• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THREE-DIMENSIONAL NUMERICAL MODELLING OF THE WAVE-INDUCED RIP CURRENTS UNDER IRREGULAR BATHYMETRY*

    2012-08-22 08:32:14XIEMingxiao
    水動力學研究與進展 B輯 2012年6期

    XIE Ming-xiao

    School of Civil Engineering, Tianjin University, Tianjin 300072, China

    Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China, E-mail: crabsaver@163.com

    (Received March 30, 2012, Revised May 20, 2012)

    THREE-DIMENSIONAL NUMERICAL MODELLING OF THE WAVE-INDUCED RIP CURRENTS UNDER IRREGULAR BATHYMETRY*

    XIE Ming-xiao

    School of Civil Engineering, Tianjin University, Tianjin 300072, China

    Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China, E-mail: crabsaver@163.com

    (Received March 30, 2012, Revised May 20, 2012)

    A process-based 3-D hydrodynamic model is established to simulate the rip current structures under irregular bathymetry. The depth-varying wave-induced residual momentum, the surface rollers, the turbulent mixing and the wave-current interactions are considered. Experimental datasets are used to validate the model, and it is shown that the model can effectively describe the 3-D structures of the rip currents in both normal and oblique wave incident cases. The flow patterns of the rip currents see various characteristics for different incident wave directions. In the normal incident case, pairs of counter-rotating primary circulation cells are formed, and an offshore rip flow occurs in the embayment troughs. The peak seaward velocities occur at the top of the bed boundary layer, and the undertow is incorporated in addition to the rip currents. In the oblique incident case, the longshore currents are dominant, which result in a meandering flow along the depth contour, and the undertow is weaker compared to that in the normal incident condition.

    rip currents, irregular bathymetry, 3-D numerical modelling

    Introduction

    The wave-induced currents generated in coastal regions are directly responsible for sediment transport and morphology evolutions. Therefore an accurate prediction of these currents is essential for coastal engineering applications. Wave-induced current phenomena were widely studied, including the wave setup[1,2], undertow[3]and longshore currents[4,5]. However, only the single-sloped plane beaches were often considered in the experiments. In real coastal areas, the underwater bathymetry is usually irregular (e.g., with rhythmic shorelines, sinuous cusps or gapped sand bars). As the waves propagate towards the shoreline, under the multiple processes of shoaling, breaking, refraction and diffraction, a more complex circulative flow could form, which is called the rip currents, which can be very intense with the highest velocity exceeding 2 m/s in sand bar gaps or cusp embayment troughs, to induce the strong seaward sediment transport, and subsequently to affect the coastal morpho-logy.

    The structure of the rip currents is extremely complicated. Under different incident wave and bathymetry conditions, the flow patterns see variable features. Due to its complex nature, there were relatively few detailed explorations of the rip currents. Haller et al.[6]measured the rip currents on an artificial barred beach in laboratory using a wave tank and ADV, Peng and Zou[7]measured the rip currents on a similar sandbar beach using video-tracked drifters. But in those experiments only the horizontal velocity distribution was measured, leaving the vertical profiles aside. In order to investigate the detailed characteristics of the rip currents, Borthwick and Foote[8]installed a tri-cuspate beach in the UK Coastal Research Facility (UKCRF), and measured the 3-D structures of the current field.

    As for numerical simulations, Bai et al.[9]modeled the rip currents under a rhythmic bathymetry using the quasi-3D SHORECIRC model, Rogers et al.[10]modeled the UKCRF experiments using the Godunovtype 2DH numerical model, Fang et al.[11]applied the Boussinesq equations to model the rip currents over the barred beach. However, as indicated by Borthwickand Foote[8], the rip currents have a significant 3-D nature, 2-D models would be inadequate, and a fully 3-D model should be used.

    Xie[12]established a fully process-based 3-D wave-induced current model, which was satisfactorily validated using a series of experimental datasets. In this paper, the Xie[12]model was applied to simulate the flow structures of the rip currents including both the horizontal flow pattern and the vertical profile.

    1. Model description

    1.1 Hydrodynamic model

    The governing equations of the hydrodynamic model are in the Reynolds form simplified from the original Navier-Stokes equations (see Eq.(1)-Eq.(4)). The contributions of the depth-varying residual momentum, the surface roller stresses and the turbulent mixings are included. Cartesian coordinates are used in the horizontal directions and the terrain-following sigma coordinate is used in the vertical direction.

    where the vertical sigma coordinate σ=(z-η)/D ranges from σ=-1 at the bottom to σ=0 at the surface, t is the time,x and y are the horizontal coordinates,η is the free surface, U and V are the velocity components in x and ydirections, respectively,ω is the velocity component in σ coordinate, D is the water depth, g is the gravity acceleration, p is the pressure,M is the depth-varying residual momentum, R is the depth-varying roller momentum,KMcand AMcare the vertical and horizontal mixing coefficients combining waves and currents, respectively, ρ is the seawater density.

