• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPERIMENTAL STUDY OF AIRFLOW INDUCED BY PUMPING TESTS IN UNCONFINED AQUIFER WITH LOW-PERMEABILITY CAP*

    2012-08-22 08:31:49HUANGHuiQIANJiazhong

    HUANG Hui, QIAN Jia-zhong

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China, E-mail:huanghuifengye@163.com

    KUANG Xing-xing

    Department of Earth Sciences, The University of Hong Kong, Hong Kong, China

    CHEN Zhou, LI Ru-zhong

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

    (Received November 9, 2011, Revised February 21, 2012)

    EXPERIMENTAL STUDY OF AIRFLOW INDUCED BY PUMPING TESTS IN UNCONFINED AQUIFER WITH LOW-PERMEABILITY CAP*

    HUANG Hui, QIAN Jia-zhong

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China, E-mail:huanghuifengye@163.com

    KUANG Xing-xing

    Department of Earth Sciences, The University of Hong Kong, Hong Kong, China

    CHEN Zhou, LI Ru-zhong

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

    (Received November 9, 2011, Revised February 21, 2012)

    The airflow in unsaturated soils is an issue of great importance in various fields such as in agricultural, nuclear, environmental engineering. However, up to now, little attention was paid to the generation of the airflow induced by a pumping test in an unconfined aquifer with a low-permeability cap and its influence on the pumping test. In this paper, pumping tests were carried out experimentally in the aquifer with a low-permeability cap in order to study the influence of the airflow induced by the pumping on the drawdown of the tests. It is shown that: (1) there is an airflow with negative pressure generated by the pumping tests, (2) the Negative air Pressure (NP) is increased with the pumping rate but decreased with the radial distance, and (3) the NP also changes with the initial water table. The results provide a good basis for further theoretical study of the airflow induced by pumping.

    low-permeability cap, pumping tests, airflow, unconfined aquifer, drawdown

    Introduction

    The air or air-water flows and their interactions in unsaturated zones were widely studied mainly in the fields of infiltration and contaminant transport[1-6], but for the airflow caused by pumping was not well studied[7-9]. Pumping tests were shown to be one of the most effective ways of assessing groundwater resources, obtaining aquifer parameters and offering data for numerical simulations. Traditionally, the pumping tests focus on the saturated flow below the water table and the soil above the initial water table prior to the pumping is considered to have little influence on the test results and is usually ignored[10-12]. However,some field studies and numerical models show that the airflow may be generated, especially with a low-permeability top layer. For example, Leung et al reported a related heaving of the airfield pavement at the Hong Kong International Airport[7]. The heave problem was mitigated when air pressure relief holes were installed. This unusual phenomenon attracted researchers’ attention on the airflow in vadose zones. For example, Guo et al.[13]and Weeks[14]proposed that the intensive rainfall infiltration can cause the Lisse effect, that is, the water-level will increase in a well by the airflow induced by an advancing wetting front during the rainfall infiltration. Jiao and Guo[7]put forward an airwater two phase flow numerical model and pointed out that if the pumping in a closed system can produce a negative pressure in the unsaturated zone, these negative pressures could impact the pumping process. Jiao and Guo speculated that if the unsaturated zone was capped by a low-permeability soil, the airflow might be caused in the unsaturated zone during the pumping and it will have an important impact on the drawdown in the aquifer. If the airflow caused by the low-permeability cap is ignored, the possible error inthe parameter and drawdown estimation would be great. But results from Jiao and Guo[7]were based on the theoretical analysis and the TOUGH2 numerical simulation, further experimental studies are needed to disclose the mechanism of the impact of the airflow on the pumping test.

    This paper investigates experimentally the impact of the negative air pressure on the water flow during the pumping of an unconfined aquifer with a low permeability cap. This study will provide a basis for further investigation of the airflow induced by the pumping.

