• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于Keggin陰離子鏈鎳化合物的結構和質子導電性

    2012-09-09 07:28:18魏梅林王曉湘李會華
    無機化學學報 2012年11期
    關鍵詞:分析表明河南師范大學煙酸

    魏梅林王曉湘 李會華

    (河南師范大學化學與環(huán)境科學學院,新鄉(xiāng) 453007)

    基于Keggin陰離子鏈鎳化合物的結構和質子導電性

    魏梅林*王曉湘 李會華

    (河南師范大學化學與環(huán)境科學學院,新鄉(xiāng) 453007)

    由H+(H2O)2.5陽離子,[Ni(H2O)8]2+陽離子,[PW12O40]3-陰離子和異煙酸氮氧化物(HINO)自組裝成一個具有質子導電性的化合物{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n。293 K的單晶X-射線衍射分析表明標題化合物形成1個帶有一維通道的三維氫鍵網(wǎng)絡結構。[PW12O40]3-陰離子填充在一維通道內并且自組裝成多陰離子鏈。熱重分析表明在20~100℃范圍內化合物沒有失重,表明化合物結構單元內所有的水分子在100℃以下不易失去。標題化合物在85~100℃范圍內表現(xiàn)出好的離子導電性(1×10-3~2× 10-3S·cm-1)。

    雜多酸;晶體結構;鎳(Ⅱ)配合物;異煙酸氮氧化物

    Keggin-type heteropolyacids(HPAs),possessing a unique discrete ionic structure including heteropoly anions and countercations(H+,H3O+,H5O2+,etc.),are widely known as proton conducting electrolytes for low-temperaturehydrogen-oxygen fuel cells[1].However, the application of HPAs is limited by the extreme sensitivity of their conductivity to the relative humidity(RH)and the temperature of the surrounding atmosphere[2].To overcome these problems,various attempts have been made to immobilize HPAs in silica gel and to disperse it in an organicallymodified electrolyte membrane and organic/inorganic hybrid membranes[3-4].In addition,to enable fast ionic conduction in the hybrid materials,themolecularmodification of organic ligands to inorganic structures of HPAs has been continuously investigated[5].For a long time,we have focused on the proton conductivity of organic/ inorganic complexes based-on the transition metal salts of HPAs dispersing in self-ordered hydrogenbonded networks.Salts crystallize with fewer water molecules than the acids,and are more stable. Incorporation of salts into the self-ordered hydrogenbonded networks protects them from dehydration and enhanced their thermal stability.Moreover,each transition metal ion could form an ionized water cluster with a special hydration number and a special structure.In this work,we have succeeded in constructing a proton-conductive organic/inorganic hybrid complex by a self-assembly of protonated water clusters,transition metal aqua ions,[PW12O40]3-anions and isonicotinic acid N-oxide(HINO).Here,we report its synthesis,crystal structure,and proton conductivity as a function of temperature.

    1 Experimental

    1.1 M aterials and instruments

    All organic solvents and material used for synthesis were of reagent grade and used without further purification.α-H3PW12O40·6H2O was prepared according to a literaturemethod[6]and characterized by IR spectra and TG analyses.HINO was synthesized according to a literaturemethod and characterized by IR spectra[7].Elemental analyses(C,H,and N)were carried out on a Perkin-Elmer 240C analyzer.X-ray powder diffraction(XRD)was performed on a Bruker D8 Advanced Instrument using Cu Kαradiation and a fixed power source(40 kV,40 mA).IR spectra were recorded on a VECTOR 22 Bruker spectrophotometer with KBr pellets in the 400~4 000 cm-1region at room temperature.Thermogravimetric analysis was performed on a Perkin-Elmer thermal analyzer under nitrogen at a heating rate of 10℃·min-1.For an electrical conductivity study,the powdered crystalline samples were compressed to about 1.0 mm in thickness and 12.0 mm in diameter under a pressure of 12~14 MPa.Ac impedance spectroscopy measurementwas performed on a chi660b(Shanghai chenhua) electrochemical impedance analyzer with copper electrodes[8](the purity of Cu ismore than 99.8%) over the frequency range from 105to 10 Hz.Samples were placed in a temperature-humidity controlled chamber(GT-TH-64Z,Dongwan Gaotian Corp).The conductivity was calculated asσ=(1/R)×(h/S),where R is the resistance,h is the thickness,and S is the area of the tablet.

    1.2 Synthesis of the title com plex

    The formation of heteropolyacid nickel salts was accomplished by neutralization of the acids.α-H3PW12O40·6H2O(180 mg,0.06 mmol)and adding NiCl2·6H2O(15 mg,0.06 mmol)dissolved in water(4 mL).The solution was heated at 80℃in a water bath.Light green crystals were formed by cooling the saturated solution and slow evaporation at room temperature,and characterized by IR spectrum.A mixture of result heteropolyacid nickel salts(90 mg, 0.03 mmol)and HINO(17 mg,0.12 mmol)was dissolved in enough acetonitrile/water(1∶1,V/V)to form a homogeneous solution.Finally,the solution was filtered and the solvent left to evaporate at room temperature.A week later,lightblue crystals appeared and were collected and dried in air after quickly being washed with water.Yield:76.4 mg,85%based onα-H3PW12O40·6H2O.Molecular formula is C24H42Ni W12N4O62.5P.Elemental analysis calcd.(%):C,7.83;H, 1.15;N,1.52.Found(%):C,7.92;H,1.28;N,1.61. Main IR bands(cm-1):four characteristic vibrations resulting from heteropolyanions with the Keggin structure:813ν(W-Oc),896ν(W-Ob),981ν(W=Ot), 1 081ν(P-Oa);and another vibrations resulting from theHINOmolecules:3 326ν(O-H),1704ν(C=O),1 618 ν(C=C),1 280ν(N-O),1 172δ(C-H,in plane).