    1.1.1 Wave-induced residual momentum

    The formulation proposed by Lin and Zhang[13]is applied for the vertical distribution of the wave-induced residual momentum (see Eq.(5))

    where E is the wave energy, n is the wave energy transfer rate, k is the wave number,δ is the Kronecker symbol, i and j represent the x,y directions, respectively.

    1.1.2 Surface roller evolution

    Based on the energy balance, Xie[12]derived an evolution model of the breaking-induced surface rollers, as expressed by Eq.(6). The model considers multiple factors including the roller energy transfer, the roller density, the bottom dissipation and the bed slope.

    where Cg=Cn is the wave group celerity,αis the roller energy transfer factor, T is the wave period, ER=ρARC/2T is the roller energy, KR= 3(0.3+2.4s)/8, and s is the bed slope, ARis the roller area, n =n(cosθ,sinθ) is the wave vector, andρRis the roller density.

    If the wave parameters are given, Eq.(6) can be solved by using an iteration algorithm from the brea-king point to the shoreline with an offshore boundary condition AR=0. The vertical profile of the roller momentumis expressed as an exponential function proposed by Haas and Warner[14], as expressed by Eq.(7). Note that because the depth integral of Rzshould be unity, it should be pre-normalized to Rznfollowing Eq.(8).

    OnceAR(σ)is solved,ER(σ)can be calculated explicitly. The corresponding stresses in the governing equations caused by the roller can be determined, as in Eqs.(9)-(11).

    1.1.3 Bottom shear stress

    The wave-current combined bottom shear stress τcwis determined by Eq.(12). where τc=ρCDuc2is the bed shear stress by current only, CD=[κ-1ln(h+zb)/z0]-2is the drag coefficient, in which κ=0.4 is the Von Karman constant, h is the bed elevation, zbis the elevation of the first grid point above the bottom, z0is the roughness height, ucis the current velocityat the grid point nearest the bed, τw=0.5ρfwuw2is the shear stress due to waves only,uw=Hπ/Tsinh(kD) is the nearbottom wave orbitalvelocity, fwis the wave friction factor, B, P, Q are empirical coefficients.

    The value of coefficient B is determined by Eq.(13) with analogous expressions for P and Q.

    1.1.4 Turbulence mixing

    The wave-current combined turbulent mixing

    coefficients can be expres sed as in Eqs.(14)-(15).

    where A and K represent the horizontal and the vertical turbulentmixing coefficients, respectively, and thesubscriptsM and W represent current and waves, respectively.

    The horizontal mixing coefficient AMfor currents only is given by Eq.(16).

    where ΔxandΔy are the horizontal grid steps, Csis an empirical factor. The current-induced vertica l mixingcoefficientKMis solved by using a Mellor-Yamada closure model.

    Using the linear wave theory, Xie[12]derived the horizontal mixing coefficientAWfor waves only, as in Eq.(17)

    The vertical mixing coefficient AWfor waves onlyis expressed as in Eq.(18)

    where b is a calibration coefficient.

    1.2 Wave model

    The combined refraction/diffraction wavemodel (REF/DIF) is used as the wave driver for simulating monochromatic incident waves. The REF/DIF model is based on the parabolic mild-slope equation, and it can involve many processes, e.g. shoaling, refraction, energy dissipation, and irregular bottom bathymetry.

    1.3 Wave-current interaction

    The flow pattern of the rip currents is extremely complex, and the strong opposing currents affect the wavepropagation significantly. Therefore, the mutual interaction of the waves and currents should be considered in the simulation. In this paper, the REF/DIF procedure and the hydrodynamic procedure are coupled together through an iterative algorithm. After the current field reaches a stable state, the U and V fields feed back to the wave solver, and consequently the new wave parameters are calculated forthe preparation of the wave-related stresses, which are then in-corporated into the hydrodynamic equations for the solution in the next time step.

    1.4 Solution technique

    A finite difference method and a time-splitting technique are applied to solve the governing equations. The horizontal terms are treated explicitly, and the vertical terms are treated implicitly by using a doublesweep scheme. The arrangements of the variables follow the staggered C-grid system. The OGCM approach proposed by Oey[15]is used to model the inundation.

    Fig.1 Bathymetry and the observation stations in the UKCRF experiment

    Table 1 Incident wave parameters for the normal and oblique incident cases

    2. Experimental cases of UKCRF

    Borthwick and Foote[8]carried out laboratory studies of the 3-D structure of the rip currents over a tri-cuspate beach using the UKCRF. The wave basin hasthe plan dimensions of 27 m cross-shore by 36 m alongshore, and with the still water depth at the paddles of 0.5 m. The bed slope is 1:20. The experimental bathymetry and the locations of the observation profiles are shown in Fig.1. In the experiments, 2 wave observation sections and 7 velocity observation profiles are arranged both in the embayment and on the cusp horn.

