P-O anglesare in the range of108.3(6)° ~111.4(6)°for the title complex.All these results indicate that the[PW12O40]3-units have a normal Keggin structure in the polymeric-polyanion chains. The poly-Keggin-type anions play not only a chargecompensating role,but they can dramatically influence the overall solid-state architecture through their templating function,as well as the cationic framework with special channels also influences the polymerization of polyanions through its host function. In addition,several hydrogen bonds exist between the poly-Keggin-anion chain and the channel,such as between thewatermolecules(O(1W),O(2W)and O(4W)) belong to the[Ni(H2O)8]2+cations and oxygen atoms of the polyanions(O(9),O(10)and O(12)centers).As a result,based on the self-assembly of HINOmolecules, [Ni(H2O)8]2+and H+(H2O)2.5cations,the title complex form 3D hydrogen-bonding networkswith 1D channels along the a axis,in which poly-Keggin anions chains were formed and stabilized based on electrostatic and H-bonding interactions,resulting in[PW12O40]3-anions being not easy dissociated from the hybrid network. Moreover,the section size of the channels along the b and c axes is so larger than the diameter of the [PW12O40]3-anion(ca.1.05 nm)that there is enough space outside the poly-Keggin-anion chains to admit some small species,such as water molecules or hydronium ions,to transport along the channels.All these results indicate that the title complex can potentially be a new good proton-conductingmaterial.

    2.3 TG Analysis

    The complex is insoluble in water.Water retention in the hybrid at high temperature is a key factor for having fast protonic conduction[8-9].Thermogravimetric analysis of the powder of the crystalline sample of the complex in an atmosphere of N2(Fig.5) shows no weight loss in the temperature range of 20~ 100℃,indicating that allwatermolecules in the unit structure are involved in constructing the H-bonding network,which is consistent with the result of structural analysis,and are not easily lost below 100℃. This is not like that observed in the proton conductors including the quasi-liquid water clusters(which are generally loosely bonded in the structure)like pure tungstophosphoric acid with 26 water molecules (PWA-26)or molybdophosphoric acid with 26 water molecules(PMA-26),as well as many proton-conducting compositemembranes doped with HPAs[1-2].

    Fig.5 Curve of the thermogravimetric analysis of 1 in the atmosphere of N2

    2.4 Proton conductivity

    The proton conductivities of the title complex in the temperature range of 25~100℃under 98%RH conditions were evaluated by the ac impedance method using a compacted pellet of the powdered crystalline sample,which has the same structure as the single-crystal(Fig.6).Surprisingly,the title complex reached good proton conductivities of 1×10-3~2.1×10-3S·cm-1in the temperature range of 85~100℃,estimated from the Nyquist plots.

    Fig.6 Powder X-ray diffraction data of the simulated powder pattern(a),the powder before the protonconductive measurement(b),and thepowder after the proton-conductivemeasurement(c)