    1.3 X-ray diffraction analysis

    Intensity data of the title complex was collected on a Bruker SMART-CCD area detector with graphitemonochromatic Mo Kαradiationλ=0.071 073 nm using SMARTand SAINTprograms[9].The structurewas solved by directmethods and refined on F2by using full-matrix least-squares methods with SHELXTL version 5.1[10].All non-hydrogen atoms except solvent water molecules were refined anisotropically.Two O (3W)centers are crystallographically disordered into four symmetrical positions with each oxygen site half-occupied,and two O(2W)centers are also crystallographically disordered into four symmetrical positions with each oxygen site half-occupied.The O(5W)with the occupancy of 50%is placed in a symmetry center and located in a tetragonal environment built from two watermolecules(O(6W)and O(7W)centers),which are crystallographically disordered into two symmetrical positions with each oxygen site half-occupied, respectively.Hydrogen atoms of the organicmolecules were localized in their calculated positions and refined using a ridingmodel.Hydrogen atoms ofwater molecules(O(1W)and O(4W))were localized by difference Fourier maps and refined by fixing the isotropic temperature factors 1.2 times that ofmother atoms attached.Hydrogen atoms of coordination water molecules(O(2W)and O(3W))and solvent water molecules were not treated because these oxygens are crystallographically disordered.The biggish absolute values of the final(Δρ)maxand(Δρ)minmight result from the many heavy metal atoms(W)in the title compound.The final(Δρ)maxand(Δρ)minare located the W atoms.The crystal parameters,data collection and refinement results for the title complex are summarized in Table 1,the selected bond lengths and bond angles are listed in Table 2,and the selected hydrogen bond parameters in Table 3.

    Table 1 Crystal and structure refinement data for 1

    Table 2 Selected bond lengths(nm)and angles(°)for 1

    CCDC:825709.

    2 Results and discussion

    2.1 IR spectra

    Comparison of the IR spectra of heteropolyacid nickel salts,isonicotinic acid N-oxide and the studied crystal shows that theν(C=O)band at 1710 cm-1and theν(N-O)band around 1280 cm-1in spectrum of free HINOmolecules[11]remains around the similar position in the complex,indicating that these groups are not involved in complex formation.The IR spectroscopic studies show that there are not strong interactionsbetween themetal ions and the organic groups in the solid state.The proton polarizabilities are particularly large in the case of hydrogen-bonded chains because in such chains a collective proton-tunnelling occurs. In the FT-IR spectra,these hydrogen bonds or hydrogen-bonded chains are manifested as continua because they interact very strongly with their environments because of large proton polarizabilities, and vice versa hydrogen bonds and hydrogen-bonded chains with large proton polarizabilities are indicated by these IR continua.Thus,such hydrogen-bonded chains are very effective proton pathways.They conduct protons within picoseconds.Water molecules are highly ordered for the entropic reasons if they are in a hydrophobic environment.Therefore,they build up a particularly stable pathway.An IR continuum indicates that this system shows proton polarizability due to collective protonmotion.

    Table 3 Selected hydrogen bond lengths and bond angles for 1

    2.2 Structure description

    The title complex,{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n,was synthesized by the reaction of NiHPW12O40·n H2O and HINO at room temperature.It was characterized by single-crystal X-ray diffraction, infrared spectroscopy,TG and elemental analyses.X-ray diffraction analysis at 293 K revealed that the title complex presented a 3D supramolecular framework built from non-covalent interactions among HINO molecules,[Ni(H2O)8]2+and H+(H2O)2.5cations,and [PW12O40]3-anions.Interestingly,[PW12O40]3-anions self-assembled into poly-Keggin-anion chains in the supramolecular framework.

    In[Ni(H2O)8]2+cations(Fig.1a),the Ni2+ion is placed in a symmetry center and located in a coordination octahedral environment built from six water molecules(two O(1W)centers,two O(2W)centers and two O(3W)centers),as well as two O(4W)centers are situated outside the coordination shell through short hydrogen-bonding interaction with the coordination water molecule.It should be noted that two O(3W)centers are crystallographically disordered into four symme-trical positions with each oxygen site half-occupied,and two O(2W)centers are also crystallographically disordered into four symmetrical positions with each oxygen site half-occupied[12].In the H+(H2O)2.5(the proton added to balance the charge)[11](Fig.1b),2.5 watermolecules,O(5W),O(6W) and O(7W),formed an tetragon structure.

