• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical solutions for two nonlinear wave equations

    2012-08-11 15:03:21YifengZHANGRuijieLI
    Water Science and Engineering 2012年4期

    Yi-feng ZHANG*, Rui-jie LI

    1. School of Civil Engineering, Tianjin University, Tianjin 300072, P. R. China

    2. Tianjin Research Institute for Water Transport Engineering of Ministry of Transport, Tianjin 300456, P. R. China

    3. Key Laboratory of Coastal Disaster and Defence of Ministry of Education, Hohai University, Nanjing 210098, P. R. China

    Numerical solutions for two nonlinear wave equations

    Yi-feng ZHANG*1,2, Rui-jie LI3

    1. School of Civil Engineering, Tianjin University, Tianjin 300072, P. R. China

    2. Tianjin Research Institute for Water Transport Engineering of Ministry of Transport, Tianjin 300456, P. R. China

    3. Key Laboratory of Coastal Disaster and Defence of Ministry of Education, Hohai University, Nanjing 210098, P. R. China

    The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is modified at its second step by avoiding transforming the wave height function into a frequency domain function. Thus, the periodic boundary condition is not required, and the new method is easy to implement. In order to validate its performance, the proposed method was used to solve the nonlinear parabolic mild-slope equation and the spatial modified nonlinear Schr?dinger (MNLS) equation, which were used to model the wave propagation under different bathymetric conditions. Good agreement between the numerical and experimental results shows that the present method is effective and efficient in solving nonlinear wave equations.

    nonlinear water wave equation; parabolic mild-slope equation; spatial MNLS equation; numerical method

    1 Introduction

    Equations for water wave propagation in natural situations always present strong nonlinear features, making their numerical solutions considerably complicated and time-consuming.

    The nonlinear parabolic mild-slope equation was derived by Kirby and Dalrymple (1983) using a multiple-scale perturbation method. In their study, the connection between the derived linearized version of the nonlinear mild-slope equation and a previous one was investigated. The equation was solved using the Crank-Nicolson finite difference method in the complex domain. This method can be used to predict wave propagation under moderately varying topographic conditions. Lin et al. (1998) and Tang et al. (2011) studied the numerical method to solve the same nonlinear equation. The iterative process was employed to deal with the nonlinear terms. This treatment increases the computational difficulty in different processes. The modified nonlinear Schr?dinger (MNLS) equation was obtained by Dysthe (1979). Lo andMei (1987) proposed a split-step pseudo-spectral method to solve the MNLS equation. This method was later used by Trulsen and Stansberg (2001) for solving the spatial MNLS equation. By solving this equation under the periodic boundary condition, Canney and Carter (2007) studied the instability of wave trains; Onorato et al. (2001) and Zhang et al. (2007a, 2007b) simulated deep-water wave evolution. Their studies showed that the split-step pseudo-spectral method was capable of improving the numerical stability and accuracy without using the iterative process. However, the periodic boundary condition was required at the second computational step of the discrete Fourier transform (DFT), which limited the practical application of the above-mentioned method.

    Various studies have been carried out by researchers to improve numerical methods for solving nonlinear wave equations. This paper aims to modify the split-step pseudo-spectral method by eliminating the DFT process. The periodic boundary condition is no longer required, and the new method is expected to be easier to implement. To test its ability, the modified method was applied to solving the nonlinear parabolic mild-slope equation and spatial MNLS equation. The modified nonlinear dispersion relationship proposed by Li et al. (2003) was further used to process the solution to the nonlinear parabolic mild-slope equation. Wave propagations over elliptical topography (Berkhoff et al. 1982) and submerged circular shoal topography were simulated. Additionally, Keller’s wave flume experiment and the envelope solitary wave propagation that are governed by the spatial MNLS equation were also simulated.

    2 Modification of split-step pseudo-spectral method

    The split-step pseudo-spectral method proposed by Lo and Mei (1987) was used to solve the MNLS equation. The MNLS equation at each spatial step can be written by summing the linear and nonlinear terms:

    where D is a complex function, x is the horizontal coordinate, and L and N are the linear and nonlinear operators, respectively.

    Eq. (1) can be split into a linear equation and a nonlinear equation. At each spatial step, both equations are solved independently. The solution of the previous step is used as the initial condition for the next step. The first step is to solve the nonlinear terms:

    whereΔx is the step size in the x direction. The second step is to apply the above solution to the linear terms using DFT, and then the complex function D(x +Δx ) can be obtained:

    where Fand F?1are DFT and inverse DFT, respectively;; and P is determined by F(L (D ))= PF(D).