    Fig.7 Arrhenius plotof the proton conductivity of 1

    Fig.7 shows the Arrhenius plots of the proton conductivities of the title complex in the temperature range of 25~100℃under 98%RH conditions.The ln(σT)increases almost linearly with temperature range from 25 to 100℃,and the corresponding activation energy(Ea)of conductivity was estimated to be 0.77 eV for the title complex from the equation below[12-13e]. whereσis the ionic conductivity,σ0is the preexponential factor,kBis the Boltzmann constant,and T is the temperature.The Eavalue is high in the temperature range of 25~100℃.The results show that the general features of the changes in conductivities are different from that of PWA-26 or PMA-26,whose protonic conductivity decreased with the temperature from ambient to 60℃[1-2].However,the title complex has thermally activated protonic conductivities[11]from 25 to 100℃;as the temperature increases,the proton conductivities increase on a logarithmic scale even with almost saturated humidities.This is probably due to the fact that protons belong to the protonated water clusters and those originating from water molecules need a thermally activated process for dissociation as hydrated forms such as H+,H3O+or other proton species at a distance from[PW12O40]3-clusters[14].The mechanism of proton conduction of the title complex is,therefore,expected to be similar to that of the vehicle mechanism[15],that is,the direct diffusion of additional protonswith watermolecules.The existence of these half-occupied oxygen sites of watermolecules in[Ni(H2O)8]2+and H+(H2O)2.5cationsmay be derived from direct-jump diffusion and be conducive to formation of the H-bonding network.In addition,the existence of H-bonding network suggests that proton conduction in the title complex includes some other process such as proton transport of additional protons along H-bonding network(Grotthusmechanism)[16].It is possible that in higher temperature and humidity some of isonicotinic acid N-oxide molecules can be deprotonated and the protons can be incorporated by the watermolecules and therefore conductivity can be a result of dissociation of organic acid.The results of measurement of the proton conductivity of HINO molecules in the temperature range of 85~100℃at 98%RH showed the free HINO molecules reached proton conductivities of 10-5~10-4S·cm-1in the temperature range of85~100℃,these proton conductivities are about 1~2 orders ofmagnitude lower than that of the title complex,which shows conductivity of about 10-3S·cm-1in the conditions described.Therefore,the fact that the title complex exhibits good proton conductivities in the temperature range of 85~100℃is indicative of a high carrier concentration based on a thermally activated process,as well as the existence of the whole H-bonding networks.Moreover,there is the possibility of hydrolysis of the complex when it is held at 100℃with a RH higher than 98%(100%,or condensed water that attack the metal centres).The powder X-ray diffraction data in Fig.6 suggested that the powder sample after the proton-conductivemeasurement have the same supramolecular framework as that of complex 1.The proton conductivities of the title complex were alsomeasured at 100℃in the RH range 35%~98%by a complex-plane impedance method.Fig.8 shows the lgσversus RH plots of complex 1 at 100℃under 35%~98%RH.Theconductivity under 35% RH is~3.95×10-5S·cm-1, and the conductivity increases with RH to reach a high conductivity of 1.70×10-3~2.05×10-3S·cm-1in the range 60%~98%RH.

    Fig.8 lgσversus RH plots of 1 at 100℃

    [1](a)Misono M.Chem.Commun.,2001:1141-1152(b)Katsoulis D E.Chem.Rev.,1998,98:359-388(c)MARong-Hua(馬榮華),WANGFu-Ping(王福平).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(3):445-450(d)FAN Ying(樊瑩),LIU Shi-Zhong(柳士忠).Chinese J.Inorg.Chem.(WujiHuaxue Xuebao),2002,18(6):635-638

    [2](a)AlbertiG,Casciola M,Costantino U,etal.J.Mater.Chem.,1995,5:1809-1812(b)Sang X G,Wu QY,PangW Q.Mater.Chem.Phys.,2003,82:405-409(c)Honma I,Nomura S,Nakajima H.J.Membr.Sci.,2001,185:83-94

    [3](a)Kim Y S,Wang F,Hickner M,etal.J.Membr.Sci.,2003, 212:263-282(b)Malers J L,Sweikart M A,Horan J L,et al.J.PowerSources,2007,172:83-88

    [4](a)Ramani V,Kunz H R,Fenton JM.J.Membr.Sci.,2004, 232:31-44(b)Verma A.,Scott K.J.Solid State Electrochem.,2010,14: 213-219

    [5](a)Kim JD,Honma I.Solid State Ionics,2005,176:547-552 (b)Li M Q,Shao Z G,Scott K.J.Power Sources,2008,183: 69-75(c)Verma A,Scott K.J.Solid State Electrochem.,2010,14: 213-219

    [6]Claude R D,Michel F,Raymonde F,et al.Inorg.Chem., 1983,22:207-216

    [7]Simapson PG,Vinciguerra A,Quagliano JV.Inorg.Chem., 1963,2:282-286

    [8]Wu QY,Zhao SL,Wang JM,etal.J.Solid State Electrochem., 2007,11:240-243

    [9]SMART and SAINT;Area Detector Control and Integration Software,Madison,WI:Siemens Analytical X-ray Systems, Inc.,1996.

