• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE HYDRODYNAMIC CHARACTERISTICS OF FREE VARIABLEPITCH VERTICAL AXIS TIDAL TURBINE*

    2012-08-22 08:32:14ZHANGXueweiWANGShuqiWANGFengZHANGLiangSHENGQihu
    水動力學研究與進展 B輯 2012年6期

    ZHANG Xue-wei, WANG Shu-qi, WANG Feng, ZHANG Liang, SHENG Qi-hu

    Institute of Ocean Renewable Energy System, Harbin Engineering University, Harbin 150001, China, E-mail: zhangxuewei@hrbeu.edu.cn

    (Received January 12, 2012, Revised September 6, 2012)

    THE HYDRODYNAMIC CHARACTERISTICS OF FREE VARIABLEPITCH VERTICAL AXIS TIDAL TURBINE*

    ZHANG Xue-wei, WANG Shu-qi, WANG Feng, ZHANG Liang, SHENG Qi-hu

    Institute of Ocean Renewable Energy System, Harbin Engineering University, Harbin 150001, China, E-mail: zhangxuewei@hrbeu.edu.cn

    (Received January 12, 2012, Revised September 6, 2012)

    The hydrodynamic characteristics of free variable-pitch vertical axis tidal turbine are investigated by combining experimental and numerical simulations. The variations of hydrodynamics are obtained based on testing the kinematics and the dynamics of the turbine under different flow and structural conditions. Through analyzing the movement of the turbine and the characteristics of the flow field by numerical simulations, it is shown how the turbine’s performance is improved.

    tidal current energy, vertical axis, variable-pitch turbine, hydrodynamic characteristics, experiments

    Introduction

    Due to the global climate change and the energy crisis, the clean renewable tidal current energy with high energy density and good predictability has attracted an increasing attention. The vertical axis tidal turbine is one of the core components of the tidal current energy generation system due to its simple structure, the easiness to realize, and the indifference to the flow direction. The hydrodynamics of the turbine would directly influence the energy utilization capability, the manufacture cost, and the service life.

    The vertical axis turbine can be classified into the fixed-pitch turbine and the variable-pitch turbine according to the motion style of its blades. The fixedpitch turbine has a simple structure and performs well in low solidity. Extensive researches[1-9]were carried out of its hydrodynamic characteristics under different speed ratios, solidities, pitch angles, and other factors. However, the tidal flow speed is too low generally for a fixed-pitch turbine to self-start, so the flow speed limitation is an issue. Thus the free variable-pitch turbine attracts more and more attention for its excellent self-starting capacity and simple construction. Thefree variable-pitch turbine is characterized by the free swing of its blades within the limit angle and without a special control mechanism. The blades start rotating due to the hydrodynamic and inertia forces. The hydrodynamics of the turbine, however, have not yet been paid enough research attention due to the complex motion of the blades and the interaction of the flow between the blades and the turbine structure, which would generate complex vortex shedding. Hwang et al.[10]and Sun et al.[11]applied commercial software to analyze the hydrodynamics of the cycloid variable-pitch turbine and the spring variable-pitch turbine, respectively, Salvatore et al.[12,13]and Coiro et al.[14]applied the vortex method and the double multiple streamtube method, respectively, to study the hydrodynamics of the free variable-pitch turbine, and the effects of the limit angle and the speed ratio on its performance, but without any discussion on the mechanism.

    Above all, in order to optimize the design of the free variable-pitch tidal turbine to achieve a maximum efficiency and to avoid system failure caused by fatigue or overloading, its hydrodynamics should be further studied. This paper makes the investigation by combining experimental and numerical simulation methods. On the one hand, the hydrodynamics and loads related with the free variable-pitch vertical axis tidal turbine are realized by adjusting the turbine structure parameters and the parameters of the flow field experimentally, and the experimental results can alsobe used to verify the numerical simulation. On the other hand, the intrinsic mechanisms to improve the turbine’s performance can be revealed according to the monitored flow details, where the numerical simulation may play an important role. All the results would provide technical support for the design of the turbine.

    Fig.1 Schematic diagram of free variable-pitch tidal turbine

    1. Kinematic and dynamic characteristics of free variable-pitch tidal turbine

    The hydrodynamic analysis of a free variablepitch vertical axis turbine involves issues of multibody fluid-solid coupling. On the one hand, every blade is in both rotation and revolution states, which causes a coupled motion between blades. On the other hand, the blade structural motion is coupled with its hydrodynamic behavior. Figure 1 illustrates a schematic diagram of the operation of a straight blade free variable-pitch tidal turbine (consisting of spindle, spoke and blades).