    As the DFT function must be periodic, the periodic boundary condition should be satisfied in water wave simulation. However, it is difficult to adjust boundaries to be periodic ones in some cases. Therefore, it is impossible to simulate the water wave using the pseudo-spectral method with split steps under such conditions. To eliminate this limitation, the second step was modified by the finite difference method:

    In this modified step, the calculation is not limited by the periodic boundary. Using the nonlinear term, the condition of Δx < Ο(( Δ y)2) should be satisfied to keep the numerical method stable, where Ο ( ( Δ y )2) is the second-order infinitesimal function of the step size in the y direction.

    3 Nonlinear parabolic mild-slope equation

    The extended nonlinear parabolic mild-slope equation derived by Kirby and Dalrymple (1983) using a multiple-scale perturbation method is expressed as

    where A is the complex harmonic amplitude of wave surface elevation; k is the wave number; c is the wave velocity, and c kω= , where ω is the angular frequency;gc is the velocity of wave groups, andgc kω=? ?;0kis the carrier wave number; andand h is the water depth.

    Following the modified nonlinear dispersion relation proposed by Li et al. (2003), the angular frequency is expressed as

    where p = tanh (k h); q =kh sinh (kh); ε is the wave steepness, and ε= kA; and g is the gravitational acceleration.

    3.1 Numerical implementation

    3.1.1 Difference scheme

    Eq. (6) can be written in the following linear and nonlinear forms:

    Using the central difference scheme to discretize the nonlinear terms, Eq. (8) becomes

    where m (1 ≤ m ≤ M) and j (1 ≤ j ≤ J) are the grid serial numbers in the x and y directions, respectively, and M and J are the number of grid points in the x and y directions. The linear terms are discretized using the forward difference scheme:

    3.1.2 Initial conditions

    The incoming wave boundary condition at 0x= is

    where0A is the initial amplitude of water waves.

    3.1.3 Boundary conditions

    At the lateral boundary for y= 0 and y = JΔy , the total reflection boundary condition is?A ?y= 0, which approximately follows (Kirby and Dalrymple 1983):

    3.2 Numerical results

    3.2.1 Simulation of elliptical topography

    The elliptical topography and the cross-sections used in the model test conducted by Berkhoff et al. (1982) are shown in Fig. 1, where the data are the water depth and the serial number of the experimental cross-sections. The topography consisted of an elliptic shoal on a sloping-plane bottom with a slope of 1:50. The plane slope rose from a region at a constant depth of 0.45 m, and the entire slope was turned at an angle of 20o to a straight wave paddle. In the model test, the incoming wave propagated along the x direction, and its amplitude0A was 0.023 2 m. Hsu et al. (2008) and Zhao et al. (2009) simulated the wave propagation over this topography using other wave equations. In this study, the wave propagation was simulated with the model of the nonlinear parabolic mild-slope equation, described above. Fig. 2 showsthat the numerical results are in good agreement with the experimental data.

    Fig. 1Topography and experimental cross-sections

    Fig. 2Verification of results at cross-sections 1 through 8

    3.2.2 Simulation of submerged circular shoal topography

    The case of a submerged circular shoal on the bottom, which was first studied by Radder (1979), is used herein to test the applicability of the present method to solving the nonlinear parabolic mild-slope equation. Case 1 in Radder (1979) is used, with

    where R is the shoal radius,0L is the incident wavelength,0H is the water depth outside the circular shoal, and1H is the water depth at the center of the circular shoal. The water depth h is given by

    where r2=(x ?14)2+(y?10)2, and e0= (H0? H1) R2. The topography and cross-section layout are shown in Fig. 3. The incoming wave is along the x direction.

    Fig. 3Topography and experimental cross-sections

    The comparison of the present results and those of Kirby and Dalrymple (1983) at the central section is shown in Fig. 4(a). The calculated results agree with Kirby and Dalrymple’s in the range in front of and near the circular shoal. After passing through the shoal, the values are under-predicted by the present method, but the tendencies of the two results are consistent. Figs. 4(b) through 4(e) show that the calculated results agree with those of Kirby and Dalrymple at other cross sections.

    Fig. 4Comparisons of calculated results and Kirby and Dalrymple’s results at sections 1 through 5

    4 Spatial MNLS equation

    The spatial MNLS equation derived by Dysthe (1979) using the perturbation method is expressed as

    where t is time,φ is the averaged velocity potential, B is the complex amplitude of water waves, and B*is the complex conjugation of B.

    4.1 Numerical implementation

    Eq. (17) can be split into linear and nonlinear equations:

    The central difference scheme is used to discretize the nonlinear term:

    where m and n are the grid serial numbers in the x and y directions, respectively.