    Fig.1 Views of[Ni(H2O)8]2+(a)and H+(H2O)2.5(b)cations

    Fig.2 View of the 1D HINOs chain along the b axis

    HINO is a goodmono-or bidentate ligand for the construction of supramolecular complexes with versatile bindingmodes.Until now,a large number of metal-organic framework structures containing HINO ligands have been reported[11].Interesting,in the title complex,HINO molecules are not bound to the Ni2+ion,but remaining outside the coordination shell to form hydrogen-bonded chains along the b axis(Fig.2). Two oxygen atoms O(15)(N-O)and O(17)(O-H)of each HINO molecule are involved in the hydrogen-bonded chains.As shown in Fig.3,these HINO hydrogenbonded chains are linked together by[Ni(H2O)8]2+aqua-complexes and small H+(H2O)2.5cations into a 3D cationic network with large 1D channels through hydrogen bonds between coordination watermoleculesO(2W)and oxygen atoms O(15)of HINO molecules, as well as through weak hydrogen bonds between coordination water molecules and oxygen atoms of HINO molecules.Thus,all O atoms of each HINO molecule are involved in the hydrogen bonds,creating a 3D supramolecular assembly with 1D channels. Moreover,there are weakly hydrogen-bonding interaction between watermolecules O(7W)in the H+(H2O)2.5cations and O(1W)center of the[Ni(H2O)8]2+cations. The section size of the channels based on the Ni…Ni separations is ca.1.04 nm×1.60 nm×1.98 nm for the title complex(these separations are equal to three axial lengths respectively),indicating that each pore could only accommodate a single Keggin anion. Interestingly,the adjacent Ni…Ni separation along the a axis ismuch shorter than other two separations along the b and c axes,and even shorter than the diameter of the discrete[PW12O40]3-anion(ca.1.05 nm),resul-ting in each cavity being heavily condensed along the a axis.In addition,the presence of positively charged species,[Ni(H2O)8]2+and H+(H2O)2.5cations,could attract the polyanions,as a result,the Keggin-type[PW12O40]3-anions for charge compensation are embedded in the voids of the 3D cationic framework and connect to one another leading to poly-Keggin-anion chains in the channel along the a axis(Fig.4).In the polymeric polyanion,there are some short atomatom separations of 0.279(2)nm,such as O(7A)…O(8BB),O(8A)…O(7BB),O(7AA)…O (8CB),O(7CB)…O(8AA).

    Fig.4 3D hydrogen-bonded network showing the 1D channels filled by poly-anion chains down the a axis(a),and view of the poly-anion chain along the a axis(b)

    In the[PW12O40]3-unit,the central P atom is surrounded by a cube of eight oxygen atomswith each oxygen site half-occupied.These eight oxygen atoms are all crystallographically disordered,and this case can be found inmany compounds[13].In the title complex, the bond lengths of P-O and W-O are 0.151(2)~0.156 4(19)and 0.166 6(8)~0.249 6(18)nm respectively. The bond lengths of P-O and W-O in the title complex are respectively comparable to those in the 3D porous polyoxometalates-based organic-inorganic hybrid materials with Keggin anions as guests[13].In addition,the O-P-O anglesare in the range of108.3(6)° ~111.4(6)°for the title complex.All these results indicate that the[PW12O40]3-units have a normal Keggin structure in the polymeric-polyanion chains. The poly-Keggin-type anions play not only a chargecompensating role,but they can dramatically influence the overall solid-state architecture through their templating function,as well as the cationic framework with special channels also influences the polymerization of polyanions through its host function. In addition,several hydrogen bonds exist between the poly-Keggin-anion chain and the channel,such as between thewatermolecules(O(1W),O(2W)and O(4W)) belong to the[Ni(H2O)8]2+cations and oxygen atoms of the polyanions(O(9),O(10)and O(12)centers).As a result,based on the self-assembly of HINOmolecules, [Ni(H2O)8]2+and H+(H2O)2.5cations,the title complex form 3D hydrogen-bonding networkswith 1D channels along the a axis,in which poly-Keggin anions chains were formed and stabilized based on electrostatic and H-bonding interactions,resulting in[PW12O40]3-anions being not easy dissociated from the hybrid network. Moreover,the section size of the channels along the b and c axes is so larger than the diameter of the [PW12O40]3-anion(ca.1.05 nm)that there is enough space outside the poly-Keggin-anion chains to admit some small species,such as water molecules or hydronium ions,to transport along the channels.All these results indicate that the title complex can potentially be a new good proton-conductingmaterial.

    2.3 TG Analysis

    The complex is insoluble in water.Water retention in the hybrid at high temperature is a key factor for having fast protonic conduction[8-9].Thermogravimetric analysis of the powder of the crystalline sample of the complex in an atmosphere of N2(Fig.5) shows no weight loss in the temperature range of 20~ 100℃,indicating that allwatermolecules in the unit structure are involved in constructing the H-bonding network,which is consistent with the result of structural analysis,and are not easily lost below 100℃. This is not like that observed in the proton conductors including the quasi-liquid water clusters(which are generally loosely bonded in the structure)like pure tungstophosphoric acid with 26 water molecules (PWA-26)or molybdophosphoric acid with 26 water molecules(PMA-26),as well as many proton-conducting compositemembranes doped with HPAs[1-2].

    Fig.5 Curve of the thermogravimetric analysis of 1 in the atmosphere of N2

    2.4 Proton conductivity

    The proton conductivities of the title complex in the temperature range of 25~100℃under 98%RH conditions were evaluated by the ac impedance method using a compacted pellet of the powdered crystalline sample,which has the same structure as the single-crystal(Fig.6).Surprisingly,the title complex reached good proton conductivities of 1×10-3~2.1×10-3S·cm-1in the temperature range of 85~100℃,estimated from the Nyquist plots.

    Fig.6 Powder X-ray diffraction data of the simulated powder pattern(a),the powder before the protonconductive measurement(b),and thepowder after the proton-conductivemeasurement(c)

