• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL STUDY OF THE RELATIONSHIP BETWEEN APPARENT SLIP LENGTH AND CONTACT ANGLE BY LATTICE BOLTZMANN METHOD*

    2012-08-22 08:31:49ZHANGRenliangDIQinfengWANGXinliangDINGWeipengGONGWei

    ZHANG Ren-liang, DI Qin-feng, WANG Xin-liang, DING Wei-peng, GONG Wei

    Shanghai Institute of Applied Mathematics and Mechanics and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China, E-mail: zhrleo@gmail.com

    (Received December 9, 2011, Revised March 1, 2012)

    NUMERICAL STUDY OF THE RELATIONSHIP BETWEEN APPARENT SLIP LENGTH AND CONTACT ANGLE BY LATTICE BOLTZMANN METHOD*

    ZHANG Ren-liang, DI Qin-feng, WANG Xin-liang, DING Wei-peng, GONG Wei

    Shanghai Institute of Applied Mathematics and Mechanics and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China, E-mail: zhrleo@gmail.com

    (Received December 9, 2011, Revised March 1, 2012)

    The apparent slip between solid wall and liquid is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this paper. With a no-slip bounce-back scheme applied to the interface, flow regimes under different wall wettabilities are investigated. Because of the wall wettability, liquid apparent slip is observed. Slip lengths for different wall wettabilities are found to collapse nearly onto a single curve as a function of the static contact angle, and thereby a relationship between apparent slip length and contact angle is suggested. Our results also show that the wall wettability leads to the formation of a low-density layer between solid wall and liquid, which produced apparent slip in the micro-scale.

    Lattice Boltzmann Method (LBM), wettability, apparent slip, contact angle, nano-particles adsorbing method

    Introduction

    The no-slip boundary condition, which states that the fluid velocity at a fluid-solid interface equals that of the solid surface has been proven valid at macroscopic scales, but is not fulfilled at microscopic scales[1]. A series of experiments[2,3]and numerical results[4,5]have found fluid slip at the boundaries of the flow channels in microfluidics. As the typical length scale of the micro-fluid flows gets smaller, the effect of boundary slip becomes more prominent, and has been paid more attention in engineering applications[6]. Based on this slip boundary effect, artificial super-hydrophobic surfaces have been widely used in industrial production and daily life. For example, self-cleaning paints, roof tiles, fabrics and glass windows that can be cleaned by a simple rainfall and the nanoparticles adsorbing method[2]in improving oil recovery are all in practice.

    Slip length is of great importance in calculation of drag and other hydrodynamic properties of fluid flowing through micro-channels or over nano-scale patterned surfaces, but it is very difficult to directly measure the apparent slip length accurately in experiments. In 1823, Navier proposed a slip boundary condition that the fluid velocity at a point on a surface is proportional to the shear rate at the same point, but the value of slip length is hard to be determined. Chen et al.[7]investigated the Couette flows by means of a two-phase mesoscopic Lattice Boltzmann Method (LBM), and the results showed that there is a strong relationship between the magnitude of slip length and the solid-fluid interaction, but it is a very difficult or even impossible task to compute the exact slip length in dependence of interaction and it is also difficult to be applied to engineering.

    In this work, we focus on investigating the effects of wall wettabilities on the slip length in order to get a slip length model governed by contact angle. Using this model, it is easy to estimate the slip length because the contact angle is a parameter that can beeasily measured.

    1. Numerical model

    To simulate non-ideal multiphase fluid flows, the attractive or repulsive interaction among molecules, which is referred to as the non-ideal interaction, should be included in the LBM. There are many approaches to incorporate non-ideal interactions, such as the color-fluid model, interparticle-potential model, free-energy model, mean-field theory model and so on. The interparticle-potential model proposed by Shan and Chen[8,9]is to mimic microscopic interaction forces between the fluid components. This model modified the collision operator by using an equilibrium velocity that includes an interactive force. This force guarantees phase separation and introduces surface-tension effects. This model has been applied with considerable success in measuring contact angles[10]and examining the effect of wall wettabilities, topography and micro-structure on drag reduction of fluid flow through micro-channels[11]. As an extension of the Shan-Chen model, Benzi et al.[12]first derived an analytical expression for the contact angle and the surface energy between any two of the liquid, solid and vapor phases.

    The LBM, which involves a single relaxation time in the Bhatnagar-Gross-Krook (BGK) collision operator, is used here. The time evolution of this model can be written as

    where fi(x,t)is the single-particle distribution function for fluid particles moving in the direction ciat (x,t), feq(x,t) the equilibrium distributionfun

    i ction, Δt the time step of simulation, and parameter τ the relaxation time characterizing the collision processes by which the distribution functions relax towards their equilibrium distributions.