    For simplicity, it can be treated as a two-dimensional problem in the analysis, and the following forces or torques act on the unit length of blades. The blades drive the turbine to rotate around the centerO with angular velocityω and radius R under the tangential forceFτand the normal force Fncomes from the flow rate V, andθ is the azimuth of a blade relative to center O. Meanwhile, every blade also rotates around its own axis O1under the hydrodynamic and inertial forces.φ is the pitch angle which is between the chord of the blade and the tangent of the track circle of the turbine. The pitch angle plays a significant role in the hydrodynamic performance of the turbine.

    2. Experimental analysis of free variable-pitch tidal turbine

    A series of experiments for the free variablepitch vertical axis tidal turbine were carried out on the model test platform for the vertical axis turbine in the water circulating tunnel of Harbin Engineering University in order to study the hydrodynamic characteristics of the turbine systemically, and also to verify the numerical simulation. The work section is 8 m× 1.7 m×1.5 m in dimenssions, with 0.2 m/s to 1.5 m/s in velocity. The main parameters of the turbine are shown in Table 1, and the model is also used in the numerical simulation. The arrangement of the model test platform is shown in Fig.2 and on the platform from right to left are the transmission shaft, the gear, the sensors, the generator and the brake motor. The velocity is measured by the ADCP Nortek AquadoppTM, the torque and the angular velocity are measured by the torque-speed sensor JN338, the azimuth of the turbine is measured by the photoelectric sensor E3F-DS10C4, and the generator output voltage and current are measured by the Hall sensors CHV-50p and CHB–25.

    Compared with the fixed-pitch turbine, the free variable-pitch turbine enjoys an obvious advantage with respect to the self-starting performance. Figure 3 shows the variation of the angular velocity in the starting process of the free variable-pitch turbine. When the incoming flow rate increases to the starting speed of the turbine (131 s-135 s), the turbine is in the critical starting condition. The turbine angular velocity is fluctuating with a high frequency when the hydrodynamic torque is close to the variable starting damping torque. With the flow rate increasing and tending to a more stable state (135 s-137 s), the angular velocity increases quickly since the hydrodynamic torque becomes larger than the damping torque. During this period, the angular velocity fluctuates greatly because the torque of blades is varying with the azimuth. When the flow rate reaches the stable value finally (after 138 s), the angular velocity become gradually stable at the runaway speed, which is an average speed because the hydrodynamic torque and the damping torque are in a dynamic balance.

    Another advantage of the free variable-pitch tidal turbine is that the hydrodynamic performance in a low speed ratio condition can be improved by changing the range of the limit angle, thus the power performance and the structural performance of the turbine can be improved. Figure 4 shows the experimental results of the energy utilization capability vs. the speed ratio in three different limit angles. It can be seen that the energy utilization capability can be improved significantly by adjusting the limit angle. Figure 5 shows the experimental results of the turbine shaft thrust against the azimuth in the same speed ratio but with different limit angles. It can be seen that the instantaneous value and the average value are different when the limit angles are different, thus the vibration can be attenuated, and the structural performance of the turbine can be improved if the range of limit angles is selected reasonably.

    Table 1 Main parameters of the turbine

    Fig.2 Vertical axis turbine model test platform

    Fig.3 Self-starting process of the free variable-pitch tidal turbine

    Fig.4 Energy utilization capability vs. speed ratio

    3. Numerical simulation of free variable-pitch tidal turbine

    As a supplement to the experiment, numerical simulations were carried out. For such multi-body fluid-solid coupling, the fluid dynamics equations and the structural dynamics equations have to be solved jointly.

    Fig.5 Shaft thrust vs. the azimuth

    3.1 Governing equations

    3.1.1 Fluid dynamics equation

    Because the turbine angular velocity and the flow field velocity are relatively small, the compressibility effect is not considered. For viscous incompressible fluid, the continuity equation and the momentum equation can be used to describe the conservation law of the fluid:

    where uiis the speed in i direction,P is the field pressure, fiis the unit mass force, ν is the fluid viscosity coefficient. As the attack angle of blades varies in a large range during the operation process, the SST turbulence model is suitable for such a separation flow, the high precision QUICK format is used for the discretization, and the SIMPLE algorithm is used for the pressure velocity coupling. The steady state is calculated firstly, and then the results are used as the initialization conditions for the unsteady solver.