    Fig.7 Arrhenius plotof the proton conductivity of 1

    Fig.7 shows the Arrhenius plots of the proton conductivities of the title complex in the temperature range of 25~100℃under 98%RH conditions.The ln(σT)increases almost linearly with temperature range from 25 to 100℃,and the corresponding activation energy(Ea)of conductivity was estimated to be 0.77 eV for the title complex from the equation below[12-13e]. whereσis the ionic conductivity,σ0is the preexponential factor,kBis the Boltzmann constant,and T is the temperature.The Eavalue is high in the temperature range of 25~100℃.The results show that the general features of the changes in conductivities are different from that of PWA-26 or PMA-26,whose protonic conductivity decreased with the temperature from ambient to 60℃[1-2].However,the title complex has thermally activated protonic conductivities[11]from 25 to 100℃;as the temperature increases,the proton conductivities increase on a logarithmic scale even with almost saturated humidities.This is probably due to the fact that protons belong to the protonated water clusters and those originating from water molecules need a thermally activated process for dissociation as hydrated forms such as H+,H3O+or other proton species at a distance from[PW12O40]3-clusters[14].The mechanism of proton conduction of the title complex is,therefore,expected to be similar to that of the vehicle mechanism[15],that is,the direct diffusion of additional protonswith watermolecules.The existence of these half-occupied oxygen sites of watermolecules in[Ni(H2O)8]2+and H+(H2O)2.5cationsmay be derived from direct-jump diffusion and be conducive to formation of the H-bonding network.In addition,the existence of H-bonding network suggests that proton conduction in the title complex includes some other process such as proton transport of additional protons along H-bonding network(Grotthusmechanism)[16].It is possible that in higher temperature and humidity some of isonicotinic acid N-oxide molecules can be deprotonated and the protons can be incorporated by the watermolecules and therefore conductivity can be a result of dissociation of organic acid.The results of measurement of the proton conductivity of HINO molecules in the temperature range of 85~100℃at 98%RH showed the free HINO molecules reached proton conductivities of 10-5~10-4S·cm-1in the temperature range of85~100℃,these proton conductivities are about 1~2 orders ofmagnitude lower than that of the title complex,which shows conductivity of about 10-3S·cm-1in the conditions described.Therefore,the fact that the title complex exhibits good proton conductivities in the temperature range of 85~100℃is indicative of a high carrier concentration based on a thermally activated process,as well as the existence of the whole H-bonding networks.Moreover,there is the possibility of hydrolysis of the complex when it is held at 100℃with a RH higher than 98%(100%,or condensed water that attack the metal centres).The powder X-ray diffraction data in Fig.6 suggested that the powder sample after the proton-conductivemeasurement have the same supramolecular framework as that of complex 1.The proton conductivities of the title complex were alsomeasured at 100℃in the RH range 35%~98%by a complex-plane impedance method.Fig.8 shows the lgσversus RH plots of complex 1 at 100℃under 35%~98%RH.Theconductivity under 35% RH is~3.95×10-5S·cm-1, and the conductivity increases with RH to reach a high conductivity of 1.70×10-3~2.05×10-3S·cm-1in the range 60%~98%RH.

    Fig.8 lgσversus RH plots of 1 at 100℃

    [1](a)Misono M.Chem.Commun.,2001:1141-1152(b)Katsoulis D E.Chem.Rev.,1998,98:359-388(c)MARong-Hua(馬榮華),WANGFu-Ping(王福平).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(3):445-450(d)FAN Ying(樊瑩),LIU Shi-Zhong(柳士忠).Chinese J.Inorg.Chem.(WujiHuaxue Xuebao),2002,18(6):635-638

    [2](a)AlbertiG,Casciola M,Costantino U,etal.J.Mater.Chem.,1995,5:1809-1812(b)Sang X G,Wu QY,PangW Q.Mater.Chem.Phys.,2003,82:405-409(c)Honma I,Nomura S,Nakajima H.J.Membr.Sci.,2001,185:83-94

    [3](a)Kim Y S,Wang F,Hickner M,etal.J.Membr.Sci.,2003, 212:263-282(b)Malers J L,Sweikart M A,Horan J L,et al.J.PowerSources,2007,172:83-88

    [4](a)Ramani V,Kunz H R,Fenton JM.J.Membr.Sci.,2004, 232:31-44(b)Verma A.,Scott K.J.Solid State Electrochem.,2010,14: 213-219

    [5](a)Kim JD,Honma I.Solid State Ionics,2005,176:547-552 (b)Li M Q,Shao Z G,Scott K.J.Power Sources,2008,183: 69-75(c)Verma A,Scott K.J.Solid State Electrochem.,2010,14: 213-219

    [6]Claude R D,Michel F,Raymonde F,et al.Inorg.Chem., 1983,22:207-216

    [7]Simapson PG,Vinciguerra A,Quagliano JV.Inorg.Chem., 1963,2:282-286

    [8]Wu QY,Zhao SL,Wang JM,etal.J.Solid State Electrochem., 2007,11:240-243

    [9]SMART and SAINT;Area Detector Control and Integration Software,Madison,WI:Siemens Analytical X-ray Systems, Inc.,1996.

    [10]Sheldrick GM.SHELXTL V5.1,Software Reference Manual, Madison,WI:Bruker AXS,Inc.,1997.

    [11](a)Goher M A S,Mautmer F A.J.Mol.Struct.,2007,846: 153-156(b)Hong J.J.Mol.Struct.,2006,783:9-12(c)Zhang L P,Du M,Lu W,et al.Polyhedron,2004,23:857-863

    [12](a)Sadakiyo M,Yamada T,Kitagawa H.J.Am.Chem.Soc., 2009,131:9906-9907(b)Yamada T,Sadakiyo M,Kitagawa H.J.Am.Chem.Soc.,2009,131:3144-3145(c)England W A,Cross M G,Hamnett A,et al.Solid StateIonics,1980,1:231-249

    [13](a)Wei M L,He C,Hua W J,et al.J.Am.Chem.Soc., 2006,128:13318-13319(b)Wei M L,He C,Sun Q Z,et al.Inorg.Chem.,2007,46:5957-5966(c)Duan C Y,Wei M L,Guo D,et al.J.Am.Chem.Soc.,2010,132:3321-3330(d)WeiM L,Zhuang PF,LiH H,etal.Eur.J.Inorg.Chem.,2011:1473-1478

    [14](a)Janic M J,Davis R J,Neurock M.J.Am.Chem.Soc., 2005,127:5238-5245(b)Hayashi EG,Moffat JB.J.Catal.,1983,83:192-204(c)Honma I,Nomura S,Nakajima H.J.Membr.Sci.,2001,185:83-94