    In the two-dimensional (2-D) squ are lattice with nine velocities model[13], the equilibrium distribution function,(x,t), depends only on local density and velocity and can be chosen as the following form

    where

    c=Δx/Δt is the lattice velocity,Δx the lattice distance, and Δt the time step of simulation, and ρ the fluid density, which can beobtained from ρ=

    The macroscopic velocity u is given by

    InEq.(6), F and Fadsare the fluid-fluid interact ion force and fluid-solid interaction force, respectively. The fluid-fluid interaction is obtained by using an attractive short-range force[8]

    where G is the interaction strength, which is used to co ntrol the two-phase liquid in teraction, and is negative for particle attraction,ψis the in teraction potential, which is defined as[14]

    ψ0and ρ0are constants.As in Ref.[14] wiis taken as 1/9 for i=1,2,3,4,wias1/36 for i= 5,6,7,8, and 0 for i=0.

    It is simple todescribe the interaction between a fluidand a wall by introducing an extra force, and this method was first used by Martys and Chen[15]. The idea is to create an analogue to the particle-particle interaction force usedto induce phase separation, and in this paper the corresponding equation is[14]

    Here s=0,1 for the fluid and the solid phase, respectively, and the adhesion parameter Gadsis used to control the wettability behavior of the liqu id at solid surfaces. It can be seen that Eq.(9) incorporates an adhesive interaction between fluid and surfaces.

    And the relaxation time tunes the kinematic viscosityas

    The equation of state in the Shan-Chen model s[14]i

    where P is the pressure.

    Fig.1 Static contact angle

    Fig. 2 Contact angles as a function of Gabsfor different value of G

    2.Numerical simulation of contact angle

    The LBM simulations were carried outin a 2-D domain. The grid mesh used is 50×200. In thesimulation, as in Ref.[11], the general non-slip bounce-back scheme[16]was employed for the solid-fluid interfaces, and periodic boundary conditions were applied at both inlet and outlet ends along the horizontal direction. A droplet with the diameter of 30, is set at the middle between two ends. After 30 000 time steps, the result tendsto be stabilized.Figure 1 shows an example of static contact angle, which is 127.6owhen G=-120, Gabs=-130and ψ(x,t)=4e-200/ρin Eqs.(7) and (9). The values of parameters G and Gabsand the simulated contact angles for each case are listed in Fig.2.

    As is shown in Fig.2, Gabsand G determine the value of contact angle. Gabsrepresentsthe strength of intera ctionbetween fluid and solid surface and G the strength of interaction between fluid particles. A negative Gabsindicates attractive interaction. WhenG is gi ven, the greater the ma gnitude of, the stronger the reaction, thus resulting in smaller contact angle. The contact angle is a static parameter of measuring the wettability of a liquid on a solid surface, and it can be easily measured. In our simulation, wecanalso change the parameter Gabsto simulate arbitrary contact angle, and then easily obtain different wall wettabilities. Form Fig.2, we also see that both parameters of Gabsand G have significant impact on the simulated contact angle.

    Fig.3 Velocity profiles with different contact angles

    Fig.4Density profiles with different contact angles

    3. Nu merical simulation of slip length

    In order to investigate the effects of wallwettabilities on the slip length, we conducted numerical simulations for the 2-D Poiseuille flows. Typical density and velocity profiles of the pressure-drivenPoiseuille flows are displayed in Figs.3 and 4 (given G=-120).The ordinate in both figures represents the distance from one of the solid surface boundaryto the other. Theabscissa in Fig.3 is the normalized velocity, where v0is the max velocity measured at the center in the channel for the case of no slip. The abscissa in Fig.4 is the normalized fluid density, where0ρ is the liquid density for the case of no slip. The pressure gradient is specified as 5×10-3in lattice unit for both cases. Different contact angles (as shown in both Figs.3 and 4) can be simulated by specifying different values of the adhesion parameter (absG). All simulations were run until static equilibriumwas nearly attained, and then a pressure gradientof 5×10-3was applied in the x-direction (flow direction).