    In this paper, the normal incident case (Case B) and the oblique incident case (Case C) are considered, and the related p arameters are shown in Table 1.

    Table 2 Input parameters in the numerical simulation

    Fig.2 Arrangement of the σ layers

    3. Numerical modelling of the rip currents

    3.1 Model parameters

    Table 2 shows the input parameters in the numerical simulations. In order to better describe the nearbed distributions of the current speed, the varying sigma discretization is used, where the spacing in the upper water column is selected asΔσ=0.1, and the near-bottom spacing is Δσ=0.01. The detailed arrangement for the sigma layers is illustrated in Fig.2.

    Fig.3 Comparisons between the modeled and the measured wave heights for Case B

    In order to estimate the model errors, two indices are applied, which are the root mean square (rms) errorand the correlation coefficient (COR). The former reflects the deviation between the measured and the simulated values, and the latter represents the linear correlation of two datasets. They are expressed aswhere Nis the total number of measurement points, I refers to a measurement point, meis the measurement value,om is the modeled value,N andrepresent the algebraic mean of the measured and the modeled values, respectively.

    Fig.4 Comparis ons between the modeled and the measured current velocities for Case B

    3.2 Normal incident case

    Figure 3 shows the comparisonsbetween the modeled and the observed wave heights of two representative sections for the normal incident case (Case B). It indicates that the model can describe the wave propagation, including the shoaling and breaking processes. The rms errors are confined within the range of 0.01 m-0.02 m, and the correlations between the two datasets are satisfactory (88%-97%).

    The comparisons with the observed velocities are shown in Fig.4. Theoretically, the V-velocities should be near-zero because of the symmetric nature of the bathymetry and the normal incident wave condition. However, the observed V-velocities are scattered. In fact, in the experiment, the rip current has unstable features and a trivial perturbation could lead to a deflection of the current direction. With above considerations in mind, in the comparisons, only the U-component is selected in the evaluation. As for the U-velocities, the rms errors are in the range of 0.03 m/s-0.06 m/s, and especially, the simulated velocities at sections P6 and P7 are larger than those observed. One reason is that the gradients of the observed wave heights are greater than those simulated in this area, which induces higher velocities (see Fig.3). The correlations between the two datasets seem not satisfactory, in which the lowest value is COR=12% (section P4). That is because the unstable nature of the rip currents makes the measurement data extremely scattered and their vertical variations are not smooth enough to infer the distribution trends clearly as compared to the simulation values. However, the comparisons do show that the simulated velocity profile of the rip currents captures the major distribution trend.

    Additionally, it can be observed that both the measured and the simulated results indicate that in the embayment (P1-P4), the peak seadirected velocities do not occur at the bottom, but at some distance from the bed, say 0.8z/D-0.95z/D. That is because in the surfzone, the undertow also contributes to theflow structure. It could be imposed on the rip currents and make the maximum velocity occur at the top of the bed boundary layer.

    Fig.5Planar distribution of the depth-averaged current velocities for Case B

    The horizontal distributions of the rip currents are extremely complex due to the involvement of many processes e.g. the shoaling, breaking, refraction and diffraction. Under the impact of irregular bathymetry, the wave heights differ in bothxand ydirections while propagating onshore, consequently, residual momentum gradients are formed in each direction.

    The flow field of depth-averaged rip currents for t he normal incident case is illustrated in Fig.5. It shows that pairs of counter-rotating circulation cells occur in each embayment. On the cusp horns, there is an onshore flow which fans out, divides and then feeds into the longshore currents that meet to form seaward rip currents at the embayment troughs. The rip currents are restricted in a relatively narrow zone, and then flow offshore with a large velocity (the maximum depth-averaged velocity of 0.3 m/s). The rip currents reach a short distance offshore in front of the breaking line, and die away at the rip heads. The comparison shows that the distribution of the simulated flow field agrees with that observed in the experiment.

    Fig.6Comparison between the modeled and the measuredwave heights for Case C

    3.3 Oblique incident case

    Figure 6 gives comparisons between the modeled and the observed wave heights for the oblique incident case (Case C). Similar to the normal incidentcase, it isshown that the model can effectively describe the wave propagations with the rms errors in the range of 0.01m-0.02 m, and the correlations in the range of 86%-95%.

    Fig.7 Comparis on between the modeled and the measured current velocities for Case C

    The comparisons with the observed velocities are shown in Fig.7. Unlike the normal incidentcase, in the oblique incident case, both the U andV components are significant, hence, the rms errors and the correlations for each direction are given. It is estimated t hat t he r ms errors are in th e ran ge of 0.01 m /s-0.09m/sforthe U-velocities,andinthe rangeof 0.02 m/s-0.09m/s for theV-velocities. The maximum error occurs at P6, where the model overestimates the velocity magnitude. The correlations for most datasets aresatisfactory, with the worst correlation at P7 (–6% forV-velocity) because the curvature of the measured data is opposite to that in the model. Generally, the simulated velocity profile of the rip currents captures the major distribution trendsfor both the magnitude and the distribution characteristics.