    [10]Sheldrick GM.SHELXTL V5.1,Software Reference Manual, Madison,WI:Bruker AXS,Inc.,1997.

    [11](a)Goher M A S,Mautmer F A.J.Mol.Struct.,2007,846: 153-156(b)Hong J.J.Mol.Struct.,2006,783:9-12(c)Zhang L P,Du M,Lu W,et al.Polyhedron,2004,23:857-863

    [12](a)Sadakiyo M,Yamada T,Kitagawa H.J.Am.Chem.Soc., 2009,131:9906-9907(b)Yamada T,Sadakiyo M,Kitagawa H.J.Am.Chem.Soc.,2009,131:3144-3145(c)England W A,Cross M G,Hamnett A,et al.Solid StateIonics,1980,1:231-249

    [13](a)Wei M L,He C,Hua W J,et al.J.Am.Chem.Soc., 2006,128:13318-13319(b)Wei M L,He C,Sun Q Z,et al.Inorg.Chem.,2007,46:5957-5966(c)Duan C Y,Wei M L,Guo D,et al.J.Am.Chem.Soc.,2010,132:3321-3330(d)WeiM L,Zhuang PF,LiH H,etal.Eur.J.Inorg.Chem.,2011:1473-1478

    [14](a)Janic M J,Davis R J,Neurock M.J.Am.Chem.Soc., 2005,127:5238-5245(b)Hayashi EG,Moffat JB.J.Catal.,1983,83:192-204(c)Honma I,Nomura S,Nakajima H.J.Membr.Sci.,2001,185:83-94

    [15]Kreuer K D,Rabenau A,Weppner W.Angew.Chem.Int. Ed.,1982,21:208-209

    [16]Agmon N.Chem.Phys.Lett.,1995,244:456-462

    Crystal Structure and Proton-Conductivity of a Nickel(Ⅱ)Comp lex Constructed by Poly-Keggin-anion Chains

    WEIMei-Lin*WANG Xiao-Xiang LIHui-Hua
    (College of Chemistry and Environmental Science,Henan Normal University,Xinxiang,Henan 453007,China)

    A proton-conductive complex{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n,wasconstructed by aself-assembly of cations,[Ni(H2O)8]2+cations,[PW12O40]3-anions and isonicotinic acid N-oxide(HINO).Single-crystal X-ray diffraction analysis at 293 K revealed that the title complex presented exactly a three-dimensional(3D)hydrogenbonded network with large one-dimensional(1D)channels.Interestingly,[PW12O40]3-anions just filled in the 1D channels and self-assembled into poly-Keggin-anion chains.Thermogravimetric analysis shows no weight loss in the temperature range of 20~100℃,indicating that all watermolecules in the unit structure are not easily lost below 100℃.The title complex was characterized by a satisfactory ionic conductivity(1×10-3~2×10-3S·cm-1)in the temperature range 85 to 100℃.CCDC:825709.