    [15]Kreuer K D,Rabenau A,Weppner W.Angew.Chem.Int. Ed.,1982,21:208-209

    [16]Agmon N.Chem.Phys.Lett.,1995,244:456-462

    Crystal Structure and Proton-Conductivity of a Nickel(Ⅱ)Comp lex Constructed by Poly-Keggin-anion Chains

    WEIMei-Lin*WANG Xiao-Xiang LIHui-Hua
    (College of Chemistry and Environmental Science,Henan Normal University,Xinxiang,Henan 453007,China)

    A proton-conductive complex{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n,wasconstructed by aself-assembly of cations,[Ni(H2O)8]2+cations,[PW12O40]3-anions and isonicotinic acid N-oxide(HINO).Single-crystal X-ray diffraction analysis at 293 K revealed that the title complex presented exactly a three-dimensional(3D)hydrogenbonded network with large one-dimensional(1D)channels.Interestingly,[PW12O40]3-anions just filled in the 1D channels and self-assembled into poly-Keggin-anion chains.Thermogravimetric analysis shows no weight loss in the temperature range of 20~100℃,indicating that all watermolecules in the unit structure are not easily lost below 100℃.The title complex was characterized by a satisfactory ionic conductivity(1×10-3~2×10-3S·cm-1)in the temperature range 85 to 100℃.CCDC:825709.