    3.1.2 Structural dynamics equations

    For simplicity, the effects of spoke are neglected. Since the elastic deformation is small and the turbine stiffness is large, the elastic force is ignored, and the friction is also ignored for a good bearing lubrication. Equation (3) is the torque balance equation of the turbine relative to point O (see Fig.1). There are two states of the blades in the operation of the free varia-ble-pitch vertical axis tidal turbine. On the one hand, when the blades reach a limit angle, they stop rotating relative to point O1(see Fig.1), so the blade motion equations are not needed. On the other hand, the blades would rotate by inertia and hydrodynamic forces when the blades would not reach the bounds. Based on the D’Alembert principle, Eq.(4) is the torque balance equation of the turbine relative to point.

    is the total hydrodynamic torque on the turbine (n is the blade number, Miis the torque on blade i relative to point O), Mlis the load torque, Mkis the control torque, Mgis the turbine inertia torque. F and M are the inertia force and the torque on the blades, L is the distance from the blade mass center to the blade shaft. Mwis the hydrodynamic torque relative to point O1. The equation setup process and the parameter solution can be found in Ref.[15].

    Fig.6 Blade tangential force vs. the azimuth

    3.2 Numerical method and validation

    In order to simplify the multi-body coupling problem and improve the computational efficiency, this paper adopts the multi-region sliding mesh method[11]and the explicit decoupling formulation. First of all, based on the blade hydrodynamics at time t, Eq.(3) is solved, to get the turbine revolution parameter at time t+Δt , and then based on the turbine hydrodynamics at time t, the blade rotation parameter at t+Δtis obtained by solving Eq.(4). As the elastic deformation is small, the weak coupling method is adopted for the above fluid-structure problem, namely, the fluid dynamic equations are solved first, and then the structure dynamics equation is solved, alternatively in each time step.

    Figure 6 shows the comparison of the blade tangential force coefficient Cτagainst the azimuth in the rotation coordinate between the experiment results and the numerical simulation results. Cτ=Fτ/ (0.5ρV2Cb), where C is the chord length, andb is the span length. Good agreement indicates that the numerical method in this paper is valid.

    3.3 Results and discussions

    In order to reveal how the free variable-pitch vertical axis tidal turbine improves the performance, a series of numerical simulations were carried out.

    Fig.7 Flow field velocity contours near blade

    Figure 7 shows the velocity contours of one blade in the vertical axis tidal turbine in different azimuths. It can be seen that the flow field changes significantly in the blade rotation process, and the attack angle changes with it, especially when the blade is in the third quadrant, the attack angle of blade is larger and the flow separation easily happens. From this observation, the turbine performance will be improved if the attack angle can be adjusted in the rotation process. The attack angle should be enough high and avoid a serious stall.

    Fig.8 Blade attack angle vs. the azimuth

    Figure 8 shows the attack angle of one blade inthe free variable-pitch vertical axis tidal turbine against the azimuth in the same speed ratio but with different limit angles. It can be seen that with different limit angles, the variations of the rotation and the stay positions of the blade are different, and the attack angle changes. So the tangential force on the blades (Fig.9) and the performance of the turbine can be improved if the limit angle is selected reasonably.

    Fig.9 Blade tangential force vs. the azimuth

    Fig.10 Blade wake of the turbine

    The turbine performance is also related to the interference generated by the blade crossing trailing vortex. Figure 10 shows the interference between the blades and the trailing vortex in a certain speed ratio. The interference becomes severe when the blades move to the downstream disk and its effect can be seen in two lights. On the one hand, the interference results in the fluctuation of the hydrodynamic force on the blade which aggravates the fatigue and decreases the structural strength of the blades; on the other hand, the flow rate induced by the trailing vortex is in the opposite direction to the incoming flow rate, thus the power performance of the turbine is reduced. Both the separate position and the spread velocity of the trailing vortex are different for the free variable-pitch tidal turbine with different limit angles.

    Figure 11 shows the wake flow field for the free variable-pitch vertical axis tidal turbine induced by the upstream blades against the azimuth in the same speed ratio but different limit angles. It can be seen that the velocity field changes significantly for the downstream blades. So if the limit angle can decrease the interference, the wake flow field effect can be improved, so as to improve the performance of the turbine.

    Fig.11 Comparison of velocity magnitude of wake flow field between different limit angles

    4. Conclusions

    The hydrodynamic characteristics of the free variable-pitch tidal turbine are investigated by combining experiments and numerical simulations, and the following results are obtained.

    (1) The free variable-pitch tidal turbine has a good self-starting capacity.

    (2) The power performance and the structural performance of the free variable-pitch tidal turbine can be improved by adjusting the range of the limit angle.

    (3) The optimization of the attack angle of the rotating blades and the decrease of the interference between the blades and the vortex are the main factors in the improvement of the performance of the free variable-pitch tidal turbine.