    polyoxometalates;crystal structure;nickel(Ⅱ)complex;isonicotinic acid N-oxide

    book=0,ebook=33

    O614.81+3

    A

    1001-4861(2012)11-2485-09

    2012-10-18。收修改稿日期:2012-08-03。

    國家自然科學基金(No.20971038,21171050)資助項目。

    *通訊聯(lián)系人。E-mail:weimeilinhd@163.com

    猜你喜歡
    分析表明河南師范大學煙酸
    河南師范大學作品精選
    聲屏世界(2024年1期)2024-04-11 07:51:08
    2050年中國碳中和累計投資規(guī)模預計約180萬億元
    河南師范大學作品精選
    聲屏世界(2023年23期)2023-03-10 04:49:28
    裳作
    炎黃地理(2022年5期)2022-06-07 03:35:41
    河南師范大學美術學院作品選登
    由胡克定律的數(shù)學表達式說開去
    相轉移催化合成2-氨基異煙酸
    鋱-2-甲硫基煙酸摻雜配合物的合成及熒光性質研究
    煙酸在畜禽生產(chǎn)中的應用
    中國飼料(2012年21期)2012-06-29 10:27:04
    巧歸納 善總結
    甘肅教育(2012年10期)2012-04-29 13:56:56
    日本免费一区二区三区高清不卡| 日本一二三区视频观看| 成年女人永久免费观看视频| 亚洲熟妇中文字幕五十中出| 草草在线视频免费看| 国产蜜桃级精品一区二区三区| av国产免费在线观看| 在线观看一区二区三区| 亚洲美女视频黄频| 观看免费一级毛片| 最近在线观看免费完整版| 少妇人妻精品综合一区二区 | 亚洲男人的天堂狠狠| 欧美日韩国产亚洲二区| 村上凉子中文字幕在线| 超碰av人人做人人爽久久 | 一级黄色大片毛片| 午夜免费观看网址| 国产成人影院久久av| 成人亚洲精品av一区二区| 中文资源天堂在线| 人人妻,人人澡人人爽秒播| 男女床上黄色一级片免费看| 国模一区二区三区四区视频| 亚洲精品乱码久久久v下载方式 | 中亚洲国语对白在线视频| 别揉我奶头~嗯~啊~动态视频| 国产在视频线在精品| 搡老熟女国产l中国老女人| 在线播放无遮挡| 亚洲精品乱码久久久v下载方式 | 18禁黄网站禁片免费观看直播| 亚洲欧美日韩无卡精品| 搡女人真爽免费视频火全软件 | 99热只有精品国产| 亚洲内射少妇av| 俄罗斯特黄特色一大片| 亚洲欧美一区二区三区黑人| 欧美zozozo另类| 美女cb高潮喷水在线观看| 在线免费观看不下载黄p国产 | 国产精品永久免费网站| 亚洲成人免费电影在线观看| www.999成人在线观看| 最后的刺客免费高清国语| 亚洲国产中文字幕在线视频| 欧美不卡视频在线免费观看| www.色视频.com| 69av精品久久久久久| 中出人妻视频一区二区| 欧美日韩精品网址| 18禁国产床啪视频网站| 成年人黄色毛片网站| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av| av国产免费在线观看| 搡老妇女老女人老熟妇| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩东京热| 久久国产乱子伦精品免费另类| 舔av片在线| 国内精品久久久久久久电影| 一本综合久久免费| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 欧美中文日本在线观看视频| 亚洲最大成人中文| 婷婷六月久久综合丁香| 久久性视频一级片| 精品久久久久久久人妻蜜臀av| 12—13女人毛片做爰片一| 变态另类丝袜制服| 国产精品美女特级片免费视频播放器| 性欧美人与动物交配| 乱人视频在线观看| 亚洲美女黄片视频| 亚洲精品色激情综合| 国产一区二区激情短视频| 少妇裸体淫交视频免费看高清| 久久久久国内视频| 