    Fig.5 Velocity profiles of simulated and fitted

    As is shown in Fig.3, the fluid velocity approaches zero as y→-24.5 (the lower boundary) or y→(the upper boundary), which is consistent with the bounce-back boundary condition specified at the two boundaries. However, the fluid velocity increases dramatically in a very thin layer nearthe boundary. The layer is so thin that it is hard to see its details near the boundary, and velocity at the boundary looks like non-zero when plotted ina larger scale, as shown in Fig.3. In a macro-scale, velocity at a boundary is nearly zero, but in a micro-scale, the velocity appears non-zero (so called apparent slip). Plots shown in Fig.3 clearly indicate that the slip velocity at the boundary increases as contact angle increases. In order to understand the physical mechanism of such kind of phenomenon, the density profiles of fluid with different contact angles is drawn in Fig.4. One should note that the density of the fluid with zero contact angle is constant (as shown by the circle symbol vertical line in Fig.4). However, a sharp reduction of fluid density near the boundary is observed for a fluid with nonzero contact angle, which clearly indicates a layer of much less dense fluid (most probably gas) is induced between the dense liquid and solid surface. Fitting for the velocity data points where the density is approximately constant, we can get a parabolic of velocity profiles, and extrapolating the fitted profiles to zero velocity yields a slip length as shown in Fig.5. Given an interaction strength (G), different slip lengths can be obtained by using a series values of the adhesion parameter (absG), as shown in Fig.6. As was discussed above, the parameter ofabsG controls the interaction between the fluid and solid surface. IncreasingabsG decreases the attraction (or increases the repulsion) between the liquid and solid surface, and thus attracts more gas to the surface. The less dense of the fluid at the surface, the less viscous shear force, and the more significant slippage appears. LBM simulation[17]and observed in MDS[18]. Compa-

    From Figs.3 and 4 one can see that the wetting properties of the wall have an important influence on the velocity profile, especially the slip velocity at the boundary. There is a low-density layer between the bulk liquid and the wall, and the more hydrophobic the wall is, the lower density of fluid is (see Fig.4). This result is similar to those obtained fromother red with the macroscopic flow, the ratio of the lowdensity layer region to the inner region is larger in the microscopic flow, and this is the main difference between micro-flow and macro-flow. Thus, the slip cannot be ignored in the micro-flow.

    Fi g.6 Slip length as a function of Gabsfor different G

    From Figs.2 and 6, we can see thatthe contact angle and slip length are associated withthe interaction strength (G) and adhesion parameter (Gabs). Numerical results of contact angles and slip lengths, represented by different symbols shown inFig.7, correspond to different values of G, respectively, represented by squares (G=-120), circle (G=-125), delta (G=-130) and gradient (G=-135). The numerical results shownin Fig.7 cover awide range of contact angles, rangingfrom18oto 150o.Results shown in Fig.7 clearly indicate that slip length is a function of contact angle. The relationship between slip length and contact angle can beeasily obtained by fitting those numerical data (see Eq.(12)) as shown by the solid curve inFig.7.

    where θ is contact angle andLδ is slip length.

    Fig.7 The slip length against contact angle

    Form Fig.7 we can see that the slip lengthson different surfaces are found to collapse nearly onto a single curve as a function of the static contact angle characterizing the surface wettability. As was discussed above, the slip length is the result of interaction between the liquid and the wall surface, and it depends on the properties of the liquid (e.g., G) and the wall surface (e.g.,absG). So the simulation of slip length should take into account all parameters of the interaction objects, but it is a very hard task[19]to do this. In fact, the contact angle is a more comprehensive expression of interactions between liquid and solid surface, and the weaker the solid-fluid interaction is, the larger the contact angle is. So it may be a feasible and advisable way to use contact angle as control parameter to simulate the slip length.

    4. Conclusion

    The LBM has been successfully applied in this work to simulate contact angle of a fluid on a solid surface and slip length of a fluid flowing over a solid surface. Both the non-ideal interaction between fluid particles (controlled by a parameter of G) and the interaction between a fluid and a solid (c ontrolled by another parameter ofabsG) have significant impact on the contact angle and slip length. However, they have little influence on the relationship between the contact angle and slip length. Our numerical results confirm that there is a low-density layer between the bulk liquid, and that the wetting properties of the wall have an important influence on the velocity profile. The more hydrophobic the wall is, the lower density of fluid is. Thus, the slip cannot be ignored in the microflow.

    [1] HYVALUOMA J., HARTING J. Slip flow over structured surfaces with entrapped microbubbles[J]. Physi- cal Review Letters, 2008, 100(24): 246001.

    [2] DI Qin-feng, SHEN Chen and WANG Zhang-hong et al. Experimental research on drag reduction of flow in micro-channels of rocks using nano-particle adsorption method[J]. Acta Petrolei Sinica, 2009, 30(1): 125- 128(in Chinese).

    [3] BURTON Z., BHUSHAN B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro-and nanoelectromechanical systems[J]. Nano Letters, 2005, 5(8): 1607-1613.

    [4]ZHANG J. Lattice Boltzmann method for microfluidics: Models and applications[J]. Microfluidics and Nano- fluidics, 2010, 10(1): 1-28.

    [5] KHAN M., HAYAT T. and WANG Y. Slip effects on shearing flows in a porous medium[J]. Acta Mechannic Sinica, 2008, 24(1): 51-59.