    The flow field of the depth-averaged rip currents for the oblique incident case is illustratedin Fig.8. It is indicated that the nearshore flow pattern is significantly different from that for the normal incident case. Because the incident waves are oblique, the gradientof the alongshore residual momentum contributes most to the nearshore currents. As a result, both the cell-like circulation structure and the rip currents are smoothened due to the strong longshore currents, and the flow is meandering along the bed contours. The maximum depth-averaged velocity is 0.48 m/s. The undertow is weaker compared to that in the normal incident condition. The comparison shows that the distribution of the simulated flow filed also agrees with that observed in the experiment.

    Fig.8planar distribution of the depth-averaged current velocities for Case C.

    To summarize, the flow structure of the rip currents under irregular bathymetry is extremely complex due to the multiple coastal processes and the wavecurrent interactions. All these factors make the laboratory measurements and the simulations very difficult. However, the comparisons with data of differentwave incident cases (normal and oblique) show that the established process-based 3-D numerical model can capture the major characteristics of the rip current field effectively for both the horizontal layout and the vertical profile. Generally, the model could provide someproper hydrodynamic information for further investigation of the morphodynamics in coastal areas.

    4. Conclusions

    (1) Using the process-based 3-D wave-induced current model, the rip current structures under irregular bathymetry were simulated. In the model, many processes including the depth-varying wave residual momentum, the surface rollers, the wave turbulent mixing and the wave-current interactions are considered.

    (2) The comparisons with the laboratory measurement datasets indicate that the model can effectively describe the horizontal distribution and the vertical profile of the rip currents for both normal incident and oblique incident cases.

    (3) The rip currents under irregular bathymetry show various characteristics under different wave incident conditions. For the normal incident case, pairs of counter-rotating circulation cells form, and offshore jet flows occur in the embayment troughs. The undertow contributes to the flow in the embayment and makes the peak seaward velocities occur at the top of the boundary layer. In the oblique incident case, the longshore currents are dominant, which results in a meandering flow along the depth contour, and the unde rtow is weaker compared to that in the normal inciden t condition.

    Acknowledgements

    This work was supported by the Central Public Institute Foundation of Tianjin Research Institute for Water Transport Engineering, Ministry of Transport (Grant No. TKS100102).

    [1] HSU T., JOHN R. C. and WENG W. et al. Wave setup and setdown generated by obliquely incident waves[J]. Coastal Engineering, 2006, 53(10): 865-877.

    [2] WEBER J. E., CHRISTENSEN K. H. and DENAMIEL C. Wave-induced setup of the mean surface over a sloping beach[J]. Continental Shelf Research, 2009, 29(11-12): 1448-1453.

    [3] KURIYAMA Y., ITO Y. and YANAGISHIMA S. Cross-shore variation of long-term average longshore current velocity in the nearshore zone[J]. Continental Shelf Research, 2008, 28(3): 491-502.

    [4] KURIYAMA Y., NAKATSUKASA T. A one-dimensional model for undertow and longshore current on a barred beach[J]. Coastal Engineering, 2000, 40(1): 39- 58.

    [5] REN Chun-ping, ZOU Zhi-li and QIU Da-hong. Experimentalstudy of the instabilities of alongshore currents on plane beaches[J]. Coastal Engineering, 2012, 59(1): 72-89.

    [6] HALLER M. C., DALRYMPLE R. A. and SVENDSEN I. A. Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research, 2002, 107(14): 1-21.

    [7]PENG Shi, ZOU Zhi-li. Experimental measurement of rip currents with video-tracked drifters[J]. Chinese Journal of Hydrodynamics, 2011, 26(6): 645-651(in Chinese).

    [8]BORTHWICK A. G. L., FOOTE Y. L. M. Wave-induced currents at a tri-cuspate beach in the UKCRF[J]. Water and Maritime Engineering, 2002, 154(4): 251-263.

    [9]BAI Zhi-gang, ZHANG Zhi-xian and CHEN Zhi-chun. A Quasi-3D nearshore circulation model applied in ripcurrent research[J]. Port and Waterway Engineering, 2007, (3): 12-17(in Chinese).

    [10]ROGERS B. D., ALISTAIR G. L. and TAYLOR P. H. GODUNOV-type model of wave-induced nearshore currents at a multi-cusped beach in the UKCRF[C]. 28th International Conference of Coastal Engineering, Cardiff, Wales, UK, 2002, 760-771.

    [11] FANG Ke-zhao, ZOU Zhi-li and LIU Zhong-bo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 479-486(in Chinese).

    [12] XIE Ming-xiao. Establishment, validation and discussions of a three dimensional wave-induced current model[J]. Ocean Modelling, 2011, 38(3-4): 230-243.

    [13] LIN Peng-zhi, ZHANG Dan. The depth-dependent radiation stresses and their effect on coastal currents[C]. Proceedings of the 6th International Conference of Hydrodynamics: Hydrodynamics VI Theory and Applications. Perth, Australia, 2004, 247-253.