亚洲欧美激情综合另类| 丁香六月欧美| 免费无遮挡裸体视频| 午夜影院日韩av| 一二三四社区在线视频社区8| 欧美zozozo另类| 热99re8久久精品国产| 法律面前人人平等表现在哪些方面| 国产久久久一区二区三区| 午夜日韩欧美国产| 欧美绝顶高潮抽搐喷水| 伊人久久精品亚洲午夜| 又紧又爽又黄一区二区| 国产午夜精品久久久久久一区二区三区 | 岛国在线免费视频观看| 午夜免费激情av| 久99久视频精品免费| 黄色丝袜av网址大全| 99久久99久久久精品蜜桃| 变态另类成人亚洲欧美熟女| 国产精品久久久久久亚洲av鲁大| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久大精品| 亚洲人成电影免费在线| 国产亚洲精品综合一区在线观看| 国产野战对白在线观看| 在线观看午夜福利视频| 国产精品野战在线观看| 一a级毛片在线观看| 中国美女看黄片| 欧美一级a爱片免费观看看| 亚洲成人久久性| 丰满乱子伦码专区| 欧美另类亚洲清纯唯美| 一级黄色大片毛片| 一个人免费在线观看的高清视频| 久久精品国产99精品国产亚洲性色| 少妇高潮的动态图| АⅤ资源中文在线天堂| e午夜精品久久久久久久| 精品一区二区三区人妻视频| 国产精品久久久人人做人人爽| 99riav亚洲国产免费| 人妻丰满熟妇av一区二区三区| 一进一出抽搐gif免费好疼| 久久久国产精品麻豆| 99久久精品国产亚洲精品| 国产免费男女视频| 色综合亚洲欧美另类图片| 国产伦人伦偷精品视频| 我要搜黄色片| 久久亚洲真实| 亚洲成人久久爱视频| 九色国产91popny在线| 久久精品国产综合久久久| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 成人高潮视频无遮挡免费网站| 久久婷婷人人爽人人干人人爱| 一本久久中文字幕| 在线观看舔阴道视频| 色噜噜av男人的天堂激情| 久久精品91无色码中文字幕| 99久久99久久久精品蜜桃| eeuss影院久久| 久久久久国内视频| 国产午夜精品论理片| 男女下面进入的视频免费午夜| 亚洲精品久久国产高清桃花| 国产欧美日韩精品一区二区| 久久精品国产自在天天线| 国产精品久久久久久人妻精品电影| 久久午夜亚洲精品久久| 成人亚洲精品av一区二区| 黑人欧美特级aaaaaa片| 两性午夜刺激爽爽歪歪视频在线观看| 国产一级毛片七仙女欲春2| 国产午夜精品久久久久久一区二区三区 | h日本视频在线播放| 亚洲乱码一区二区免费版| 床上黄色一级片| 久久久久国内视频| 首页视频小说图片口味搜索| 国产激情欧美一区二区| 日本成人三级电影网站| 美女大奶头视频| 欧美日韩中文字幕国产精品一区二区三区| a级毛片a级免费在线| 国产中年淑女户外野战色| 99国产精品一区二区三区| 国产精品久久久人人做人人爽| 精品一区二区三区视频在线 | 日本 欧美在线| 亚洲av成人精品一区久久| av天堂在线播放| 一个人观看的视频www高清免费观看| 成人18禁在线播放| 久久欧美精品欧美久久欧美| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 亚洲美女视频黄频| 97超级碰碰碰精品色视频在线观看| 成人国产综合亚洲| 床上黄色一级片| 国产v大片淫在线免费观看| 99视频精品全部免费 在线| 有码 亚洲区| 欧美成人免费av一区二区三区| 全区人妻精品视频| 欧美成人性av电影在线观看| 日本在线视频免费播放| 久久人人精品亚洲av| 精品久久久久久久末码| 亚洲国产日韩欧美精品在线观看 | 免费观看精品视频网站| 一a级毛片在线观看| 欧美色视频一区免费| 国产伦在线观看视频一区| 国产91精品成人一区二区三区| 国产美女午夜福利| 亚洲成人免费电影在线观看| 亚洲欧美日韩卡通动漫| 精品国内亚洲2022精品成人| 日韩欧美一区二区三区在线观看| 在线看三级毛片| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女| 99热这里只有是精品50| 久久精品国产自在天天线| 国产欧美日韩一区二区精品| 