    [6]WANG Xin-liang, DI Qin-feng and ZHANG Ren-liang et al. Progress in theories of super-hydrophobic surface slip effect and its application to drag reduction technology[J]. Advances in Mechanics, 2010, 40(3): 241- 249(in Chinese).

    [7] CHEN Yan-yan, YI Hou-hui and LI Hua-bing Boundary slip and surface interaction: A lattice Boltzmann simulation[J]. Chinese Physics Letters,2008, 25(1): 184-187.

    [8]SHAN X., CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819.

    [9]SHAN X., CHEN H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical Review E, 1994, 49(4): 2941- 2948.

    [10] HUANG H., THORNE D. T. Jr and SCHAAP M. G. et al. Proposed approximation for contact angles in Shanand-Chen-type multicomponent multiphase lattice Boltzmann models[J]. Physical Review E, 2007, 76(6): 1-6.

    [11] ZHANG Ren-liang, DI Qin-feng and WANG Xin-liang, et al. Numerical study of wall wettabilities and topographyon drag reduction effect in micro-channel flow by lattice Boltzmann method[J]. Journal of Hydrodynamics, 2010, 22(3): 366-372.

    [12]BENZI R., BIFERALE L. and SBRAGAGLIA M. et al. Mesoscopic modeling of a two-phase flow in the presenceof boundaries: The contact angle[J]. Physical Review E, 2006, 74(2): 021509.

    [13] QIAN Y. H., D?HUMIERES D. and LALLEMAND P. Lattice BGK models for Navier-Stokes equations[J]. Europhysics Letters, 1992, 17(6): 479-484.

    [14]SUKOP M. C., THORNE D. T. Lattice Boltzmann modeling: An introduction for geoscientists and engineers[M]. Berlin, Heidelberg, Germany: Springer- Verlag, 2006.

    [15] MARTYS N. S., CHEN H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method[J]. Physical Review E, 1996, 53(1): 743-750.

    [16] GUO Zhao-li, ZHENG Chu-guang. The principle and application of the method[M]. Beijing: Science Press, 2009(in Chinese).

    [17]ZHANG J., KWOK D. Y. Apparent slip over a solidliquid interface with a no-slip boundary condition[J]. Physical Review E, 2004, 70(5): 1-4.

    [18] CAO Bing-Yang, CHEN Min and GUO Zeng-Yuan. Velocity slip of liquid flow in nanochannels[J]. Acta Physica Sinica, 2006, 55(10): 5305-5310(in Chinese).

    [19] HARTING J., KUNERT C. and HERRMANN H. J. Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels[J]. Europhysics Letters, 2006, 75(2): 328-334.

    10.1016/S1001-6058(11)60275-8

    * Project supported by the National Natural Science Foundation of China (Grant No. 50874071), the National High Technology Research and Development of China (863 Program, Grant No. 2008AA06Z201), the Key Program of Science and Technology Commission of Shanghai Municipality (Grant No. 071605102) and the Leading Talent Funding of Shanghai.