    polyoxometalates;crystal structure;nickel(Ⅱ)complex;isonicotinic acid N-oxide

    book=0,ebook=33

    O614.81+3

    A

    1001-4861(2012)11-2485-09

    2012-10-18。收修改稿日期:2012-08-03。

    國家自然科學基金(No.20971038,21171050)資助項目。

    *通訊聯(lián)系人。E-mail:weimeilinhd@163.com

    猜你喜歡
    分析表明河南師范大學煙酸
    河南師范大學作品精選
    聲屏世界(2024年1期)2024-04-11 07:51:08
    2050年中國碳中和累計投資規(guī)模預計約180萬億元
    河南師范大學作品精選
    聲屏世界(2023年23期)2023-03-10 04:49:28
    裳作
    炎黃地理(2022年5期)2022-06-07 03:35:41
    河南師范大學美術學院作品選登
    由胡克定律的數(shù)學表達式說開去
    相轉移催化合成2-氨基異煙酸
    鋱-2-甲硫基煙酸摻雜配合物的合成及熒光性質研究
    煙酸在畜禽生產(chǎn)中的應用
    中國飼料(2012年21期)2012-06-29 10:27:04
    巧歸納 善總結
    甘肅教育(2012年10期)2012-04-29 13:56:56
    大型黄色视频在线免费观看| 在线永久观看黄色视频| 亚洲精品久久午夜乱码| 青草久久国产| 久久久久久久精品吃奶| 久久人妻熟女aⅴ| 大香蕉久久网| 99re6热这里在线精品视频| 高清视频免费观看一区二区| 国产精品免费一区二区三区在线 | 99精品在免费线老司机午夜| 精品国内亚洲2022精品成人 | 在线观看一区二区三区激情| 国产又爽黄色视频| tube8黄色片| 日本欧美视频一区| 欧美在线黄色| 一区二区日韩欧美中文字幕| 国产又色又爽无遮挡免费看| 久久久国产欧美日韩av| 国产在线一区二区三区精| 怎么达到女性高潮| 国产不卡av网站在线观看| 色在线成人网| 91成人精品电影| 80岁老熟妇乱子伦牲交| 国产免费av片在线观看野外av| 美女高潮到喷水免费观看| 日韩欧美免费精品| 男女床上黄色一级片免费看| 香蕉丝袜av| 国产成人影院久久av| 18禁黄网站禁片午夜丰满| 精品人妻在线不人妻| 精品视频人人做人人爽| 夜夜骑夜夜射夜夜干| 亚洲九九香蕉| 亚洲性夜色夜夜综合| 午夜福利欧美成人| 深夜精品福利| 国产免费福利视频在线观看| 在线观看免费午夜福利视频| 亚洲第一欧美日韩一区二区三区 | 亚洲色图综合在线观看| 国产精品99久久99久久久不卡| 亚洲精品在线美女| 91成人精品电影| 狠狠精品人妻久久久久久综合| 欧美 日韩 精品 国产| 又紧又爽又黄一区二区| 亚洲国产av影院在线观看| 国产精品国产av在线观看| 色老头精品视频在线观看| 美女高潮喷水抽搐中文字幕| 超碰97精品在线观看| 大香蕉久久成人网| 亚洲国产欧美日韩在线播放| 亚洲国产欧美日韩在线播放| 国产不卡一卡二| 日韩欧美一区视频在线观看| 嫩草影视91久久| 日韩欧美国产一区二区入口| xxxhd国产人妻xxx| 天堂动漫精品| 蜜桃国产av成人99| 精品少妇久久久久久888优播| 精品第一国产精品| 人人妻人人澡人人看| 电影成人av| 久久久欧美国产精品| 99re在线观看精品视频| 国产一区有黄有色的免费视频| 婷婷成人精品国产| 午夜激情av网站| 咕卡用的链子| 亚洲欧美日韩高清在线视频 | 欧美日韩av久久| 757午夜福利合集在线观看| 女人精品久久久久毛片| 男女之事视频高清在线观看| 99在线人妻在线中文字幕 | 十八禁网站网址无遮挡| 国产欧美日韩一区二区三| www.自偷自拍.com| 另类精品久久| 又紧又爽又黄一区二区| 老司机深夜福利视频在线观看| 亚洲国产欧美在线一区| 18在线观看网站| 国产不卡av网站在线观看| 亚洲欧美精品综合一区二区三区| 中文字幕精品免费在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久99一区二区三区| 一夜夜www| 欧美激情极品国产一区二区三区| 国产有黄有色有爽视频| 交换朋友夫妻互换小说| 大陆偷拍与自拍| 国产欧美日韩精品亚洲av| 亚洲伊人色综图| 黄片播放在线免费| www.熟女人妻精品国产| 久久久久久久久免费视频了| 精品少妇久久久久久888优播| 精品少妇久久久久久888优播| www.熟女人妻精品国产| 多毛熟女@视频| 中文字幕最新亚洲高清| 窝窝影院91人妻| 国产高清国产精品国产三级| 制服人妻中文乱码| 国产成人啪精品午夜网站| 国产亚洲午夜精品一区二区久久| 国产高清国产精品国产三级| 国产男女内射视频| 中文字幕最新亚洲高清| 777米奇影视久久| 国产精品99久久99久久久不卡| 日本vs欧美在线观看视频| 久久精品亚洲av国产电影网| 国产免费福利视频在线观看| 亚洲男人天堂网一区| 少妇精品久久久久久久| 丰满饥渴人妻一区二区三| 老司机亚洲免费影院| 国产97色在线日韩免费| 久久久国产成人免费| 在线 av 中文字幕| 欧美大码av| 亚洲人成电影观看| 老司机午夜福利在线观看视频 | 热re99久久国产66热| av在线播放免费不卡| 热re99久久精品国产66热6| 国产精品久久久久久精品电影小说| 99国产精品99久久久久| 美女扒开内裤让男人捅视频| 人人妻人人澡人人看| 亚洲精华国产精华精| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区在线观看99| 久久亚洲精品不卡| 日本欧美视频一区| av线在线观看网站| 乱人伦中国视频| 国产无遮挡羞羞视频在线观看| 动漫黄色视频在线观看| 一级黄色大片毛片| 国产日韩欧美视频二区| 国产精品一区二区精品视频观看| 国产老妇伦熟女老妇高清| 色婷婷久久久亚洲欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜人妻中文字幕| 国内毛片毛片毛片毛片毛片| 久久人妻熟女aⅴ| 国产av精品麻豆| 国产欧美亚洲国产| 国产一卡二卡三卡精品| 国产欧美日韩一区二区三| 精品一品国产午夜福利视频| 久久精品熟女亚洲av麻豆精品| 午夜福利视频在线观看免费| 无遮挡黄片免费观看| 97在线人人人人妻| 国产真人三级小视频在线观看| videos熟女内射| 精品人妻在线不人妻| 国产av一区二区精品久久| 黄色视频不卡| 国产一区二区三区在线臀色熟女 | 丰满迷人的少妇在线观看| 黑人欧美特级aaaaaa片| 精品卡一卡二卡四卡免费| av不卡在线播放| 国产精品一区二区精品视频观看| 老汉色∧v一级毛片| 在线十欧美十亚洲十日本专区| 国产成+人综合+亚洲专区| 久久青草综合色| 高清欧美精品videossex| 麻豆乱淫一区二区| 老熟女久久久| 极品少妇高潮喷水抽搐| www.