    Fig.1 Schematic diagram of the experimental setup for pumping test with low-permeability cap

    1. Experimental setup and methods

    1.1 Experimental setup

    Figure 1 shows a schematic diagram of the experimental setup which consists of a primary part and a supportive part. The primary part consists of two Plexiglas flumes for discharge and recharge and a saturated-unsaturated flow system with a Plexiglas trough of 3.96 m in length, 0.76 m in width and 0.97 m in height. The initial thickness of the aquifer and the vadose zone is 0.9 m and 0.07 m, respectively. The thickness of the aquifer and the vadose zone can be adjusted according to the need in the experiments. There is a soil layer of 0.035 m in thickness above the aquifer, used as the low-permeability cap. The inner diameter of the pumping well is 0.04 m, the screen length is 0.2 m and the bottom of the screen is 0.2 m above the impermeable bottom. Because the system is symmetrical with respect to the pumping well, three U-tubes are installed on only one side of the pumping well to measure the NP, 0.39 m, 0.905 m and 1.56 m, respectively (locations denoted as O1, O2and O3), away from the well. Eleven piezometers are installed 0.05 m away from the bottom of the model to measure the hydraulic head during the pumping, and the heads measured with two piezometers near the boundaries are regarded as the boundary condition. In order to enlarge the difference of the permeability between the aquifer and the soil, the aquifer is designed with homogeneous medium sands of the following compositions: 1.27% of sands with diameters greater than 0.002 m, 2.03% of sands with diameters between 0.001 m and 0.002 m, 88.28% of sands with diameters between 0.0005 m and 0.001 m and 6.16% of sands with diameters less than 0.00025 m. The permeability of the aquifer (K) is 6.16×10-4m/s. The upper layer is homogeneous silt with a low hydraulic conductivity of 5.31×10-7m/s, and the system is considered as airconfined. In this experiment, the following pumping rates (Q) are adopted: 28.59 ml/s, 34.28 ml/s and 36.17 ml/s.

    1.2 Experimental method

    The experimental model is a two-phase air-water flow model which can be approximately regarded as air confined because the permeability of the upper layer is much less than that of the aquifer. The whole model can be regarded as an air-confined system with a partially penetrating well. The hydraulic gradient of the aquifer is controlled by adjusting the water level difference between the inflow and outflow reservoirs (Fig.1). The initial conditions for the experiment are: the hydraulic gradient (J) is 0, the initial water tables which are adjusted through the overflow reservoirs are 0.07 m and 0.10 m, the initial NP is 0 and the pumping rate is constant.

    To determine the relationship between the pumping rates (Q), the water table (0s) and the NP, a series of pumping experiments are performed with different Q (28.59 ml/s, 34.28 ml/s and 36.17 ml/s) and the corresponding NP are recorded. Plots of the Q versus the NP will reveal the relationship between them. To study the influence of0s before the pumping on the NP, the NP for different0s is recorded during the pumping. All experiments are repeated twice under the same condition to ensure consistency of measurements. The pumping rates are controlled by a peristaltic pump with error less than 0.5%, the water levels are measured with ten pressure transducers with errors less than 0.0005 m and the U-tube with error less than 0.5%. During the experiments, the temperature is kept at about 8oC, and the average atmospheric pressure is about 101 kPa.

    2. Experimental results and discussions

    Jiao and Guo[7]proposed that the NP can be generated during the pumping in the vadose zone with a low-permeability cap. That is because when the water table falls, the more pore space will be formed. However, the low-permeability soil prevents the entry of the air to fill these new pore spaces from the atmosphere, so the NP is generated and this NP is positively correlated with the thickness of the low-permeability soil. Besides, the NP gradually increases withthe drawdown until it reaches a peak value to break through obstacles of the layer. At last, the NP gradually returns to zero (the initial air pressure prior to the pumping). So the NP-time curve is V shaped, with the pressure increasing from zero to a peak value, then decreasing gradually until reaching zero. At the same time, the drawdown decreases with the radial distance from the pumping well, so the NP values are not the same in different locations with the same depth in the vadose zone. In the same depth, the pressure values gradually decrease with the increasing radial distance from the well. In this paper, the relationship between the NP, the pumping rate Q and the initial water tables are examined through a series of pumping tests.

    Fig.2 NP-time curve with Q=36.17ml/s at Point O1

    2.1 The relationship between NP and time

    Figure 2 shows the variation of the NP with time (t) for Q=36.17ml/s at O1. It can be seen that the NP-time curve is V shaped, with the NP decreasing from zero with the falling of the water table in the aquifer during the pumping and then recovering to zero after the air pressure induces enough air inflow through the low permeability layer. That is because the NP has a suction effect on the low-permeability soil. When the NP is large enough, the air will enter from the atmosphere to fill these new pore spaces. Consequently, the NP gradually recovers to the atmospheric pressure. This phenomenon is fully consistent with the theory proposed by Jiao and Guo[7]that the NP in this condition will recover to the atmospheric pressure finally.