    Biography: ZHANG Ren-liang (1982-), Male, Ph. D. Candidate

    DI Qin-feng,

    E-mail: qinfengd@sina.com

    日韩大码丰满熟妇| 少妇猛男粗大的猛烈进出视频| 亚洲欧洲精品一区二区精品久久久| 国产日韩一区二区三区精品不卡| 日韩免费高清中文字幕av| 精品一品国产午夜福利视频| 久久精品人人爽人人爽视色| 久久精品久久久久久噜噜老黄| 国产精品秋霞免费鲁丝片| 亚洲天堂av无毛| 亚洲精品国产一区二区精华液| 日本av手机在线免费观看| 国产免费一区二区三区四区乱码| 亚洲一区中文字幕在线| 午夜影院在线不卡| 五月开心婷婷网| 免费女性裸体啪啪无遮挡网站| 三级毛片av免费| 国产亚洲欧美精品永久| 国产免费视频播放在线视频| 精品少妇一区二区三区视频日本电影| 建设人人有责人人尽责人人享有的| 涩涩av久久男人的天堂| 国产伦理片在线播放av一区| 十八禁网站免费在线| 这个男人来自地球电影免费观看| 性少妇av在线| 精品少妇久久久久久888优播| 国产视频一区二区在线看| 精品亚洲乱码少妇综合久久| 国产91精品成人一区二区三区 | 一边摸一边抽搐一进一出视频| 亚洲伊人色综图| 国产免费av片在线观看野外av| 亚洲av日韩精品久久久久久密| 欧美激情高清一区二区三区| 两人在一起打扑克的视频| 搡老乐熟女国产| 欧美日韩国产mv在线观看视频| 午夜视频精品福利| 欧美日本中文国产一区发布| 亚洲精品自拍成人| 久久午夜综合久久蜜桃| 国产成+人综合+亚洲专区| 性色av一级| 亚洲国产毛片av蜜桃av| 久久精品国产亚洲av高清一级| 国产熟女午夜一区二区三区| 爱豆传媒免费全集在线观看| 岛国在线观看网站| 丁香六月天网| 国产亚洲欧美在线一区二区| 最近中文字幕2019免费版| 久久精品亚洲av国产电影网| 久久久国产成人免费| 国产精品一区二区免费欧美 | 国产精品av久久久久免费| 久久天躁狠狠躁夜夜2o2o| 日本wwww免费看| 国产高清videossex| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲七黄色美女视频| 久久精品国产亚洲av高清一级| 日韩制服骚丝袜av| 中文字幕色久视频| 一区二区av电影网| 日韩制服丝袜自拍偷拍| 亚洲午夜精品一区,二区,三区| 国精品久久久久久国模美| 黄片播放在线免费| 久久热在线av| 欧美精品av麻豆av| 欧美一级毛片孕妇| 久久久国产成人免费| 日韩熟女老妇一区二区性免费视频| 久久女婷五月综合色啪小说| 亚洲av美国av| 80岁老熟妇乱子伦牲交| 欧美黑人精品巨大| 国产精品久久久人人做人人爽| 欧美黑人精品巨大| 无限看片的www在线观看| 如日韩欧美国产精品一区二区三区| 国产一区二区激情短视频 | 黄色视频不卡| 欧美黑人精品巨大| 国产xxxxx性猛交| 久久天堂一区二区三区四区| 成年动漫av网址| 日韩精品免费视频一区二区三区| 亚洲欧美色中文字幕在线| 久久狼人影院| 国产一区二区三区在线臀色熟女 | 亚洲欧美一区二区三区久久| 国产精品国产三级国产专区5o| 巨乳人妻的诱惑在线观看| 成年人免费黄色播放视频| 精品熟女少妇八av免费久了| 日本av手机在线免费观看| 一级黄色大片毛片| 一区二区日韩欧美中文字幕| 成人免费观看视频高清| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美精品永久| 国产极品粉嫩免费观看在线| 别揉我奶头~嗯~啊~动态视频 | 大香蕉久久成人网| 一区二区日韩欧美中文字幕| 午夜免费观看性视频| 女人高潮潮喷娇喘18禁视频| 人人妻,人人澡人人爽秒播| 免费黄频网站在线观看国产| 美女午夜性视频免费| 在线观看免费视频网站a站| 国产精品一二三区在线看| 精品一区二区三卡| 人成视频在线观看免费观看| 亚洲第一欧美日韩一区二区三区 | 久久久久久久久免费视频了| 建设人人有责人人尽责人人享有的| 久热这里只有精品99| 免费女性裸体啪啪无遮挡网站| 精品久久久久久电影网| 亚洲精品国产av成人精品| 亚洲专区中文字幕在线| 亚洲精品国产精品久久久不卡| 亚洲五月婷婷丁香| 人人妻人人添人人爽欧美一区卜| 日韩一区二区三区影片| 欧美变态另类bdsm刘玥| 又大又爽又粗| 国产一区二区 视频在线| 国产精品久久久久久精品电影小说| 涩涩av久久男人的天堂| 久久中文字幕一级| 日本撒尿小便嘘嘘汇集6| 亚洲欧美成人综合另类久久久| 亚洲av男天堂| 老司机深夜福利视频在线观看 | 国产在线观看jvid| 国产亚洲欧美在线一区二区| 日韩制服骚丝袜av| 国产亚洲精品一区二区www | 热99re8久久精品国产| 久久久久久久久免费视频了| 一区二区三区激情视频| kizo精华| 午夜精品久久久久久毛片777| 欧美日韩亚洲国产一区二区在线观看 | 中文精品一卡2卡3卡4更新| www.