    [14] HAAS K. A., WARNER J. C. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS[J]. Ocean Modeling, 2009, 26(1-2): 91- 103.

    [15] OEY L. Y. An OGCM with movable land-sea boundaries[J]. Ocean Modelling, 2006, 13(2): 176-195.

    10.1016/S1001-6058(11)60314-4

    * Biography: XIE Ming-xiao (1982-), Male, Ph. D.

    久久97久久精品| 国产在线视频一区二区| 亚洲精品乱码久久久久久按摩| 黑人高潮一二区| 国模一区二区三区四区视频| 99久久人妻综合| 国产毛片在线视频| 亚洲熟女精品中文字幕| 免费观看性生交大片5| 国产 精品1| 日本欧美视频一区| 日韩欧美 国产精品| 久久久成人免费电影| 中国国产av一级| 黄色视频在线播放观看不卡| 国产又色又爽无遮挡免| 亚洲精品,欧美精品| 97超视频在线观看视频| 免费av中文字幕在线| 亚洲色图综合在线观看| 午夜精品国产一区二区电影| 久久久久久久久久久免费av| 久久精品久久久久久噜噜老黄| 人人妻人人添人人爽欧美一区卜 | 亚洲av中文字字幕乱码综合| 亚洲欧美精品自产自拍| 国产精品免费大片| 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| av福利片在线观看| 久久久成人免费电影| 男男h啪啪无遮挡| 欧美日韩亚洲高清精品| 亚洲成色77777| 男女下面进入的视频免费午夜| 人人妻人人添人人爽欧美一区卜 | 午夜福利高清视频| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| kizo精华| 日日啪夜夜撸| 最近中文字幕高清免费大全6| 啦啦啦啦在线视频资源| 黄色一级大片看看| 又大又黄又爽视频免费| 午夜福利影视在线免费观看| 国产色婷婷99| 亚洲精品视频女| 多毛熟女@视频| a 毛片基地| 联通29元200g的流量卡| 午夜福利在线在线| 午夜免费鲁丝| 亚洲精品乱码久久久v下载方式| 国产精品.久久久| 在线观看免费日韩欧美大片 | 国产亚洲欧美精品永久| 国产精品国产三级国产专区5o| 国产又色又爽无遮挡免| 少妇被粗大猛烈的视频| 91精品伊人久久大香线蕉| 精品99又大又爽又粗少妇毛片| 国产在线免费精品| 国产伦精品一区二区三区视频9| 91精品国产国语对白视频| 精品久久久久久久久亚洲| 一级二级三级毛片免费看| a级毛色黄片| 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 一级二级三级毛片免费看| 超碰97精品在线观看| 久久久久久久久久成人| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 亚洲不卡免费看| 久久女婷五月综合色啪小说| 中国三级夫妇交换| 亚洲欧美一区二区三区国产| 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 一级二级三级毛片免费看| 亚洲精品中文字幕在线视频 | 黄色日韩在线| 十分钟在线观看高清视频www | 亚洲精品第二区| 国产成人午夜福利电影在线观看| 3wmmmm亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 一个人免费看片子| 中文天堂在线官网| 少妇裸体淫交视频免费看高清| 国产精品久久久久久久久免| 国产av码专区亚洲av| 免费不卡的大黄色大毛片视频在线观看| 我要看黄色一级片免费的| 国产色婷婷99| 亚洲欧美日韩无卡精品| 精品久久久久久久末码| 一级毛片aaaaaa免费看小| 日韩av在线免费看完整版不卡| 欧美国产精品一级二级三级 | 伦精品一区二区三区| 国产 一区精品| 国精品久久久久久国模美| 久久久久久人妻| 最近中文字幕2019免费版| 亚洲精品色激情综合| 国产淫片久久久久久久久| 赤兔流量卡办理| 国产精品福利在线免费观看| 美女内射精品一级片tv| 国产色婷婷99| 在线观看免费日韩欧美大片 | 偷拍熟女少妇极品色| 男人狂女人下面高潮的视频| 在线天堂最新版资源| 午夜激情久久久久久久| 国产一级毛片在线| 精品熟女少妇av免费看| 舔av片在线| 婷婷色av中文字幕| 国产精品久久久久久久电影| 久久ye,这里只有精品| 性色av一级| 免费大片黄手机在线观看| 久久久久久伊人网av| 女性被躁到高潮视频| av视频免费观看在线观看| 自拍偷自拍亚洲精品老妇| 最近中文字幕高清免费大全6| 直男gayav资源| 