    Figure 2 also shows that the initial air pressure in the unsaturated zone of the aquifer is slightly larger than the atmospheric pressure. Theoretically, it should be the same as the atmospheric pressure. This small positive air pressure is generated during the saturation of the aquifer. The air in the unsaturated zone is compressed with the rising of the water table because the low-permeability soil prevents the air flowing from the unsaturated zone to the atmosphere. As expected, the initial positive air pressure increases with the initial water table. For instance, the initial positive air pressure is 0.3 kPa when the initial water table is 0.10 m and 0.45 kPa when the initial water table is 0.07 m.

    Fig.3 NP-time curve with different pumping rates at Point O1

    Fig.4 Drawdown-distance curve at different time during the pumping

    2.2 The relationship between NP and pumping rate

    Figure 3 shows the temporal changes of the NP in the unsaturated zone for different pumping rates. As expected, the NP increases with the increase of the pumping rate. During the pumping, the low-permeability upper layer impedes the air inflow to the soil as the water level drops, so that the NP is induced. When the pumping rate is high, the water level would drop quickly, leading to an increase in the negative air pressure above the water level. This is in agreement with the study of Jiao and Guo[7]. It can be seen from Fig.3 that when Q=28.59ml/s , the time for the NP to break through the obstruction of the low-permeability soil (Tmax) at point O1is 22 min. In comparison, the Tmaxfor Q =34.28ml/s and Q=36.17ml/s are 28 min and 32 min, respectively. Meanwhile, the corresponding maximum NP values are 0.88 kPa, 1.16 kPa and 1.17 kPa, respectively. The results demonstrate that the greater the pumping rate, the greater the maximum NP value will be. Figure 4 shows the evolution of the cone of depression during the pumping recorded by the piezometers when Q= 36.17ml/s. When t=32min , the NP will reach thepeak value of 0.117 m but the maximum drawdown is only about 0.193 m, which means that the most of the drawdown at this time is caused by the NP.

    Fig.5 NP-time curve with different initial water table

    2.3 The relationship between NP and initial water table

    The position of the initial water table (0s) may have a direct impact on the NP because it determines the initial volume of air in the unsaturated zone. Figure 5 shows the NP-time curves at O1with different water tables (0.07 m, 0.10 m) for =Q 34.17ml/s. As shown in Fig.5, the initial water table has a significant impact on the NP. When0=s 0.07m, the maximum NP is 1.18 kPa, the corresponding time for the maximum NP (maxT) is 29 min. While s0=0.10m , the maximum NP is only 0.6 kPa, the corresponding Tmaxis just 14 min. It is shown that the maximum NP becomes smaller when the initial water table is lower.

    3. Conclusion

    In this paper, the pumping tests were carried out experimentally in an unconfined aquifer with a lowpermeability cap in order to investigate the airflow induced by the pumping and its impact on the drawdown. The experiment results reveal that the NP can be generated in the vadose zone of an aquifer with a low-permeability cap during the pumping. The NP increases from zero to a maximum value and decreases gradually to the atmospheric pressure if ignoring the initial positive pressure and the capillary pressure. The NP becomes more significant when Q is greater or the initial water table is higher. Furthermore, experimental results show that the NP is significant, when the drawdown is relatively small. The NP takes care of most of the drawdown. So, the impact of the NP on the drawdown can not be neglected when interpreting the pumping test data in the air-confined situation. However due to limitations of the scale of measurements, we have not considered the role of the water pressure during the pumping. This problem will be studied in the future.

    Acknowledgement

    This worked was supported by the Innovative Projects of Hefei University of Technology (Grant No. 2009HGCX0233).

    [1] YOU K., ZHAN H. and LI J. Analysis of models for induced gas flow in the unsaturated zone[J]. Water Resources Research, 2011, 47: W04515.

    [2] LI H., JIAO J. J. One-dimensional airflow in unsaturated zone induced by periodic water table fluctuation[J]. Water Resources Research, 2005, 41: W04007.

    [3] ZHANG Xiao-yue, ZHU Yue-ming and FANG Chunhui. The role fore air flow in soil slope stability analysis[J]. Journal of Hydrodynamics, 2009, 21(5): 640-646.

    [4] XIA Y., LI H. and WANG L. Tide-induced air pressure fluctuations in a coastal unsaturated zone: Effects of thin low-permeability pavements[J]. Ground Water Monitoring and Remediation, 2010, 31(2): 40-47.

    [5] LI H., JIAO J. J. and TANG Z. Semi-numerical simulation of groundwater flow induced by periodic forcing with a case study at an island aquifer[J]. Journal of Hydrogeology, 2006, 327(3-4): 438-446.