    [1] CONSUL C. A., WILLDEN R. H. J. and FERRER E. et al. Influence of solidity on the performance of a cross-flow turbine[C]. 8th European Wave and Tidal Energy Conference. Uppsala, Sweden, 2009.

    [2] LAIN S., OSORIO C. Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine[J]. Journal of Scientific and Industrial Research, 2010, 69: 906-912.

    [3] LI Sheng-mao, LI Yan. Numerical study on the performance effects of solidity on the straight-bladed vertical axes wind turbine[C]. Asia-Pacific Power and Energy Engineering Conference. Chengdu, China, 2010.

    [4] KIRKE B. K., LAZAUSKAS L. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch[J]. Renevable Energy, 2011, 36(3): 893-897.

    [5] PARASCHIVOIU I. Wind turbine design with emphasis on Darrieus concept[M]. Montreal, Canada: Polytechnic International Press, 2002.

    [6] KHAN M. J., IQBAL M. T. and QUAICOE J. E. Design considerations of a straight bladed darrieus rotor for river current turbines[C]. IEEE International Symposium on Industrial Electronics. Montreal, Canada, 2006.

    [7] CASTELLI M. R., BENINI E. Effect of blade inclination angle on a darrieus wind turbine[J]. Journal of Turbomachinery, 2012, 134(3): 031016.

    [8] WANG Ji-feng, PIECHNA J. and MULLER N. A novel design of composite water turbine using CFD[J]. Journal of Hydrodynamics, 2012, 24(1): 11-16.

    [9] DAI Y. M., LAM W. Numerical study of straight-blade darrieus-type tidal turbine[J]. Proceedings of the Institution of Civil Engineers Energy, 2009, 162(2): 67-76.

    [10] HWANG S., LEE Y. H. and KIM S. J. Optimization of cycloidal water turbine and the performance improvement by individual blade control[J]. Applied Energy, 2009, 86(9): 1532-1540.

    [11] SUN Ke, ZHANG Liang and LIAO Kang-ping. Sliding meshes model: Applications to the vertical-axis straightblade hydroturbine[J]. Journal of Harbin Engineering University, 2006, 27(Suppl. 2): 341-345(in Chinese).

    [12] SALVATORE F., GRECO L. and CALCAGNO G. et al. A theoretical and computational methodology to study vertical-axis turbine hydrodynamics[C]. Offshore Wind and Other Marine Renewable Energy In Mediterranean and European Seas. Civitavecchia, Italy, 2006.

    [13] CALCAGNO G., SALVATORE F. and GRECO L. et al. Experimental and numerical investigation of an innovative technology for marine current exploitation: The kobold turbine[C]. Proceedings of the Sixteenth International Offshore and Polar Engineering Conference. San Francisco, USA, 2006.

    [14] COIRO D. P., NICOLOSI F. and De MARCO A. et al. Dynamic behavior of a patented KOBOLD tidal current turbine: Numerical and experimental aspects[J]. Acta Polythecnica International Journal, 2005, 45(4): 77-84.

    [15] ZHANG Xue-wei. Numerical simulation on the hydrodynamics of the vertical axis tidal turbine[R]. Postdoctor Report, Harbin: Harbin Engineer University, 2010(in Chinese).

    10.1016/S1001-6058(11)60310-7

    * Project supported by the National Natural Science Foundation of China (Grant No. 51106034), the Marine Renewable Energy Special Foundation (Grant No. ZJME2010CY01).

    Biography: ZHANG Xue-wei (1979-), Male, Ph. D.