日本熟妇午夜| 国产精品一区二区三区四区久久| 色av中文字幕| 男人舔奶头视频| 久久久久久久午夜电影| 色视频www国产| 国产精品98久久久久久宅男小说| 淫秽高清视频在线观看| 国内久久婷婷六月综合欲色啪| 成人高潮视频无遮挡免费网站| 精品人妻1区二区| 有码 亚洲区| 麻豆国产97在线/欧美| 国产亚洲av嫩草精品影院| 色尼玛亚洲综合影院| 欧美激情久久久久久爽电影| 欧美日本亚洲视频在线播放| 久久精品综合一区二区三区| 久久久国产成人免费| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 日韩 欧美 亚洲 中文字幕| 一个人免费在线观看电影| 国产单亲对白刺激| 99国产精品一区二区三区| 亚洲成人中文字幕在线播放| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 国产伦一二天堂av在线观看| 91av网一区二区| 久久天躁狠狠躁夜夜2o2o| 国产aⅴ精品一区二区三区波| 久久精品91蜜桃| 一个人免费在线观看电影| 怎么达到女性高潮| 久久中文看片网| 美女高潮的动态| 国产精品久久久久久久电影 | 波野结衣二区三区在线 | 桃红色精品国产亚洲av| 久久精品国产99精品国产亚洲性色| 欧美乱码精品一区二区三区| 97碰自拍视频| 成人特级av手机在线观看| av女优亚洲男人天堂| a级一级毛片免费在线观看| 亚洲成人久久性| 19禁男女啪啪无遮挡网站| 嫁个100分男人电影在线观看| svipshipincom国产片| 小说图片视频综合网站| 国产精品,欧美在线| 亚洲黑人精品在线| 亚洲第一电影网av| 亚洲专区国产一区二区| 一进一出好大好爽视频| 真人一进一出gif抽搐免费| 波多野结衣巨乳人妻| 国产精品av视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 亚洲国产欧美网| 久久中文看片网| 色av中文字幕| 搡老岳熟女国产| 三级毛片av免费| 精品国产超薄肉色丝袜足j| 91在线精品国自产拍蜜月 | 亚洲欧美一区二区三区黑人| 麻豆一二三区av精品| 美女黄网站色视频| 熟女少妇亚洲综合色aaa.| 男人舔奶头视频| 成年人黄色毛片网站| 欧美日韩精品网址| 亚洲欧美日韩卡通动漫| 免费看光身美女| a级毛片a级免费在线| 国产成人av激情在线播放| 久久婷婷人人爽人人干人人爱| 欧美黄色淫秽网站| 国产男靠女视频免费网站| 亚洲国产色片| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 日韩国内少妇激情av| 亚洲无线在线观看| 成人欧美大片| 少妇的逼好多水| 亚洲国产精品久久男人天堂| 午夜a级毛片| 97超级碰碰碰精品色视频在线观看| 国产免费一级a男人的天堂| 老鸭窝网址在线观看| 香蕉久久夜色| 精品久久久久久久毛片微露脸| 亚洲在线自拍视频| 97超视频在线观看视频| 欧美中文综合在线视频| 日韩 欧美 亚洲 中文字幕| 桃色一区二区三区在线观看| 此物有八面人人有两片| 精品熟女少妇八av免费久了| 91久久精品电影网| 国产亚洲精品久久久com| 免费无遮挡裸体视频| 性色av乱码一区二区三区2| 一级毛片高清免费大全| 国产av不卡久久| 国产在视频线在精品| 一a级毛片在线观看| 非洲黑人性xxxx精品又粗又长| 我的老师免费观看完整版| 十八禁人妻一区二区| h日本视频在线播放| 欧美日韩乱码在线| 一本综合久久免费| 一个人免费在线观看电影| 99久久99久久久精品蜜桃| 久久精品影院6| 亚洲国产精品久久男人天堂| 九九久久精品国产亚洲av麻豆| 免费看日本二区| 又粗又爽又猛毛片免费看| 别揉我奶头~嗯~啊~动态视频| 亚洲电影在线观看av| 国产精品 国内视频| 9191精品国产免费久久| 噜噜噜噜噜久久久久久91| 怎么达到女性高潮| 一二三四社区在线视频社区8| 国产又黄又爽又无遮挡在线| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式 | 精品国内亚洲2022精品成人| 九色成人免费人妻av| 九色国产91popny在线| 香蕉av资源在线| 99热这里只有精品一区| 日韩欧美精品v在线| 非洲黑人性xxxx精品又粗又长| 1000部很黄的大片| 精品熟女少妇八av免费久了| 亚洲精品亚洲一区二区| 国产日本99.