    [6] DROR I. Effects of air injection on flow through porous media: Observations and analyses of laboratory-scale processes[J]. Water Resources Research, 2004, 40: W09203.

    [7] JIAO J. J., GUO H. Airflow induced by pumping tests in unconfined aquifer with a low-permeability cap[J]. Water Resources Research, 2009, 45: W10445.

    [8] KUANG X., JIAO J. J. and WAN L. et al. Air and water flows in a vertical sand column[J].. Water Resources Research, 2011, 47: W04506.

    [9] ENDRES A. L., JONES J. P. and BERTRAND E. A. Pumping-induced vadose zone drainage and storage in an unconfined aquifer: A comparison of analytical model predictions and field measurements[J]. Journal of Hydrology, 2007, 335(1-2): 207-218.

    [10] QIAN J., ZHAN H. and WU J. et al. What can be learned from sequential multi-well pumping tests in fracture-karst media? A case study in Zhangji, China[J]. Journal of Hydrogeology, 2009, 17(7): 1749-1760.

    [11] SUN Dong-mei, ZHU Yue-ming and ZHANG Ming-jin. Water-air two-phase flow model for numerical analysis of rainfall infiltration[J]. Journal of Hydraulic Engineering, 2007, 38(2):150-156(in Chinese).

    [12] LUO Zu-jiang, ZENG Feng. Finite element numerical simulation of land subsidence and groundwater exploittation based on visco-elastic-plastic biot’s consolidation theory[J]. Journal of Hydrodynamics, 2011, 23(5): 615-624.

    [13] GUO H., JIAO J. J. and WEEKS E. P. Rain-induced subsurface airflow and Lisse effect[J]. Water Resources Research, 2008, 44: W07409.

    [14] WEEKS E. P. The Lisse effect revisited[J]. Ground Water, 2002, 40(6): 652-656.

    10.1016/S1001-6058(11)60283-7

    * Project supported by National Natural Science Foundation of China (Grant Nos. 40872166, 51179042), the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. HKU7019080P).