    69人妻影院| 国产私拍福利视频在线观看| 美女黄网站色视频| 亚洲av熟女| 久久久久性生活片| 国产激情偷乱视频一区二区| 国产一区二区三区视频了| 婷婷六月久久综合丁香| 亚洲国产精品成人综合色| 又爽又黄无遮挡网站| 精品久久久久久久人妻蜜臀av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 国产av不卡久久| 久久久久九九精品影院| 亚洲av电影不卡..在线观看| 欧美绝顶高潮抽搐喷水| 午夜影院日韩av| 久久精品影院6| 男人的好看免费观看在线视频| 欧洲精品卡2卡3卡4卡5卡区| 天天一区二区日本电影三级| 美女免费视频网站| 男女之事视频高清在线观看| 欧美中文日本在线观看视频| 国产伦一二天堂av在线观看| 日本与韩国留学比较| 十八禁网站免费在线| 久久久久九九精品影院| 九色国产91popny在线| 久久国产精品影院| 精品人妻1区二区| 亚洲精品粉嫩美女一区| 午夜免费激情av| www.熟女人妻精品国产| 亚洲专区国产一区二区| 美女免费视频网站| 18禁美女被吸乳视频| 99久久精品国产亚洲精品| a级一级毛片免费在线观看| 欧美三级亚洲精品| 国产成年人精品一区二区| 中国美女看黄片| 日本三级黄在线观看| 手机成人av网站| 91av网一区二区| 精品久久久久久久毛片微露脸| 女警被强在线播放| 国产欧美日韩精品一区二区| 国产午夜福利久久久久久| 丰满人妻一区二区三区视频av | 夜夜爽天天搞| 国产精华一区二区三区| 亚洲国产精品成人综合色| 99精品久久久久人妻精品| 亚洲av二区三区四区| 亚洲在线观看片| 日韩欧美免费精品| 叶爱在线成人免费视频播放| 欧美性猛交╳xxx乱大交人| 极品教师在线免费播放| 1024手机看黄色片| 给我免费播放毛片高清在线观看| 亚洲av免费高清在线观看| 精品久久久久久久末码| 午夜精品在线福利| 中文亚洲av片在线观看爽| 99久久久亚洲精品蜜臀av| 国产视频一区二区在线看| 欧美不卡视频在线免费观看| 久久这里只有精品中国| 欧美成人a在线观看| 亚洲av电影不卡..在线观看| 国产精品永久免费网站| avwww免费| 免费在线观看影片大全网站| 亚洲午夜理论影院| 国产又黄又爽又无遮挡在线| 蜜桃亚洲精品一区二区三区| 99久久综合精品五月天人人| 亚洲欧美精品综合久久99| 日韩亚洲欧美综合| 亚洲精华国产精华精| 亚洲最大成人手机在线| 国产精品女同一区二区软件 | 两性午夜刺激爽爽歪歪视频在线观看| 岛国在线观看网站| 3wmmmm亚洲av在线观看| 男女视频在线观看网站免费| 最新美女视频免费是黄的| 久久精品91蜜桃| 国产成年人精品一区二区| 精品一区二区三区视频在线 | 露出奶头的视频| 少妇人妻精品综合一区二区 | 日本熟妇午夜| 精品国产三级普通话版| 国产精华一区二区三区| 国产欧美日韩精品一区二区| 国产三级在线视频| 观看美女的网站| 色综合欧美亚洲国产小说| 激情在线观看视频在线高清| 宅男免费午夜| 久久久国产成人免费| 真人做人爱边吃奶动态| 亚洲欧美日韩无卡精品| 亚洲精品影视一区二区三区av| 尤物成人国产欧美一区二区三区| 精品一区二区三区视频在线观看免费| 国产三级黄色录像| 国产69精品久久久久777片| www日本在线高清视频| avwww免费| 高清毛片免费观看视频网站| 啦啦啦韩国在线观看视频| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 丰满的人妻完整版| av女优亚洲男人天堂| 久久久久久久久中文| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 99热精品在线国产| 色在线成人网| 久久天躁狠狠躁夜夜2o2o| 国产高清三级在线| 亚洲精品在线观看二区| 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 日韩免费av在线播放| 国内毛片毛片毛片毛片毛片| 成人18禁在线播放| 每晚都被弄得嗷嗷叫到高潮| 女生性感内裤真人,穿戴方法视频| 无人区码免费观看不卡| 欧美最黄视频在线播放免费| 日韩欧美国产一区二区入口| 一夜夜www| 成人18禁在线播放| 精品人妻偷拍中文字幕| 日本a在线网址| 99久久成人亚洲精品观看| 亚洲 欧美 日韩 在线 免费| 舔av片在线| 熟女少妇亚洲综合色aaa.