免费观看| 精品人妻偷拍中文字幕| 18禁黄网站禁片午夜丰满| 精品一区二区三区人妻视频| 亚洲人成电影免费在线| 嫩草影视91久久| 黄色片一级片一级黄色片| av在线蜜桃| 亚洲五月婷婷丁香| 国产午夜福利久久久久久| 俺也久久电影网| 熟女电影av网| 午夜福利视频1000在线观看| 亚洲 欧美 日韩 在线 免费| 欧美乱妇无乱码| 午夜福利在线观看免费完整高清在 | 18美女黄网站色大片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 99国产综合亚洲精品| 看黄色毛片网站| 亚洲国产欧美人成| 亚洲国产日韩欧美精品在线观看 | 成年版毛片免费区| 一边摸一边抽搐一进一小说| 99视频精品全部免费 在线| 久久久久国内视频| 国产99白浆流出| 日韩亚洲欧美综合| 久久久久久人人人人人| 一级黄片播放器| 欧美+亚洲+日韩+国产| 成人av在线播放网站| 国产爱豆传媒在线观看| 亚洲欧美激情综合另类| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类 | 午夜福利在线观看免费完整高清在 | 久久九九热精品免费| 999久久久精品免费观看国产| 成年人黄色毛片网站| 麻豆久久精品国产亚洲av| 欧美成狂野欧美在线观看| 精品一区二区三区人妻视频| 黄色片一级片一级黄色片| 亚洲av成人不卡在线观看播放网| av片东京热男人的天堂| 亚洲国产精品999在线| www国产在线视频色| 欧美av亚洲av综合av国产av| 亚洲av不卡在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品乱码久久久v下载方式 | netflix在线观看网站| 叶爱在线成人免费视频播放| 天天一区二区日本电影三级| 日韩av在线大香蕉| 又紧又爽又黄一区二区| 真人一进一出gif抽搐免费| 久久久久久九九精品二区国产| 黄色片一级片一级黄色片| 99国产极品粉嫩在线观看| 欧美3d第一页| 亚洲av成人av| 18+在线观看网站| 欧美一区二区国产精品久久精品| 两个人看的免费小视频| 男人舔女人下体高潮全视频| av女优亚洲男人天堂| 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 欧美乱码精品一区二区三区| 亚洲精品粉嫩美女一区| 天堂影院成人在线观看| 色噜噜av男人的天堂激情| 国产单亲对白刺激| 久久精品人妻少妇| 国产精品久久视频播放| 国产精品乱码一区二三区的特点| 亚洲精品国产精品久久久不卡| 国产在线精品亚洲第一网站| 一区福利在线观看| 老司机午夜十八禁免费视频| 在线a可以看的网站| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 啦啦啦免费观看视频1| 免费观看的影片在线观看| 少妇高潮的动态图| 深爱激情五月婷婷| 五月玫瑰六月丁香| 非洲黑人性xxxx精品又粗又长| 欧美日韩综合久久久久久 | 国产精品久久久久久久电影 | 久久国产乱子伦精品免费另类| 亚洲av电影不卡..在线观看| 岛国视频午夜一区免费看| 成人欧美大片| 国产黄色小视频在线观看| 国产精品一区二区三区四区免费观看 | 欧美中文日本在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 日本成人三级电影网站| 成人无遮挡网站| 亚洲专区国产一区二区| 欧美激情在线99| 香蕉久久夜色| 精品久久久久久久毛片微露脸| 可以在线观看毛片的网站| 19禁男女啪啪无遮挡网站| 天堂av国产一区二区熟女人妻| 琪琪午夜伦伦电影理论片6080| 在线国产一区二区在线| 床上黄色一级片| 看片在线看免费视频| 精品久久久久久久毛片微露脸| 日韩欧美在线乱码| 亚洲无线在线观看| 免费av观看视频| 