    Biography: HUANG Hui (1989-), Female, Master Candidate

    QIAN Jia-Zhong,

    E-mail: qjiazhong@gmail.com

    高清在线国产一区| 亚洲 国产 在线| 精品久久久久久久毛片微露脸| 久久人人精品亚洲av| 搡老熟女国产l中国老女人| 人妻久久中文字幕网| 日本一二三区视频观看| 他把我摸到了高潮在线观看| 久久久久亚洲av毛片大全| 在线十欧美十亚洲十日本专区| 色尼玛亚洲综合影院| 日韩高清综合在线| 久久久久久人人人人人| 日本成人三级电影网站| 成人精品一区二区免费| 亚洲第一电影网av| 成人性生交大片免费视频hd| 91在线精品国自产拍蜜月 | 亚洲男人的天堂狠狠| www.www免费av| 性色av乱码一区二区三区2| 色吧在线观看| 亚洲成人中文字幕在线播放| 不卡一级毛片| 欧美日韩瑟瑟在线播放| 亚洲欧美精品综合久久99| 1024手机看黄色片| 国产成人精品无人区| 精品免费久久久久久久清纯| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品sss在线观看| 国产精品综合久久久久久久免费| 日韩国内少妇激情av| 免费在线观看日本一区| 亚洲精品456在线播放app | 亚洲欧美日韩无卡精品| 免费观看精品视频网站| 人妻久久中文字幕网| 18禁黄网站禁片午夜丰满| 变态另类丝袜制服| 国产野战对白在线观看| 亚洲成人久久性| 亚洲自偷自拍图片 自拍| 美女被艹到高潮喷水动态| 两个人看的免费小视频| 精品福利观看| 黄片大片在线免费观看| 亚洲av第一区精品v没综合| 国产精品九九99| 国产精品久久久久久精品电影| 国产精品综合久久久久久久免费| 激情在线观看视频在线高清| 看黄色毛片网站| 国产成人欧美在线观看| 在线看三级毛片| 亚洲av第一区精品v没综合| 亚洲av日韩精品久久久久久密| 亚洲精品美女久久久久99蜜臀| 久久香蕉国产精品| 深夜精品福利| 国产一区在线观看成人免费| 日韩精品青青久久久久久| 黄色丝袜av网址大全| av天堂中文字幕网| 手机成人av网站| 18禁观看日本| 身体一侧抽搐| 亚洲成人久久性| 国产精品精品国产色婷婷| 巨乳人妻的诱惑在线观看| 国产精品av视频在线免费观看| 国内精品美女久久久久久| 成人国产综合亚洲| 看免费av毛片| 老司机午夜福利在线观看视频| 免费在线观看亚洲国产| 久久性视频一级片| 亚洲精品中文字幕一二三四区| 极品教师在线免费播放| 免费av毛片视频| 一进一出好大好爽视频| 国产男靠女视频免费网站| 成年女人看的毛片在线观看| 欧美精品啪啪一区二区三区| 国产1区2区3区精品| 精品99又大又爽又粗少妇毛片 | 午夜久久久久精精品| 亚洲欧美日韩高清专用| 18美女黄网站色大片免费观看| 国产高清有码在线观看视频| 国产欧美日韩精品亚洲av| 色噜噜av男人的天堂激情| 国产精品一区二区精品视频观看| 欧美绝顶高潮抽搐喷水| 国产熟女xx| 中文字幕精品亚洲无线码一区| 国产淫片久久久久久久久 | 精品日产1卡2卡| 成熟少妇高潮喷水视频| 成人无遮挡网站| 九九热线精品视视频播放| 国产蜜桃级精品一区二区三区| 91av网一区二区| 国产一区二区三区视频了| h日本视频在线播放| 天堂av国产一区二区熟女人妻| 啦啦啦观看免费观看视频高清| 亚洲人成网站高清观看| 狂野欧美白嫩少妇大欣赏| 免费观看的影片在线观看| 69av精品久久久久久| 亚洲九九香蕉| av欧美777| 男女午夜视频在线观看| 12—13女人毛片做爰片一| 国产一区二区三区视频了| 国产精品98久久久久久宅男小说| 亚洲成av人片在线播放无| 一级毛片精品| 欧美中文日本在线观看视频| 国产日本99.免费观看| 亚洲人成伊人成综合网2020| 久久性视频一级片| 淫秽高清视频在线观看| 日本五十路高清| 看免费av毛片| tocl精华| 中文字幕人妻丝袜一区二区| av天堂中文字幕网| 日本在线视频免费播放| 久久久久久久久久黄片| 国内精品一区二区在线观看| 在线观看日韩欧美| 国产高清激情床上av| 日韩精品中文字幕看吧| 国产视频内射| 最近视频中文字幕2019在线8| 97碰自拍视频| 日韩国内少妇激情av| 日韩欧美在线二视频| 男女之事视频高清在线观看| 男女下面进入的视频免费午夜| h日本视频在线播放| 国产aⅴ精品一区二区三区波| 国产人伦9x9x在线观看| 亚洲天堂国产精品一区在线| 黑人欧美特级aaaaaa片| 99久久成人亚洲精品观看| av黄色大香蕉| 制服人妻中文乱码| 一本精品99久久精品77| svipshipincom国产片| 国产av一区在线观看免费| 日本三级黄在线观看| 午夜成年电影在线免费观看| 国产人伦9x9x在线观看| 国产单亲对白刺激| 欧美一级毛片孕妇| 