熟女人妻精品国产| 欧美日韩av久久| avwww免费| 精品免费久久久久久久清纯 | 久久av网站| av网站免费在线观看视频| 精品久久久久久电影网| netflix在线观看网站| 成年动漫av网址| 满18在线观看网站| 亚洲精品国产色婷婷电影| 九色亚洲精品在线播放| 精品亚洲成a人片在线观看| 啦啦啦免费观看视频1| 亚洲欧洲日产国产| 日韩一卡2卡3卡4卡2021年| 国产麻豆69| 一级片免费观看大全| 老鸭窝网址在线观看| 高清黄色对白视频在线免费看| 欧美精品一区二区大全| 国产在线免费精品| 黄色视频,在线免费观看| 亚洲精品中文字幕一二三四区 | 国产高清视频在线播放一区 | 久久国产精品大桥未久av| 亚洲精品成人av观看孕妇| 一进一出抽搐动态| 久久久久国产一级毛片高清牌| 国产亚洲精品一区二区www | 成人三级做爰电影| 97精品久久久久久久久久精品| 久热这里只有精品99| 亚洲黑人精品在线| 久久热在线av| 老熟妇仑乱视频hdxx| 日韩三级视频一区二区三区| 亚洲人成电影免费在线| 国产1区2区3区精品| 国产成人欧美| 亚洲国产日韩一区二区| 高清在线国产一区| www.自偷自拍.com| 久久久久国内视频| 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 嫁个100分男人电影在线观看| 两个人看的免费小视频| 三上悠亚av全集在线观看| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区黑人| 欧美黄色淫秽网站| 亚洲欧美清纯卡通| 久久av网站| 欧美精品一区二区免费开放| 亚洲欧美日韩高清在线视频 | 一本久久精品| 国产日韩欧美在线精品| 啪啪无遮挡十八禁网站| 国产片内射在线| a 毛片基地| 午夜福利乱码中文字幕| 免费高清在线观看视频在线观看| 在线观看免费视频网站a站| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 悠悠久久av| 十八禁网站网址无遮挡| 欧美一级毛片孕妇| 嫩草影视91久久| 中国美女看黄片| 精品少妇内射三级| 国产精品久久久人人做人人爽| 亚洲精品自拍成人| 精品一区二区三区四区五区乱码| 天天躁日日躁夜夜躁夜夜| av天堂在线播放| 人妻 亚洲 视频| 国产伦理片在线播放av一区| 两性夫妻黄色片| 午夜成年电影在线免费观看| 久久久久久久大尺度免费视频| 美女大奶头黄色视频| 免费一级毛片在线播放高清视频 | 午夜精品久久久久久毛片777| 精品国产乱子伦一区二区三区 | 99国产精品一区二区蜜桃av | 午夜福利免费观看在线| 亚洲av男天堂| 曰老女人黄片| 亚洲av美国av| 国产成人免费观看mmmm| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| 性少妇av在线| 午夜两性在线视频| 亚洲久久久国产精品| 国产熟女午夜一区二区三区| 精品少妇内射三级| 国产主播在线观看一区二区| 黄片大片在线免费观看| 啦啦啦视频在线资源免费观看| 午夜免费成人在线视频| 亚洲av日韩在线播放| 美女扒开内裤让男人捅视频| 在线观看免费高清a一片| 丝袜脚勾引网站| 国产av一区二区精品久久| 久久久久国内视频| av国产精品久久久久影院| 美女午夜性视频免费| 亚洲中文av在线| 日韩大码丰满熟妇| 天堂8中文在线网| 国产一级毛片在线| 亚洲成av片中文字幕在线观看| 国产一区二区三区av在线| 日日爽夜夜爽网站| 午夜影院在线不卡| 十八禁人妻一区二区| 精品国产乱子伦一区二区三区 | 天堂中文最新版在线下载| 国产精品亚洲av一区麻豆| 精品福利观看| 成人免费观看视频高清| 欧美少妇被猛烈插入视频| 一边摸一边做爽爽视频免费| 91精品三级在线观看| 黄色片一级片一级黄色片| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av香蕉五月 | 国产免费一区二区三区四区乱码| 一边摸一边做爽爽视频免费| 天天添夜夜摸| 青春草亚洲视频在线观看| 丝瓜视频免费看黄片| 人妻一区二区av| 亚洲九九香蕉| 丝袜美腿诱惑在线| 视频在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区 | 欧美人与性动交α欧美软件| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区四区第35| 亚洲久久久国产精品| 