欧美日韩中文字幕国产精品一区二区三区| 真人做人爱边吃奶动态| 久久久久久久午夜电影| 亚洲中文日韩欧美视频| 亚洲狠狠婷婷综合久久图片| 欧美乱码精品一区二区三区| 搡老妇女老女人老熟妇| 18+在线观看网站| 天天添夜夜摸| 香蕉久久夜色| 欧美成人性av电影在线观看| 少妇高潮的动态图| 亚洲国产精品成人综合色| 亚洲精品一卡2卡三卡4卡5卡| 国产黄色小视频在线观看| 午夜日韩欧美国产| 国产精品自产拍在线观看55亚洲| 韩国av一区二区三区四区| 观看美女的网站| 日本熟妇午夜| 夜夜爽天天搞| 在线a可以看的网站| www.www免费av| 欧美日韩综合久久久久久 | 丰满人妻熟妇乱又伦精品不卡| 午夜福利欧美成人| 国产成人欧美在线观看| 欧美+亚洲+日韩+国产| 成人性生交大片免费视频hd| 午夜两性在线视频| 俺也久久电影网| 国产亚洲精品久久久久久毛片| 国产成人影院久久av| 国产精品亚洲一级av第二区| 久久天躁狠狠躁夜夜2o2o| 精品福利观看| 欧美激情在线99| 国产精品一区二区三区四区免费观看 | 亚洲成a人片在线一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产探花在线观看一区二区| 观看美女的网站| 动漫黄色视频在线观看| 国产成人欧美在线观看| 男女床上黄色一级片免费看| 久久精品国产亚洲av涩爱 | 欧美最黄视频在线播放免费| 欧美成人性av电影在线观看| 12—13女人毛片做爰片一| 99久国产av精品| 十八禁网站免费在线| 久久精品国产亚洲av涩爱 | 可以在线观看毛片的网站| 日日干狠狠操夜夜爽| 麻豆久久精品国产亚洲av| 国产v大片淫在线免费观看| 99精品欧美一区二区三区四区| 国产伦在线观看视频一区| 一本久久中文字幕| 亚洲成人精品中文字幕电影| 国产成人av激情在线播放| 国产伦人伦偷精品视频| 身体一侧抽搐| 99久国产av精品| АⅤ资源中文在线天堂| 激情在线观看视频在线高清| 国产亚洲av嫩草精品影院| 免费在线观看影片大全网站| 午夜激情福利司机影院| 色综合亚洲欧美另类图片| 欧美高清成人免费视频www| 免费搜索国产男女视频| 国产三级中文精品| 国产在视频线在精品| 欧美性猛交黑人性爽| 色综合婷婷激情| 在线观看美女被高潮喷水网站 | 欧美区成人在线视频| 亚洲av免费高清在线观看| 日本免费一区二区三区高清不卡| 亚洲不卡免费看| 国产精品爽爽va在线观看网站| 小说图片视频综合网站| 色视频www国产| 国产成年人精品一区二区| 99国产精品一区二区三区| 久久久国产成人免费| 亚洲精品成人久久久久久| 可以在线观看毛片的网站| 母亲3免费完整高清在线观看| 伊人久久大香线蕉亚洲五| 在线播放国产精品三级| or卡值多少钱| 动漫黄色视频在线观看| 亚洲欧美精品综合久久99| 国产国拍精品亚洲av在线观看 | 日韩欧美免费精品| 人妻夜夜爽99麻豆av| 亚洲久久久久久中文字幕| 国产精品爽爽va在线观看网站| 熟女电影av网| 国产v大片淫在线免费观看| 国产成人福利小说| h日本视频在线播放| 欧美色欧美亚洲另类二区| 美女黄网站色视频| 在线十欧美十亚洲十日本专区| 成人性生交大片免费视频hd| 日韩欧美一区二区三区在线观看| 亚洲无线观看免费| 欧美乱妇无乱码| av欧美777| 在线播放无遮挡| 一本一本综合久久| 老司机午夜十八禁免费视频| 国产精品,欧美在线| 日本熟妇午夜| 国产麻豆成人av免费视频| 国产私拍福利视频在线观看| 免费看光身美女| 亚洲人与动物交配视频| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 丰满人妻一区二区三区视频av | а√天堂www在线а√下载| 激情在线观看视频在线高清| 亚洲五月天丁香| 国语自产精品视频在线第100页| 午夜a级毛片| 欧美最黄视频在线播放免费| 国内毛片毛片毛片毛片毛片| 99视频精品全部免费 在线| 久久久色成人| 日韩欧美精品v在线| 日本三级黄在线观看| 欧美黄色片欧美黄色片| 欧美一级a爱片免费观看看| 久久久久久大精品| 国产精品99久久久久久久久|