国产精品久久电影中文字幕| 老司机午夜福利在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 国产97色在线日韩免费| 国产69精品久久久久777片 | 亚洲国产中文字幕在线视频| 国产69精品久久久久777片 | 精品久久久久久久久久久久久| 亚洲第一电影网av| 国产aⅴ精品一区二区三区波| 国内精品久久久久精免费| 免费观看精品视频网站| 91九色精品人成在线观看| 又黄又爽又免费观看的视频| 亚洲色图av天堂| 久久人人精品亚洲av| 亚洲国产欧洲综合997久久,| 欧美xxxx黑人xx丫x性爽| 午夜激情欧美在线| 日本三级黄在线观看| 色综合婷婷激情| 成年女人看的毛片在线观看| 午夜影院日韩av| 亚洲中文av在线| 亚洲精品久久国产高清桃花| 女人被狂操c到高潮| 国产高清三级在线| 国产激情偷乱视频一区二区| 一个人看的www免费观看视频| 免费看a级黄色片| 99久久综合精品五月天人人| 日韩高清综合在线| 最新在线观看一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲精品在线美女| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久大精品| 一本一本综合久久| 精品久久久久久成人av| 欧美日韩亚洲国产一区二区在线观看| 丰满人妻熟妇乱又伦精品不卡| 日日夜夜操网爽| 亚洲av电影不卡..在线观看| 欧美国产日韩亚洲一区| 亚洲在线自拍视频| 久久精品亚洲精品国产色婷小说| 婷婷精品国产亚洲av| 国产精品亚洲一级av第二区| 日本黄色视频三级网站网址| 又粗又爽又猛毛片免费看| 亚洲专区中文字幕在线| 男人舔女人的私密视频| 一区二区三区高清视频在线| 免费av不卡在线播放| 身体一侧抽搐| 亚洲成人精品中文字幕电影| 美女午夜性视频免费| 黄片小视频在线播放| 九九热线精品视视频播放| 我要搜黄色片| 禁无遮挡网站| 亚洲欧美日韩高清专用| 欧美色欧美亚洲另类二区| 欧美极品一区二区三区四区| 亚洲欧美精品综合久久99| 一本精品99久久精品77| 亚洲av成人一区二区三| 日本熟妇午夜| 精品国产超薄肉色丝袜足j| 婷婷精品国产亚洲av在线| 天天躁狠狠躁夜夜躁狠狠躁| av欧美777| 久久香蕉国产精品| 欧美日韩中文字幕国产精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 美女cb高潮喷水在线观看 | 中文字幕精品亚洲无线码一区| 欧美色欧美亚洲另类二区| 亚洲男人的天堂狠狠| 国产在线精品亚洲第一网站| 一级毛片高清免费大全| 好看av亚洲va欧美ⅴa在| 九九在线视频观看精品| 一区二区三区高清视频在线| 国产成人系列免费观看| 精品久久久久久,| 国产欧美日韩一区二区三| 国产精品一区二区三区四区久久| www.999成人在线观看| 亚洲国产精品成人综合色| 国产精品美女特级片免费视频播放器 | 精品不卡国产一区二区三区| 日本免费一区二区三区高清不卡| 亚洲成人中文字幕在线播放| 亚洲激情在线av| 淫秽高清视频在线观看| 国模一区二区三区四区视频 | 亚洲专区字幕在线| 欧美日韩国产亚洲二区| 国产精品亚洲美女久久久| 不卡一级毛片| 国产三级在线视频| 国产欧美日韩一区二区三| 一个人免费在线观看的高清视频| 欧美在线一区亚洲| tocl精华| 国产成人啪精品午夜网站| 成年免费大片在线观看| 精品99又大又爽又粗少妇毛片 | 国产成人系列免费观看| 日韩欧美精品v在线| 亚洲av免费在线观看| 国产精品久久久人人做人人爽| ponron亚洲| 国产精品亚洲一级av第二区| 搡老熟女国产l中国老女人| 真实男女啪啪啪动态图| 久久久国产成人精品二区| 国产真实乱freesex| 亚洲欧美一区二区三区黑人| 亚洲精品粉嫩美女一区| 88av欧美| 久久天堂一区二区三区四区| 少妇人妻一区二区三区视频| 午夜福利高清视频| 午夜精品一区二区三区免费看| 精品久久久久久成人av| 久久久久久久久免费视频了| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 国产伦人伦偷精品视频| 老鸭窝网址在线观看| 中文字幕精品亚洲无线码一区| 老司机福利观看| 国产精品电影一区二区三区| 久久香蕉精品热| 搡老岳熟女国产| 1024香蕉在线观看| 国产精品自产拍在线观看55亚洲| 最近最新中文字幕大全免费视频| 成人av在线播放网站| 亚洲av电影不卡..