精品福利永久在线观看| 亚洲国产av新网站| 高清av免费在线| 国产精品免费大片| 少妇猛男粗大的猛烈进出视频| 不卡一级毛片| 天天躁夜夜躁狠狠躁躁| 啪啪无遮挡十八禁网站| 青青草视频在线视频观看| 老熟妇仑乱视频hdxx| 久久国产精品大桥未久av| 三级毛片av免费| av不卡在线播放| 80岁老熟妇乱子伦牲交| 国产成人免费观看mmmm| 妹子高潮喷水视频| 国产精品一区二区在线观看99| 正在播放国产对白刺激| 男女午夜视频在线观看| 成在线人永久免费视频| 成人手机av| 精品欧美一区二区三区在线| 狠狠精品人妻久久久久久综合| 人人妻人人爽人人添夜夜欢视频| 各种免费的搞黄视频| 亚洲三区欧美一区| 老司机影院毛片| 波多野结衣一区麻豆| 久久精品国产综合久久久| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 欧美人与性动交α欧美软件| 国产精品九九99| 久久天躁狠狠躁夜夜2o2o| 脱女人内裤的视频| 久久久欧美国产精品| 欧美日韩视频精品一区| 欧美性长视频在线观看| 大香蕉久久网| 国产精品 欧美亚洲| 97精品久久久久久久久久精品| 69av精品久久久久久 | 成人国语在线视频| 国产精品1区2区在线观看. | 亚洲五月婷婷丁香| 99热全是精品| kizo精华| 久久影院123| 欧美av亚洲av综合av国产av| 欧美精品一区二区大全| 久久青草综合色| 亚洲视频免费观看视频| 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 国产精品香港三级国产av潘金莲| 视频区图区小说| 久久人人爽人人片av| 黑丝袜美女国产一区| 成人影院久久| 91成人精品电影| 最新的欧美精品一区二区| 99久久综合免费| 午夜福利一区二区在线看| 国产欧美日韩综合在线一区二区| 国产精品99久久99久久久不卡| 成人亚洲精品一区在线观看| av天堂久久9| 亚洲成人免费av在线播放| 亚洲精品久久久久久婷婷小说| 搡老熟女国产l中国老女人| 亚洲男人天堂网一区| 国产成人欧美在线观看 | 多毛熟女@视频| 999久久久国产精品视频| 51午夜福利影视在线观看| www.熟女人妻精品国产| www.自偷自拍.com| 中文欧美无线码| av电影中文网址| 99国产精品免费福利视频| 老司机福利观看| 亚洲av成人不卡在线观看播放网 | 青春草亚洲视频在线观看| 国产精品久久久久久精品古装| 中文字幕人妻丝袜制服| 国产一区二区 视频在线| 乱人伦中国视频| 欧美精品人与动牲交sv欧美| 久久 成人 亚洲| 亚洲精品久久成人aⅴ小说| 亚洲国产av新网站| 亚洲精品中文字幕在线视频| 欧美精品人与动牲交sv欧美| 亚洲专区字幕在线| 亚洲精品粉嫩美女一区| 丰满迷人的少妇在线观看| 亚洲少妇的诱惑av| 麻豆国产av国片精品| 岛国在线观看网站| 老司机影院毛片| 淫妇啪啪啪对白视频 | 永久免费av网站大全| 久久久久久久精品精品| 欧美午夜高清在线| 夜夜夜夜夜久久久久| 在线观看www视频免费| 日韩欧美免费精品| 精品少妇内射三级| 亚洲精品美女久久久久99蜜臀| 精品久久蜜臀av无| 免费在线观看影片大全网站| 啪啪无遮挡十八禁网站| 性色av一级| 亚洲精华国产精华精| 亚洲专区字幕在线| 女性生殖器流出的白浆| 91大片在线观看| 亚洲欧美色中文字幕在线| 亚洲欧美成人综合另类久久久| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 国产精品一区二区免费欧美 | 1024香蕉在线观看| 一本色道久久久久久精品综合| 色老头精品视频在线观看| 国产福利在线免费观看视频| 国产精品欧美亚洲77777| 亚洲欧美激情在线| 精品一品国产午夜福利视频| 欧美精品一区二区大全| 日本vs欧美在线观看视频| av国产精品久久久久影院| 日韩,欧美,国产一区二区三区| 国产精品 欧美亚洲| 亚洲国产毛片av蜜桃av| 色婷婷av一区二区三区视频| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影观看| 国产精品一区二区精品视频观看| 黄色 视频免费看| 精品国产乱码久久久久久男人| 欧美激情久久久久久爽电影 | 国产精品亚洲av一区麻豆| 男人添女人高潮全过程视频| 极品人妻少妇av视频| 欧美日韩黄片免| 日韩熟女老妇一区二区性免费视频| 91大片在线观看| 精品亚洲乱码少妇综合久久| 精品熟女少妇八av免费久了| 丝袜在线中文字幕| 亚洲欧洲日产国产| 欧美在线黄色| 爱豆传媒免费全集在线观看| 五月天丁香电影| 女性生殖器流出的白浆| 淫妇啪啪啪对白视频 | 日韩欧美一区二区三区在线观看 | 精品一区二区三卡| 