| 中文亚洲av片在线观看爽| 国产精品三级大全| 精品午夜福利视频在线观看一区| 一区二区三区激情视频| 淫秽高清视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久香蕉精品热| 久久精品综合一区二区三区| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| or卡值多少钱| 国产精品 欧美亚洲| 两个人的视频大全免费| 香蕉丝袜av| 法律面前人人平等表现在哪些方面| 成年女人看的毛片在线观看| 黄色视频,在线免费观看| 老司机午夜十八禁免费视频| 成人鲁丝片一二三区免费| 婷婷六月久久综合丁香| 国产精品影院久久| 亚洲国产欧美人成| 禁无遮挡网站| 免费观看的影片在线观看| 亚洲一区高清亚洲精品| 在线播放无遮挡| 午夜福利在线在线| 露出奶头的视频| 一进一出抽搐动态| 99热精品在线国产| 国产一区二区三区视频了| 宅男免费午夜| 久久精品91无色码中文字幕| 精品日产1卡2卡| 精品一区二区三区av网在线观看| 亚洲av五月六月丁香网| 日韩中文字幕欧美一区二区| 国产真实伦视频高清在线观看 | 婷婷丁香在线五月| 亚洲av不卡在线观看| 日韩欧美国产在线观看| 中文亚洲av片在线观看爽| 免费高清视频大片| bbb黄色大片| 99久久成人亚洲精品观看| 国产毛片a区久久久久| 神马国产精品三级电影在线观看| 欧美午夜高清在线| 在线观看午夜福利视频| 国产精品一区二区免费欧美| 日韩欧美 国产精品| 哪里可以看免费的av片| 少妇人妻精品综合一区二区 | 国产私拍福利视频在线观看| 丝袜美腿在线中文| 亚洲av不卡在线观看| 国产精品1区2区在线观看.| 欧美bdsm另类| 性色av乱码一区二区三区2| 少妇的丰满在线观看| 欧美高清成人免费视频www| ponron亚洲| 久久精品国产清高在天天线| 久久亚洲真实| 99久久综合精品五月天人人| 亚洲成av人片在线播放无| 三级国产精品欧美在线观看| 九九久久精品国产亚洲av麻豆| 久久香蕉国产精品| 午夜精品在线福利| 黄色丝袜av网址大全| 成人国产综合亚洲| 欧美日本亚洲视频在线播放| 波多野结衣高清作品| 午夜免费激情av| 亚洲精品乱码久久久v下载方式 | 90打野战视频偷拍视频| 精品欧美国产一区二区三| 国产精品 欧美亚洲| 免费看光身美女| 国产乱人视频| 亚洲精品美女久久久久99蜜臀| 亚洲精品影视一区二区三区av| xxxwww97欧美| 成人一区二区视频在线观看| 成人国产综合亚洲| 婷婷精品国产亚洲av在线| 俄罗斯特黄特色一大片| 午夜免费激情av| 午夜免费男女啪啪视频观看 | 欧美日韩乱码在线| 欧美成人免费av一区二区三区| 亚洲国产高清在线一区二区三| 久久久久久久久久黄片| 亚洲国产色片| a级一级毛片免费在线观看| 大型黄色视频在线免费观看| 成年女人永久免费观看视频| 国产麻豆成人av免费视频| 亚洲一区二区三区不卡视频| 亚洲成人精品中文字幕电影| 岛国在线免费视频观看| 亚洲第一电影网av| 中文亚洲av片在线观看爽| 一二三四社区在线视频社区8| 午夜老司机福利剧场| 两个人看的免费小视频| 免费在线观看影片大全网站| 国产一区二区激情短视频| 男人和女人高潮做爰伦理| 最近最新中文字幕大全电影3| 午夜福利在线观看免费完整高清在 | 国内精品久久久久久久电影| 怎么达到女性高潮| 91久久精品电影网| 少妇的逼好多水| 禁无遮挡网站| 一级毛片女人18水好多| 91久久精品电影网| a级毛片a级免费在线| 国产成人欧美在线观看| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 国产成人a区在线观看| 精品国产亚洲在线| 亚洲熟妇熟女久久| 两个人视频免费观看高清| 欧美一级毛片孕妇| 一区二区三区国产精品乱码| 午夜两性在线视频| 欧美一区二区国产精品久久精品| 免费看日本二区| 日本黄色视频三级网站网址| 欧美性猛交黑人性爽| 国产久久久一区二区三区| 小说图片视频综合网站| 欧美日韩中文字幕国产精品一区二区三区| 老司机福利观看| 在线观看免费视频日本深夜| 亚洲,欧美精品.| 最新在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 婷婷亚洲欧美| 最新中文字幕久久久久| 51国产日韩欧美| 最新美女视频免费是黄的| 国产精品一区二区三区四区免费观看 | 很黄的视频免费| 最新美女视频免费是黄的| 岛国在线观看网站| 欧美又色又爽又黄视频| 亚洲18禁久久av| 99久久无色码亚洲精品果冻| 97超级碰碰碰精品色视频在线观看| 淫妇啪啪啪对白视频| 精品国产超薄肉色丝袜足j| 亚洲无线在线观看| 久久久久久久久中文| 女同久久另类99精品国产91| 18禁国产床啪视频网站| 别揉我奶头~嗯~啊~动态视频| 窝窝影院91人妻| 日韩免费av在线播放| 国产精品精品国产色婷婷| 国产v大片淫在线免费观看| 女同久久另类99精品国产91| 国内毛片毛片毛片毛片毛片| 国产aⅴ精品一区二区三区波| 夜夜看夜夜爽夜夜摸| 国产成人福利小说| 