免费观看av网站的网址| 久久久久人妻精品一区果冻| 精品99又大又爽又粗少妇毛片| 全区人妻精品视频| 美女xxoo啪啪120秒动态图| 国产精品蜜桃在线观看| 日本-黄色视频高清免费观看| 国产精品免费大片| 婷婷色av中文字幕| 日本黄大片高清| av一本久久久久| 91精品国产九色| av福利片在线观看| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 九九在线视频观看精品| 中国国产av一级| 免费黄网站久久成人精品| 国产有黄有色有爽视频| 一级毛片电影观看| 99热这里只有精品一区| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 亚洲图色成人| 精品人妻偷拍中文字幕| 久久 成人 亚洲| 免费黄频网站在线观看国产| av在线观看视频网站免费| 久久6这里有精品| 精品亚洲成国产av| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频 | 黄色怎么调成土黄色| 亚洲av在线观看美女高潮| 成人毛片60女人毛片免费| 舔av片在线| 国产深夜福利视频在线观看| 国产黄色免费在线视频| 春色校园在线视频观看| 国产在线视频一区二区| 久久久国产一区二区| 欧美3d第一页| 日韩欧美 国产精品| 午夜免费鲁丝| 久久久久久久亚洲中文字幕| 美女主播在线视频| 亚洲国产精品成人久久小说| 亚洲中文av在线| 国产精品一及| 蜜桃亚洲精品一区二区三区| 纵有疾风起免费观看全集完整版| 久久 成人 亚洲| 青春草视频在线免费观看| 国产午夜精品久久久久久一区二区三区| 91精品国产国语对白视频| 国产淫语在线视频| 少妇被粗大猛烈的视频| 51国产日韩欧美| 九草在线视频观看| a级毛片免费高清观看在线播放| 中文字幕亚洲精品专区| 男人舔奶头视频| 99久久综合免费| 秋霞伦理黄片| 亚洲av.av天堂| 亚洲精品第二区| 黄色日韩在线| 久久久久久久精品精品| 小蜜桃在线观看免费完整版高清| 爱豆传媒免费全集在线观看| 蜜桃久久精品国产亚洲av| 在线看a的网站| 综合色丁香网| 免费少妇av软件| 国产一区二区三区av在线| 国产精品久久久久成人av| 日韩成人伦理影院| 亚州av有码| 亚洲精品一区蜜桃| 男的添女的下面高潮视频| 国产成人免费无遮挡视频| 联通29元200g的流量卡| 日韩伦理黄色片| 国产人妻一区二区三区在| 人妻制服诱惑在线中文字幕| 成人影院久久| 国产成人精品一,二区| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 久久亚洲国产成人精品v| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 久久综合国产亚洲精品| 在线观看免费视频网站a站| 精品久久久久久久久亚洲| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花 | 卡戴珊不雅视频在线播放| 国产淫语在线视频| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 亚洲精品亚洲一区二区| 亚洲色图综合在线观看| 亚洲无线观看免费| 久久久精品94久久精品| 精品久久久噜噜| 最黄视频免费看| a 毛片基地| 免费av不卡在线播放| 伦理电影免费视频| 在线观看一区二区三区激情| 精品久久久久久电影网| 午夜精品国产一区二区电影| 亚洲欧美日韩无卡精品| 久久精品国产亚洲网站| 日韩人妻高清精品专区| 色婷婷久久久亚洲欧美| 国产精品一区二区三区四区免费观看| 麻豆国产97在线/欧美| 欧美成人午夜免费资源| 自拍偷自拍亚洲精品老妇| 国产精品熟女久久久久浪| 亚洲中文av在线| 国产精品一区二区在线不卡| 成年女人在线观看亚洲视频| 亚州av有码| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 能在线免费看毛片的网站| 国产毛片在线视频| 国产亚洲最大av| 丝袜喷水一区| 男女下面进入的视频免费午夜| 韩国av在线不卡| 天堂中文最新版在线下载| 少妇猛男粗大的猛烈进出视频| 国产精品人妻久久久久久| 一本色道久久久久久精品综合| 香蕉精品网在线| 边亲边吃奶的免费视频| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 国产视频首页在线观看| 久久婷婷青草| 亚洲成人中文字幕在线播放| 99久久综合免费| 青春草视频在线免费观看| 亚洲精品,欧美精品| 18禁在线无遮挡免费观看视频| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 老女人水多毛片| 美女主播在线视频| 香蕉精品网在线| 国产精品国产三级专区第一集| 男人和女人高潮做爰伦理| 女性生殖器流出的白浆| 免费观看无遮挡的男女| 不卡视频在线观看欧美| 天堂8中文在线网| 国产av一区二区精品久久 | 在线亚洲精品国产二区图片欧美 | 永久免费av网站大全| 国产精品久久久久久av不卡| 黄色配什么色好看| 国产黄片视频在线免费观看| 亚洲在久久综合| 成人影院久久| 久久婷婷青草| 免费久久久久久久精品成人欧美视频 | 国产精品.