自偷自拍.com| 在线 av 中文字幕| 曰老女人黄片| 老司机深夜福利视频在线观看| 亚洲色图av天堂| 午夜成年电影在线免费观看| 99久久国产精品久久久| 国产熟女午夜一区二区三区| 久久精品国产亚洲av高清一级| 国产成人精品在线电影| 亚洲熟妇熟女久久| 国产欧美日韩一区二区三| 热99久久久久精品小说推荐| 国产精品久久久av美女十八| 亚洲成人免费av在线播放| 男女午夜视频在线观看| 91麻豆精品激情在线观看国产 | 多毛熟女@视频| 一级毛片女人18水好多| 精品久久久精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 2018国产大陆天天弄谢| 久久精品国产99精品国产亚洲性色 | 欧美在线黄色| 五月开心婷婷网| 男女边摸边吃奶| 99热网站在线观看| 免费在线观看日本一区| 欧美精品啪啪一区二区三区| 欧美日韩亚洲高清精品| 精品人妻在线不人妻| 精品国产一区二区三区久久久樱花| 丝袜人妻中文字幕| 免费久久久久久久精品成人欧美视频| 亚洲av成人一区二区三| 免费日韩欧美在线观看| 欧美 日韩 精品 国产| 天天影视国产精品| 亚洲熟妇熟女久久| 欧美精品一区二区大全| 老司机午夜十八禁免费视频| 亚洲欧洲精品一区二区精品久久久| 大片免费播放器 马上看| 欧美亚洲日本最大视频资源| 日韩欧美一区视频在线观看| 国产午夜精品久久久久久| 免费看十八禁软件| 国产97色在线日韩免费| 啦啦啦在线免费观看视频4| 亚洲一区中文字幕在线| 午夜精品国产一区二区电影| 日韩欧美三级三区| 最新的欧美精品一区二区| 免费久久久久久久精品成人欧美视频| 国产成人免费无遮挡视频| 一边摸一边抽搐一进一出视频| 久久婷婷成人综合色麻豆| 欧美黄色片欧美黄色片| 亚洲av第一区精品v没综合| 欧美人与性动交α欧美精品济南到| aaaaa片日本免费| 国产高清国产精品国产三级| 大片免费播放器 马上看| 国产在视频线精品| 99国产精品一区二区三区| 热re99久久精品国产66热6| 三上悠亚av全集在线观看| 日韩 欧美 亚洲 中文字幕| 美女午夜性视频免费| 欧美激情 高清一区二区三区| 免费高清在线观看日韩| 免费女性裸体啪啪无遮挡网站| 一区二区三区精品91| 性少妇av在线| 久久久久国产一级毛片高清牌| 精品少妇久久久久久888优播| 欧美人与性动交α欧美软件| 午夜精品国产一区二区电影| 精品亚洲成a人片在线观看| 亚洲,欧美精品.| 久久中文字幕人妻熟女| 成人手机av| 少妇的丰满在线观看| 精品免费久久久久久久清纯 | 精品久久久精品久久久| 757午夜福利合集在线观看| 久久久久久久大尺度免费视频| 男女无遮挡免费网站观看| 巨乳人妻的诱惑在线观看| 蜜桃在线观看..| 极品教师在线免费播放| 最近最新中文字幕大全免费视频| 99香蕉大伊视频| 成人国语在线视频| 亚洲情色 制服丝袜| 欧美久久黑人一区二区| 大片免费播放器 马上看| 一边摸一边抽搐一进一出视频| 丝袜在线中文字幕| 国产日韩欧美亚洲二区| 老熟女久久久| 日韩欧美一区二区三区在线观看 | 一本大道久久a久久精品| 老熟妇乱子伦视频在线观看| 精品一区二区三区视频在线观看免费 | 丝瓜视频免费看黄片| 欧美激情 高清一区二区三区| 男女免费视频国产| 99久久国产精品久久久| 最新美女视频免费是黄的| 超碰成人久久| 中文字幕制服av| 1024香蕉在线观看| 国产精品 国内视频| 亚洲国产av影院在线观看| 美女福利国产在线| 女同久久另类99精品国产91| 巨乳人妻的诱惑在线观看| 亚洲性夜色夜夜综合| 亚洲五月婷婷丁香| 大码成人一级视频| 精品久久久精品久久久| 欧美日韩黄片免| 欧美变态另类bdsm刘玥| 一个人免费在线观看的高清视频| 欧美精品一区二区免费开放| 国产精品98久久久久久宅男小说| 狠狠精品人妻久久久久久综合| 亚洲男人天堂网一区| 色精品久久人妻99蜜桃| 国产成人欧美在线观看 | 中文字幕最新亚洲高清| 中文字幕高清在线视频| 亚洲美女黄片视频| 亚洲性夜色夜夜综合| 欧美日韩福利视频一区二区| 2018国产大陆天天弄谢| 香蕉久久夜色| 亚洲精品在线观看二区| 免费观看人在逋| 亚洲欧美日韩高清在线视频 | 狠狠狠狠99中文字幕| 一进一出抽搐动态| 亚洲精品国产色婷婷电影| 精品福利观看| 国产精品国产av在线观看| 免费女性裸体啪啪无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 一级毛片精品| 亚洲熟女毛片儿| 宅男免费午夜| 亚洲五月婷婷丁香| 久久人人爽av亚洲精品天堂| 九色亚洲精品在线播放| 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 正在播放国产对白刺激| 人人澡人人妻人| www日本在线高清视频| 搡老岳熟女国产| 国产精品.久久久| 欧美乱妇无乱码| 色视频在线一区二区三区| 精品少妇一区二区三区视频日本电影| 久久毛片免费看一区二区三区| 黄片大片在线免费观看| 99热网站在线观看| 国产精品久久久久成人av| 韩国精品一区二区三区| 国产精品二区激情视频| 久久性视频一级片| 日日爽夜夜爽网站| 午夜精品国产一区二区电影| 日韩欧美三级三区| 国产精品久久久久久人妻精品电影 | 国产成人影院久久av| 操美女的视频在线观看| 99精品在免费线老司机午夜| 久久精品国产a三级三级三级| 亚洲熟妇熟女久久| 嫁个100分男人电影在线观看| 亚洲 欧美一区二区三区| 在线亚洲精品国产二区图片欧美| 国产精品九九99| 国产成人一区二区三区免费视频网站| 又黄又粗又硬又大视频| 欧美黑人精品巨大| 午夜精品久久久久久毛片777| 女人爽到高潮嗷嗷叫在线视频| 两个人免费观看高清视频| 91国产中文字幕| 一区二区三区乱码不卡18| 两个人免费观看高清视频| 99热国产这里只有精品6| 一本久久精品| kizo精华| 极品人妻少妇av视频| 亚洲va日本ⅴa欧美va伊人久久| 80岁老熟妇乱子伦牲交| 制服诱惑二区| 一区二区三区乱码不卡18| 久热这里只有精品99| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜理论影院| 国产一区有黄有色的免费视频| 亚洲av日韩在线播放| 亚洲欧洲日产国产| 日韩一区二区三区影片| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| 