亚洲成av人片免费观看| 久久久久久久亚洲中文字幕 | 国产视频一区二区在线看| 美女黄网站色视频| 在线观看日韩欧美| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件 | 黄片小视频在线播放| tocl精华| 精品国内亚洲2022精品成人| 国产精品99久久99久久久不卡| 日本五十路高清| 成年女人永久免费观看视频| 国内精品久久久久久久电影| 在线观看舔阴道视频| 午夜福利18| 老鸭窝网址在线观看| 最近最新中文字幕大全电影3| 国语自产精品视频在线第100页| 久久久成人免费电影| 18美女黄网站色大片免费观看| 国内久久婷婷六月综合欲色啪| 一个人看的www免费观看视频| 最好的美女福利视频网| 免费看美女性在线毛片视频| 最新在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 一级a爱片免费观看的视频| 一区二区三区免费毛片| 国产aⅴ精品一区二区三区波| 国产99白浆流出| 偷拍熟女少妇极品色| 久久久久精品国产欧美久久久| 午夜福利在线在线| www.www免费av| 91在线观看av| 99久久精品热视频| 亚洲国产色片| 免费无遮挡裸体视频| 久久香蕉国产精品| 校园春色视频在线观看| 久久香蕉精品热| 国产av不卡久久| 欧美日韩福利视频一区二区| 啦啦啦观看免费观看视频高清| 夜夜看夜夜爽夜夜摸| 亚洲熟妇熟女久久| 国内精品久久久久久久电影| 国产探花极品一区二区| 久久精品国产亚洲av香蕉五月| 日韩av在线大香蕉| 国产精品 欧美亚洲| 一进一出抽搐gif免费好疼| or卡值多少钱| 女人被狂操c到高潮| 在线播放无遮挡| 中文字幕人成人乱码亚洲影| 国产真实乱freesex| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av香蕉五月| 精品久久久久久久末码| 久久久久精品国产欧美久久久| 国产老妇女一区| 亚洲av成人av| 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 亚洲,欧美精品.| 免费在线观看成人毛片| 亚洲av二区三区四区| 欧美性猛交黑人性爽| 亚洲第一电影网av| 1000部很黄的大片| 午夜亚洲福利在线播放| 亚洲在线观看片| 久久精品91蜜桃| 亚洲精品色激情综合| 久99久视频精品免费| 99久久九九国产精品国产免费| 欧美日韩瑟瑟在线播放| 亚洲熟妇熟女久久| 亚洲av不卡在线观看| 精品电影一区二区在线| 亚洲av熟女| 天堂网av新在线| av天堂在线播放| 免费人成视频x8x8入口观看| 国产 一区 欧美 日韩| 欧美一区二区精品小视频在线| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看日本一区| 一级a爱片免费观看的视频| 麻豆成人午夜福利视频| 少妇高潮的动态图| 国产一区二区在线av高清观看| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 香蕉丝袜av| 99精品在免费线老司机午夜| 日韩欧美精品v在线| 国产精华一区二区三区| 岛国在线观看网站| 欧美一区二区国产精品久久精品| 亚洲欧美精品综合久久99| 国产午夜福利久久久久久| 午夜激情欧美在线| 亚洲专区国产一区二区| 最近最新中文字幕大全免费视频| 少妇熟女aⅴ在线视频| 亚洲内射少妇av| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻偷拍中文字幕| 夜夜爽天天搞| a级一级毛片免费在线观看| 亚洲国产精品sss在线观看| 中文字幕精品亚洲无线码一区| 亚洲 欧美 日韩 在线 免费| 成人午夜高清在线视频| 波多野结衣巨乳人妻| 美女免费视频网站| 高清毛片免费观看视频网站| 国产激情偷乱视频一区二区| 欧美在线黄色| 午夜免费激情av| 亚洲国产欧美网| 男女下面进入的视频免费午夜| 毛片女人毛片| 99精品在免费线老司机午夜| 国产亚洲精品久久久久久毛片| 国产一区二区三区在线臀色熟女| 亚洲天堂国产精品一区在线| 国产成人系列免费观看| 老司机午夜十八禁免费视频| 亚洲av二区三区四区| 一个人免费在线观看的高清视频| 久久久久精品国产欧美久久久| 亚洲精品一区av在线观看| 成人无遮挡网站| 国产伦在线观看视频一区| 亚洲av成人av| 国产精品亚洲av一区麻豆| 国产毛片a区久久久久| 综合色av麻豆| 最新在线观看一区二区三区| 午夜福利在线观看免费完整高清在 | or卡值多少钱| 制服人妻中文乱码| 日韩精品青青久久久久久| 黄片大片在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 