久久久| 色视频在线一区二区三区| 午夜免费男女啪啪视频观看| 成人特级av手机在线观看| 成人综合一区亚洲| 国产亚洲91精品色在线| 国产成人精品一,二区| 美女国产视频在线观看| 又爽又黄a免费视频| 欧美日韩精品成人综合77777| 99热6这里只有精品| av在线蜜桃| 美女cb高潮喷水在线观看| 欧美最新免费一区二区三区| 午夜福利视频精品| 国产白丝娇喘喷水9色精品| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 日韩强制内射视频| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美一区二区三区黑人 | 男人添女人高潮全过程视频| 国产成人精品婷婷| 成人综合一区亚洲| 国产亚洲欧美精品永久| 亚洲丝袜综合中文字幕| 亚洲自偷自拍三级| 美女中出高潮动态图| 免费不卡的大黄色大毛片视频在线观看| 直男gayav资源| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 黄片wwwwww| 超碰97精品在线观看| av在线观看视频网站免费| 国产中年淑女户外野战色| 午夜福利网站1000一区二区三区| 久久久久精品性色| 久久久久久九九精品二区国产| 国产老妇伦熟女老妇高清| 午夜福利在线观看免费完整高清在| 国产免费一区二区三区四区乱码| 美女脱内裤让男人舔精品视频| 好男人视频免费观看在线| 成人亚洲精品一区在线观看 | 日日摸夜夜添夜夜添av毛片| 在线观看美女被高潮喷水网站| 欧美日本视频| 欧美一区二区亚洲| 欧美激情国产日韩精品一区| av在线播放精品| 不卡视频在线观看欧美| av在线播放精品| 国产一区二区三区综合在线观看 | 制服丝袜香蕉在线| 亚洲欧美中文字幕日韩二区| 亚洲激情五月婷婷啪啪| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 国产视频内射| 亚洲成人中文字幕在线播放| 欧美高清性xxxxhd video| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 久久99热这里只有精品18| 99久久人妻综合| 久久久成人免费电影| 日日啪夜夜爽| 各种免费的搞黄视频| 乱码一卡2卡4卡精品| 中国三级夫妇交换| 免费人成在线观看视频色| 亚洲内射少妇av| 成年女人在线观看亚洲视频| 久久ye,这里只有精品| 国产精品不卡视频一区二区| 日日撸夜夜添| 在线观看一区二区三区激情| 色哟哟·www| av视频免费观看在线观看| 国产亚洲最大av| 少妇的逼水好多| 激情 狠狠 欧美| 97超碰精品成人国产| 欧美性感艳星| 亚洲国产精品999| 少妇裸体淫交视频免费看高清| 亚洲在久久综合| 亚洲欧美日韩卡通动漫| 一个人看的www免费观看视频| 毛片一级片免费看久久久久| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 午夜福利高清视频| 久久99热6这里只有精品| 欧美日韩在线观看h| 晚上一个人看的免费电影| 欧美日韩视频精品一区| 中文字幕免费在线视频6| 日本wwww免费看| 亚洲精品一区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品视频女| 国产视频内射| 在线观看一区二区三区| 新久久久久国产一级毛片| 各种免费的搞黄视频| 美女中出高潮动态图| 丰满乱子伦码专区| 欧美人与善性xxx| 亚洲精品久久午夜乱码| 老司机影院毛片| 我要看黄色一级片免费的| 两个人的视频大全免费| 免费黄色在线免费观看| 国产精品无大码| 亚洲精品国产av蜜桃| 草草在线视频免费看| 亚洲av在线观看美女高潮| 一本—道久久a久久精品蜜桃钙片| 夜夜爽夜夜爽视频| 青春草亚洲视频在线观看| 日韩国内少妇激情av| 女人十人毛片免费观看3o分钟| 免费av不卡在线播放| 久久国内精品自在自线图片| 亚洲精品乱码久久久久久按摩| 韩国高清视频一区二区三区| 男女下面进入的视频免费午夜| 97在线人人人人妻| 一边亲一边摸免费视频| 97超碰精品成人国产| 久久久久久久精品精品| 最近中文字幕2019免费版| 色婷婷久久久亚洲欧美| 亚洲真实伦在线观看| 中文字幕亚洲精品专区| 亚州av有码| 人妻 亚洲 视频| 