在线观看| 少妇的逼水好多| 亚洲一区二区三区色噜噜| 久久国产乱子伦精品免费另类| 久久婷婷人人爽人人干人人爱| 嫩草影院精品99| 淫秽高清视频在线观看| 两个人视频免费观看高清| 欧美乱妇无乱码| 色综合欧美亚洲国产小说| 成人欧美大片| 久久香蕉精品热| 日韩 欧美 亚洲 中文字幕| 亚洲片人在线观看| 久久久国产精品麻豆| 偷拍熟女少妇极品色| 成人三级做爰电影| 欧美激情在线99| 后天国语完整版免费观看| 亚洲精品456在线播放app | 欧美日韩国产亚洲二区| 日韩成人在线观看一区二区三区| 国产精品精品国产色婷婷| 亚洲精品456在线播放app | 亚洲成人久久性| 欧美一区二区国产精品久久精品| 欧美黄色淫秽网站| 婷婷亚洲欧美| 久久精品国产亚洲av香蕉五月| 琪琪午夜伦伦电影理论片6080| 最近在线观看免费完整版| 美女被艹到高潮喷水动态| 久久久久久人人人人人| 欧美黑人巨大hd| 给我免费播放毛片高清在线观看| 国产高清三级在线| 免费在线观看影片大全网站| 成年女人永久免费观看视频| 在线免费观看不下载黄p国产 | 亚洲国产高清在线一区二区三| 久久久水蜜桃国产精品网| 热99re8久久精品国产| 国产伦在线观看视频一区| 国产一区二区在线观看日韩 | 天堂√8在线中文| 无人区码免费观看不卡| 91九色精品人成在线观看| 午夜福利欧美成人| 久久久久国内视频| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 99久久无色码亚洲精品果冻| 国产成人av激情在线播放| 久久欧美精品欧美久久欧美| 性色av乱码一区二区三区2| 美女扒开内裤让男人捅视频| 日本黄色视频三级网站网址| 亚洲精品粉嫩美女一区| 成年女人毛片免费观看观看9| 女同久久另类99精品国产91| 亚洲熟妇熟女久久| 欧美中文日本在线观看视频| 欧美日韩瑟瑟在线播放| 亚洲国产欧洲综合997久久,| 三级毛片av免费| 午夜日韩欧美国产| 最新中文字幕久久久久 | 亚洲欧美精品综合久久99| h日本视频在线播放| 亚洲av美国av| xxxwww97欧美| 国产乱人伦免费视频| 免费高清视频大片| 国产亚洲欧美98| 亚洲人成网站在线播放欧美日韩| 久久久久久大精品| 国产激情久久老熟女| 色哟哟哟哟哟哟| 欧美成人性av电影在线观看| 亚洲av成人精品一区久久| 色在线成人网| 99riav亚洲国产免费| 欧美高清成人免费视频www| 色综合亚洲欧美另类图片| 午夜激情欧美在线| 手机成人av网站| 琪琪午夜伦伦电影理论片6080| 欧美中文综合在线视频| 亚洲精品在线美女| 国产精品av久久久久免费| 级片在线观看| 日本免费一区二区三区高清不卡| 国产高清有码在线观看视频| 国产成人av激情在线播放| 男人舔奶头视频| 99久久无色码亚洲精品果冻| 小蜜桃在线观看免费完整版高清| 亚洲国产看品久久| 免费观看的影片在线观看| 国产激情偷乱视频一区二区| 无遮挡黄片免费观看| 免费观看的影片在线观看| 老司机深夜福利视频在线观看| 亚洲18禁久久av| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影 | 国产精品精品国产色婷婷| 国产高清videossex| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 成年女人永久免费观看视频| 无人区码免费观看不卡| 国产精品一区二区三区四区免费观看 | 国产淫片久久久久久久久 | 男人舔女人下体高潮全视频| 欧美色视频一区免费| 国产成+人综合+亚洲专区| 亚洲激情在线av| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 极品教师在线免费播放| 国产成人av激情在线播放| 丁香欧美五月| 久99久视频精品免费| 欧美日韩瑟瑟在线播放| 欧美黑人欧美精品刺激| 久久久久国产一级毛片高清牌| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 99热这里只有是精品50| 又粗又爽又猛毛片免费看| 亚洲欧美一区二区三区黑人| 啦啦啦韩国在线观看视频| 国产高清激情床上av| tocl精华| 国产伦在线观看视频一区| 最新中文字幕久久久久 | 性欧美人与动物交配| 欧美绝顶高潮抽搐喷水| 宅男免费午夜| 欧美色欧美亚洲另类二区| 亚洲熟女毛片儿| 国产精品久久久久久久电影 | av视频在线观看入口| 亚洲人成网站高清观看| 国产精品久久久av美女十八| 一进一出抽搐动态| 亚洲av中文字字幕乱码综合| 亚洲av免费在线观看| 99久国产av精品| 亚洲av成人不卡在线观看播放网| 亚洲精品久久国产高清桃花| 日本熟妇午夜| 久久久精品欧美日韩精品| 成人18禁在线播放| 亚洲自拍偷在线| 午夜激情欧美在线| 午夜两性在线视频| 欧美在线一区亚洲| 国产亚洲精品综合一区在线观看| 亚洲,欧美精品.