色综合站精品国产| 亚洲人成网站高清观看| 啦啦啦免费观看视频1| 国产美女午夜福利| 免费av不卡在线播放| 乱人视频在线观看| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩 | 国产成人av激情在线播放| 国产主播在线观看一区二区| 一级黄片播放器| 精品电影一区二区在线| 久久午夜亚洲精品久久| 黄色成人免费大全| 乱人视频在线观看| 国产成人av激情在线播放| 国产一区在线观看成人免费| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 男女床上黄色一级片免费看| 久久伊人香网站| 婷婷精品国产亚洲av在线| 亚洲成av人片免费观看| 悠悠久久av| 久99久视频精品免费| 亚洲专区中文字幕在线| 俺也久久电影网| 网址你懂的国产日韩在线| 最近最新中文字幕大全免费视频| 午夜免费男女啪啪视频观看 | 亚洲内射少妇av| 黄色丝袜av网址大全| 国产一区二区在线观看日韩 | 麻豆一二三区av精品| 热99在线观看视频| 操出白浆在线播放| 99视频精品全部免费 在线| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 日韩欧美三级三区| 午夜久久久久精精品| 97人妻精品一区二区三区麻豆| 在线免费观看不下载黄p国产 | 欧美色视频一区免费| 日本黄色视频三级网站网址| 岛国在线免费视频观看| 人人妻人人看人人澡| 香蕉av资源在线| 蜜桃亚洲精品一区二区三区| 成人国产一区最新在线观看| 亚洲av免费高清在线观看| 国产乱人伦免费视频| 18禁美女被吸乳视频| 久久精品国产综合久久久| 亚洲国产欧美人成| 久久久久久久亚洲中文字幕 | 热99在线观看视频| 99久国产av精品| 国产精品影院久久| 亚洲成av人片免费观看| 欧美区成人在线视频| 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 亚洲av第一区精品v没综合| 熟妇人妻久久中文字幕3abv| 国产一区二区在线av高清观看| 国产精品野战在线观看| 19禁男女啪啪无遮挡网站| 色尼玛亚洲综合影院| 草草在线视频免费看| 日韩欧美在线二视频| 日韩欧美精品v在线| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 国内精品久久久久久久电影| 日本免费一区二区三区高清不卡| 久久九九热精品免费| 亚洲国产高清在线一区二区三| 十八禁人妻一区二区| 亚洲色图av天堂| 国产精品久久久久久人妻精品电影| 99国产精品一区二区三区| 色综合站精品国产| 日日摸夜夜添夜夜添小说| 99在线人妻在线中文字幕| 丁香六月欧美| 午夜免费观看网址| 国产高清videossex| 男女下面进入的视频免费午夜| 亚洲人成网站在线播| 国产真实伦视频高清在线观看 | 国产一区在线观看成人免费| 十八禁网站免费在线| 亚洲在线观看片| 亚洲av成人av| 午夜视频国产福利| 久久精品影院6| 国产色婷婷99| 亚洲av免费在线观看| 高潮久久久久久久久久久不卡| 亚洲av免费在线观看| 男女那种视频在线观看| 国产成人福利小说| 成人永久免费在线观看视频| 精品免费久久久久久久清纯| 成人永久免费在线观看视频| 最近视频中文字幕2019在线8| 天天一区二区日本电影三级| 色精品久久人妻99蜜桃| 精品国产亚洲在线| 亚洲人成电影免费在线| 日韩人妻高清精品专区| 久99久视频精品免费| 女人高潮潮喷娇喘18禁视频| 色尼玛亚洲综合影院| 日韩欧美三级三区| 窝窝影院91人妻| 久久久精品欧美日韩精品| 成人精品一区二区免费| 免费看美女性在线毛片视频| 亚洲欧美日韩东京热| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 久久久久九九精品影院| 成人av一区二区三区在线看| 中文字幕精品亚洲无线码一区| av天堂在线播放| 国产视频内射| 亚洲成人精品中文字幕电影| 99久国产av精品| 国产蜜桃级精品一区二区三区| 观看免费一级毛片| 深夜精品福利| 免费观看精品视频网站| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 琪琪午夜伦伦电影理论片6080| 日日摸夜夜添夜夜添小说| 淫秽高清视频在线观看| 亚洲午夜理论影院| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 欧美性猛交黑人性爽| 韩国av一区二区三区四区| 深爱激情五月婷婷| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合|