国产综合精华液| h日本视频在线播放| 婷婷色综合www| 纵有疾风起免费观看全集完整版| 性色av一级| 精品国产三级普通话版| 久久国产精品男人的天堂亚洲 | 伦理电影大哥的女人| 亚洲综合精品二区| 国产乱人视频| 香蕉精品网在线| 七月丁香在线播放| 少妇的逼水好多| 国产黄片视频在线免费观看| av福利片在线观看| 黄色视频在线播放观看不卡| 国产午夜精品久久久久久一区二区三区| 国产91av在线免费观看| 亚洲精品乱久久久久久| kizo精华| 欧美成人a在线观看| 免费观看在线日韩| 在线免费观看不下载黄p国产| 亚洲成人中文字幕在线播放| 国产色爽女视频免费观看| 国产 一区精品| 纯流量卡能插随身wifi吗| 一本—道久久a久久精品蜜桃钙片| 亚洲第一av免费看| 一级二级三级毛片免费看| 网址你懂的国产日韩在线| 在现免费观看毛片| 只有这里有精品99| 伊人久久国产一区二区| 97在线视频观看| 国产在线视频一区二区| 国产亚洲精品久久久com| 国产成人精品久久久久久| 一级黄片播放器| 又大又黄又爽视频免费| 久久精品熟女亚洲av麻豆精品| 青青草视频在线视频观看| .国产精品久久| 五月天丁香电影| 日本与韩国留学比较| av线在线观看网站| 97在线视频观看| www.av在线官网国产| 高清欧美精品videossex| 国产精品国产三级专区第一集| 熟妇人妻不卡中文字幕| 高清av免费在线| 亚洲久久久国产精品| 国产免费一区二区三区四区乱码| 男女啪啪激烈高潮av片| 九九爱精品视频在线观看| 久久久国产一区二区| 亚洲在久久综合| 婷婷色综合www| 免费高清在线观看视频在线观看| 久久精品国产亚洲av天美| 又粗又硬又长又爽又黄的视频| 国产毛片在线视频| 婷婷色综合www| av在线观看视频网站免费| 高清在线视频一区二区三区| 日韩强制内射视频| 久久久久久久久久人人人人人人| 97精品久久久久久久久久精品| 欧美日韩精品成人综合77777| 国产成人精品一,二区| 一级毛片久久久久久久久女| 熟女电影av网| 免费在线观看成人毛片| 久久久久久久久大av| 午夜免费男女啪啪视频观看| 王馨瑶露胸无遮挡在线观看| 国产黄色免费在线视频| 高清在线视频一区二区三区| 久久久久人妻精品一区果冻| 精品国产露脸久久av麻豆| 久久精品国产亚洲网站| 高清日韩中文字幕在线| 国产伦理片在线播放av一区| 日韩免费高清中文字幕av| 一区二区三区精品91| 乱码一卡2卡4卡精品| 成人18禁高潮啪啪吃奶动态图 | 精品亚洲成国产av| 偷拍熟女少妇极品色| 国产精品久久久久久久电影| 妹子高潮喷水视频| 日韩大片免费观看网站| 中文资源天堂在线| 免费观看的影片在线观看| 欧美日韩在线观看h| 在线观看一区二区三区激情| 最近中文字幕高清免费大全6| 国产精品一区二区性色av| 久久久久久久大尺度免费视频| 一边亲一边摸免费视频| 成人免费观看视频高清| 水蜜桃什么品种好| 菩萨蛮人人尽说江南好唐韦庄| 欧美高清成人免费视频www| 亚洲国产最新在线播放| 亚洲欧美精品专区久久| 精品久久久噜噜| 国产av国产精品国产| 国内少妇人妻偷人精品xxx网站| 免费黄网站久久成人精品| 丰满乱子伦码专区| 人体艺术视频欧美日本| 免费看av在线观看网站| 久久久国产一区二区| 少妇高潮的动态图| 亚洲精品第二区| av免费在线看不卡| 亚洲性久久影院| 热99国产精品久久久久久7| 五月伊人婷婷丁香| 久热这里只有精品99| 91精品伊人久久大香线蕉| 亚洲av国产av综合av卡| 国产色爽女视频免费观看| 久久99热这里只频精品6学生| 边亲边吃奶的免费视频| 久久精品国产亚洲av天美| 久久影院123| 夜夜看夜夜爽夜夜摸| 91精品国产九色| 亚洲欧洲日产国产| 最近中文字幕2019免费版| 国产69精品久久久久777片| 黑人高潮一二区| 黄色一级大片看看| 秋霞在线观看毛片| 黑人高潮一二区| 大香蕉久久网| 久久精品国产亚洲网站| 日韩中文字幕视频在线看片 | 免费观看的影片在线观看| 美女主播在线视频| 另类亚洲欧美激情| 一级毛片我不卡| 精品人妻视频免费看| 在线观看免费视频网站a站| 国产免费一区二区三区四区乱码| 街头女战士在线观看网站| 男女无遮挡免费网站观看| 欧美成人a在线观看| 在线观看免费日韩欧美大片 | 国产乱人偷精品视频| 久久人人爽av亚洲精品天堂 | 热99国产精品久久久久久7| 免费人妻精品一区二区三区视频| 内地一区二区视频在线| 黑人高潮一二区| 成人免费观看视频高清| 韩国高清视频一区二区三区| 一边亲一边摸免费视频| 久久久久久久久久人人人人人人| 成人二区视频| 久久久精品94久久精品| 日本免费在线观看一区| 中文字幕制服av| 日本爱情动作片www.在线观看| 成人毛片a级毛片在线播放| 新久久久久国产一级毛片| av国产精品久久久久影院| 婷婷色麻豆天堂久久| 精品久久久噜噜|