一区二区三区国产精品乱码| 日本欧美视频一区| 高清毛片免费观看视频网站 | 老司机亚洲免费影院| 久久久欧美国产精品| 亚洲精华国产精华精| 老司机福利观看| 麻豆成人av在线观看| 十八禁网站免费在线| 男人操女人黄网站| 欧美人与性动交α欧美软件| h视频一区二区三区| 1024视频免费在线观看| 人人澡人人妻人| 涩涩av久久男人的天堂| 大型av网站在线播放| 国产成人av激情在线播放| 狠狠精品人妻久久久久久综合| 日韩欧美免费精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲一区二区精品| 黄色视频,在线免费观看| 搡老乐熟女国产| 99国产极品粉嫩在线观看| 国产成人精品久久二区二区91| 黄片播放在线免费| 亚洲少妇的诱惑av| 男女下面插进去视频免费观看| 久久久精品94久久精品| 每晚都被弄得嗷嗷叫到高潮| 国产精品自产拍在线观看55亚洲 | 18禁黄网站禁片午夜丰满| 91九色精品人成在线观看| 精品人妻在线不人妻| 国产熟女午夜一区二区三区| 国产在视频线精品| 欧美变态另类bdsm刘玥| 成年人黄色毛片网站| 99精品在免费线老司机午夜| 国产精品影院久久| 1024视频免费在线观看| 日本av手机在线免费观看| av天堂在线播放| 一区在线观看完整版| 国产日韩欧美视频二区| 亚洲av美国av| 国产亚洲欧美精品永久| 十八禁高潮呻吟视频| 亚洲天堂av无毛| 激情视频va一区二区三区| 亚洲九九香蕉| 亚洲欧美一区二区三区久久| 国产在线免费精品| 成人国语在线视频| 91麻豆av在线| 色老头精品视频在线观看| 国产一卡二卡三卡精品| av片东京热男人的天堂| 又紧又爽又黄一区二区| 成人免费观看视频高清| 免费av中文字幕在线| av线在线观看网站| 又大又爽又粗| 国产在视频线精品| 一进一出好大好爽视频| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽 | 欧美变态另类bdsm刘玥| 一进一出抽搐动态| 国产精品一区二区精品视频观看| av有码第一页| 国产男女内射视频| 十八禁高潮呻吟视频| 一区二区av电影网| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 亚洲精品中文字幕在线视频| 欧美成狂野欧美在线观看| 国产精品免费视频内射| 久久精品国产亚洲av高清一级| 亚洲av成人一区二区三| 亚洲av日韩精品久久久久久密| 国产日韩一区二区三区精品不卡| 黄片小视频在线播放| 色视频在线一区二区三区| 欧美日本中文国产一区发布| 国产99久久九九免费精品| 国产在线视频一区二区| 免费在线观看日本一区| 欧美黑人欧美精品刺激| 日本av手机在线免费观看| 欧美黑人精品巨大| 国产激情久久老熟女| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| 欧美+亚洲+日韩+国产| 欧美亚洲 丝袜 人妻 在线| 国产精品99久久99久久久不卡| 1024视频免费在线观看| 亚洲三区欧美一区| 青草久久国产| 亚洲三区欧美一区| 亚洲一码二码三码区别大吗| 国产精品熟女久久久久浪| 一二三四在线观看免费中文在| 亚洲久久久国产精品| 国产成人一区二区三区免费视频网站| 变态另类成人亚洲欧美熟女 | 最近最新中文字幕大全电影3 | 正在播放国产对白刺激| 亚洲精品在线美女| 黄色视频不卡| 最新美女视频免费是黄的| 12—13女人毛片做爰片一| 国产午夜精品久久久久久| 中文字幕色久视频| 9热在线视频观看99| 精品亚洲成a人片在线观看| 黑丝袜美女国产一区| av网站在线播放免费| av线在线观看网站| 国产黄频视频在线观看| 久久精品亚洲精品国产色婷小说| 黄片小视频在线播放| 人妻久久中文字幕网| 不卡一级毛片| 亚洲九九香蕉| 多毛熟女@视频| avwww免费| 久9热在线精品视频| 老汉色∧v一级毛片| 欧美在线一区亚洲| 中文字幕精品免费在线观看视频| 亚洲久久久国产精品| 窝窝影院91人妻| av欧美777| 欧美成人免费av一区二区三区 | 国产免费视频播放在线视频| 亚洲精品国产区一区二| 男女下面插进去视频免费观看| svipshipincom国产片| 丁香欧美五月| 一级,二级,三级黄色视频| 我要看黄色一级片免费的| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 热re99久久精品国产66热6| 中亚洲国语对白在线视频| 正在播放国产对白刺激| 国产精品久久久久久精品电影小说| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 国产日韩欧美视频二区| 成人特级黄色片久久久久久久 | 亚洲国产毛片av蜜桃av| 菩萨蛮人人尽说江南好唐韦庄| 又紧又爽又黄一区二区| 视频在线观看一区二区三区| 搡老熟女国产l中国老女人| videosex国产| 精品欧美一区二区三区在线| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 超碰成人久久| 99在线人妻在线中文字幕 | 久久久国产精品麻豆| 淫妇啪啪啪对白视频| 天天影视国产精品| 两人在一起打扑克的视频| 9热在线视频观看99| 欧美激情极品国产一区二区三区| 制服诱惑二区| 亚洲五月色婷婷综合| 国产精品.久久久| 午夜成年电影在线免费观看| 搡老岳熟女国产| 波多野结衣一区麻豆| 国产欧美亚洲国产| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 制服诱惑二区| 亚洲国产欧美日韩在线播放| 欧美成狂野欧美在线观看| 99国产精品一区二区三区| 日韩视频在线欧美| 首页视频小说图片口味搜索| 午夜两性在线视频| 肉色欧美久久久久久久蜜桃| 咕卡用的链子| 久久中文看片网| 777米奇影视久久| 在线观看一区二区三区激情| tocl精华| 欧美日韩精品网址| 日韩人妻精品一区2区三区| 亚洲色图综合在线观看| 国产在线观看jvid| 一区在线观看完整版| 丰满饥渴人妻一区二区三| 老司机影院毛片| 国产精品一区二区免费欧美| 亚洲精品一二三| bbb黄色大片| 99国产精品一区二区三区| 99国产精品免费福利视频| 国产一区二区 视频在线| 国产日韩欧美亚洲二区| 久久九九热精品免费| 另类精品久久| 在线看a的网站| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 久久精品成人免费网站| 亚洲专区字幕在线| 俄罗斯特黄特色一大片| 国产片内射在线| 亚洲成人免费av在线播放| 超色免费av| 国产精品久久久久成人av| 欧美日本中文国产一区发布|