久久久久精品国产欧美久久久 | 少妇的丰满在线观看| 纯流量卡能插随身wifi吗| 香蕉丝袜av| 免费在线观看日本一区| 国产亚洲av片在线观看秒播厂| 后天国语完整版免费观看| 麻豆乱淫一区二区| 亚洲精品自拍成人| 两性午夜刺激爽爽歪歪视频在线观看 | 大香蕉久久成人网| 韩国高清视频一区二区三区| 久久精品亚洲av国产电影网| 动漫黄色视频在线观看| 日韩大码丰满熟妇| 水蜜桃什么品种好| 在线看a的网站| netflix在线观看网站| 久久久久精品人妻al黑| 精品国产乱子伦一区二区三区 | 成人免费观看视频高清| 正在播放国产对白刺激| 久热这里只有精品99| 国产精品欧美亚洲77777| 美女午夜性视频免费| 色综合欧美亚洲国产小说| 丁香六月天网| 亚洲国产av新网站| 欧美+亚洲+日韩+国产| 国产色视频综合| 我要看黄色一级片免费的| 久久精品人人爽人人爽视色| 国产成人a∨麻豆精品| 成人亚洲精品一区在线观看| 免费一级毛片在线播放高清视频 | 国产日韩欧美亚洲二区| 色婷婷av一区二区三区视频| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 国产亚洲av片在线观看秒播厂| 99久久国产精品久久久| 韩国精品一区二区三区| 操出白浆在线播放| 999精品在线视频| 成年人黄色毛片网站| 一本大道久久a久久精品| 国产亚洲精品久久久久5区| 国产片内射在线| 国产日韩欧美在线精品| av又黄又爽大尺度在线免费看| av天堂在线播放| 亚洲伊人久久精品综合| 国产又爽黄色视频| 精品久久蜜臀av无| avwww免费| 午夜久久久在线观看| 日韩视频在线欧美| 亚洲精品乱久久久久久| 国产亚洲av片在线观看秒播厂| 制服诱惑二区| 婷婷色av中文字幕| 免费观看a级毛片全部| 每晚都被弄得嗷嗷叫到高潮| 中国美女看黄片| 欧美精品亚洲一区二区| 亚洲激情五月婷婷啪啪| 久久久久国产精品人妻一区二区| 又大又爽又粗| 久久久精品区二区三区| 久久久国产成人免费| 久久久久国产精品人妻一区二区| 亚洲一区二区三区欧美精品| 97人妻天天添夜夜摸| 国产成人精品久久二区二区91| 女性被躁到高潮视频| 久久女婷五月综合色啪小说| 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| 两个人看的免费小视频| 亚洲久久久国产精品| 久久久久久久精品精品| 国产一区二区三区综合在线观看| 久久久久久久精品精品| 成人免费观看视频高清| 91大片在线观看| 日本五十路高清| 久久久久久久久久久久大奶| 亚洲欧美一区二区三区久久| 国产精品久久久av美女十八| 亚洲精华国产精华精| 久久精品国产综合久久久| 在线观看人妻少妇| 免费看十八禁软件| 日韩免费高清中文字幕av| 免费在线观看完整版高清| 日本vs欧美在线观看视频| 老汉色∧v一级毛片| 国产福利在线免费观看视频| 日日摸夜夜添夜夜添小说| 久久久久久久大尺度免费视频| av网站免费在线观看视频| 在线观看舔阴道视频| 亚洲欧美色中文字幕在线| 别揉我奶头~嗯~啊~动态视频 | 免费在线观看影片大全网站| 久久国产精品大桥未久av| 精品一区二区三区av网在线观看 | 人人妻人人澡人人看| 日本五十路高清| 老司机午夜福利在线观看视频 | 久久99一区二区三区| 精品少妇黑人巨大在线播放| 欧美成狂野欧美在线观看| 高清欧美精品videossex| 精品人妻熟女毛片av久久网站| 法律面前人人平等表现在哪些方面 | 欧美少妇被猛烈插入视频| 国产真人三级小视频在线观看| 三级毛片av免费| 国产在视频线精品| 国产免费现黄频在线看| 伦理电影免费视频| 亚洲五月色婷婷综合| 免费高清在线观看日韩| 中国国产av一级| 国产xxxxx性猛交| 纵有疾风起免费观看全集完整版| 一区二区三区四区激情视频| 国产野战对白在线观看| 欧美日韩视频精品一区| 精品亚洲乱码少妇综合久久| 精品久久蜜臀av无| 精品人妻在线不人妻| 国产高清国产精品国产三级| 欧美激情极品国产一区二区三区| 91精品伊人久久大香线蕉| 99精国产麻豆久久婷婷| 精品福利观看| 成人手机av| 日韩欧美国产一区二区入口| 成人国产av品久久久| 免费看十八禁软件| 亚洲成人免费av在线播放| 看免费av毛片| www.999成人在线观看| 久久久久久久久免费视频了| 国产成人精品在线电影| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲美女黄色视频免费看| 久久国产精品影院| 麻豆av在线久日| 欧美成人午夜精品| 十分钟在线观看高清视频www| 国产在线视频一区二区| 少妇 在线观看| 久久久久国产一级毛片高清牌| 丁香六月天网| 窝窝影院91人妻| 久久精品成人免费网站|