| 校园春色视频在线观看| 2021天堂中文幕一二区在线观| 一进一出抽搐动态| 身体一侧抽搐| 性色avwww在线观看| 欧美绝顶高潮抽搐喷水| 露出奶头的视频| 国产欧美日韩精品一区二区| 美女黄网站色视频| 国产精品久久电影中文字幕| 国产av在哪里看| 亚洲人成电影免费在线| 欧美日韩综合久久久久久 | 精品国产乱码久久久久久男人| 亚洲av中文字字幕乱码综合| 波多野结衣高清作品| 亚洲精品乱码久久久v下载方式 | 99re在线观看精品视频| 欧美丝袜亚洲另类 | 午夜影院日韩av| 国产精品美女特级片免费视频播放器 | 日韩 欧美 亚洲 中文字幕| 性欧美人与动物交配| 一区二区三区高清视频在线| 性色avwww在线观看| 99国产精品一区二区三区| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 19禁男女啪啪无遮挡网站| 两个人看的免费小视频| av欧美777| 午夜福利成人在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 成人性生交大片免费视频hd| 国产精品1区2区在线观看.| 日日干狠狠操夜夜爽| 一级毛片精品| 精品乱码久久久久久99久播| 国产精品 欧美亚洲| 国产一区二区在线观看日韩 | 久久精品91无色码中文字幕| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 中文字幕av在线有码专区| 国产亚洲欧美在线一区二区| 怎么达到女性高潮| www.999成人在线观看| 国产 一区 欧美 日韩| 日韩欧美一区二区三区在线观看| 女人被狂操c到高潮| av中文乱码字幕在线| 午夜激情欧美在线| 一进一出抽搐gif免费好疼| av女优亚洲男人天堂 | 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 最近最新中文字幕大全免费视频| 久久精品亚洲精品国产色婷小说| 露出奶头的视频| 人人妻人人看人人澡| 综合色av麻豆| 亚洲中文日韩欧美视频| 亚洲精品美女久久av网站| 啦啦啦韩国在线观看视频| АⅤ资源中文在线天堂| 久久久精品大字幕| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 久久精品国产亚洲av香蕉五月| 欧美极品一区二区三区四区| 久久国产乱子伦精品免费另类| 女人被狂操c到高潮| 91av网一区二区| 国产私拍福利视频在线观看| 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| 欧美成人免费av一区二区三区| 最新中文字幕久久久久 | 日本熟妇午夜| 国产极品精品免费视频能看的| 最近最新中文字幕大全免费视频| 亚洲色图av天堂| 十八禁人妻一区二区| 999久久久国产精品视频| a在线观看视频网站| 国产高潮美女av| 亚洲欧美日韩卡通动漫| 老司机在亚洲福利影院| tocl精华| 成人国产一区最新在线观看| 首页视频小说图片口味搜索| 搡老岳熟女国产| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美一区二区三区在线观看| 真实男女啪啪啪动态图| 97超视频在线观看视频| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 午夜日韩欧美国产| 免费搜索国产男女视频| av在线蜜桃| 国产精品亚洲av一区麻豆| 一a级毛片在线观看| 少妇的丰满在线观看| 国产精品av视频在线免费观看| 亚洲在线观看片| 久久久久久大精品| 成人精品一区二区免费| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 美女cb高潮喷水在线观看 | 又粗又爽又猛毛片免费看| 午夜免费观看网址| 成人18禁在线播放| 88av欧美| 脱女人内裤的视频| 精品久久久久久久毛片微露脸| 99国产精品一区二区三区| 99久久无色码亚洲精品果冻| 一区二区三区激情视频| 久久午夜亚洲精品久久| 999久久久国产精品视频| 成年免费大片在线观看| 国产精品久久久av美女十八| 精品久久久久久成人av| 国产91精品成人一区二区三区| 亚洲av成人精品一区久久| 久久久久久国产a免费观看| 好看av亚洲va欧美ⅴa在| 老鸭窝网址在线观看| 亚洲国产高清在线一区二区三| 国产真实乱freesex| 婷婷精品国产亚洲av在线| 色综合欧美亚洲国产小说| 1024香蕉在线观看| 99热精品在线国产| 哪里可以看免费的av片| 中文资源天堂在线| av视频在线观看入口| 全区人妻精品视频| bbb黄色大片| 97人妻精品一区二区三区麻豆| www.熟女人妻精品国产| 黄片小视频在线播放| 丁香六月欧美| 在线观看美女被高潮喷水网站 | 国产不卡一卡二| 男女那种视频在线观看| 国产亚洲欧美在线一区二区| 欧美乱色亚洲激情| 亚洲精华国产精华精| 每晚都被弄得嗷嗷叫到高潮| 桃色一区二区三区在线观看| 国产伦精品一区二区三区视频9 | 首页视频小说图片口味搜索|