    Using the forward difference scheme, the linear term can be transformed into

    4.2 Numerical result

    4.2.1 Simulation of Keller’s wave flume experiment

    Keller (1982) experimented with periodic wave groups. The periodic wave groups were combined with two component waves. In the experiment, eight measuring points were arranged along the water trough. The frequencies of the two periodic waves were 1.406 Hz and 1.563 Hz, respectively, and the frequency of the carrier wave was set as 1.485 Hz, which was the average value of those two periodic waves. The corresponding wave number was k = 8.865 m?1. The amplitude of two periodic waves was 0.013 m, which was half of that of the carrier wave. The calculated water surface elevations η varying with time at different measuring points were compared with the experimental data, as shown in Fig. 5, where x is the distance from the measuring point to the wave maker. The horizontal axis shows a non-dimensional value of tεω π. It is clear that the numerical results are in good agreement with the experimental data.

    4.2.2 Simulation of envelope solitary wave propagation

    In order to study the invariable feature of the solitary wave in deep water, the envelope-soliton solution (Scott et al. 1973) was taken as the initial wave packet condition. It is expressed as follows:

    In this calculation, the wave number k of the carrier wave is 4 m–1, the scale factor λ is 0.25, and the wave steepness ε is 0.1. Fig. 6 shows the calculated results of the propagation of solitary waves with different values of kx, which are 0, 10, 20, 30, 40, and 50. It is shown that the waveform almost remains constant. The results confirm that the waveform of solitary waves propagating in deep water is invariable, and the present method reproduces this feature.

    Fig. 5Comparisons of calculated results and experimental data of water surface elevation at different measuring points

    Fig. 6Wave profiles of envelope solitary waves

    5 Conclusions

    The split-step pseudo-spectral method was modified at its second step by avoiding transforming the wave height function into a frequency domain function. Using the modified method, the periodic boundary condition is no longer necessary. The nonlinear wavepropagations over Berkhoff’s elliptical topography, over the submerged circular shoal topography, and in Keller wave flume, as well as the propagation of envelope solitary waves were simulated with the modified method. The numerical results are in agreement with the experimental data. Therefore, the numerical method can be used to solve the nonlinear wave problem in nearshore and deep-water areas.

    Overall, the numerical method of nonlinear water wave equations is feasible. With this method, the nonlinear terms can be solved without adopting iterative processes, and the method is proved to be very useful and easy to implement. It could be used in other nonlinear wave equations in the future.

    Berkhoff, J. C. W., Booij, N., and Radder, A. C. 1982. Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Engineering, 6(3), 255-279. [doi:10.1016/0378-3839(82) 90022-9]

    Canney, N. E., and Carter, J. D. 2007. Stability of plane waves on deep water with dissipation. Mathematics and Computers in Simulation, 74(2-3), 159-167. [doi:10.1016/j.matcom.2006.10.010]

    Dysthe, K. B. 1979. Note on a modification to the nonlinear Schr?edinger equations for application to deep water waves. Proceedings of the Royal Society of London, Series A: Mathematical Physical and Engineering Sciences, 369(1736), 105-114. [doi:10.1098/rspa.1979.0154]

    Hsu, T. W., Chang, J. Y., Lan, Y. J., Lai, J. W., and Ou, S. H. 2008. A parabolic equation for wave propagation over porous structures. Coastal Engineering, 55(12), 1148-1158. [doi:10.1016/j.coastaleng.2008.05.004]

    Keller, J. B. 1982. Experiments on Nonlinear Wave Interaction. California: Stanford University.

    Kirby, J. T., and Dalrymple, R. A. 1983. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly varying topography. Journal of Fluid Mechanics, 136(1), 453-466. [doi:10.1017/ S0022112083002232]

    Li, R. J., Yan, Y. X., and Cao, H. S. 2003. Nonlinear dispersion relation in wave transformation. China Ocean Engineering, 17(1), 117-122.

    Lin, G., Qiu, D. H., and Zou, Z. L. 1998. Numerical simulation of parabolic mild-slope equations. Journal of Dalian University of Technology, 38(3), 328-331. (in Chinese)

    Lo, E., and Mei, C. C. 1987. Slow evolution of nonlinear deep water waves in two horizontal directions: A numerical study. Wave Motion, 9(3), 245-259. [doi:10.1016/0165-2125(87)90014-X]

    Onorato, M., Osborne, A. R. Serio, M., and Bertone, S. 2001. Freak waves in random oceanic sea states. Physical Review Letters, 86(25), 5831-5834. [doi:10.1103/PhysRevLett.86.5831]

    Radder, A. C. 1979. On the parabolic equation method for water-wave propagation. Journal of Fluid Mechanics, 95, 159-176. [doi:10.1017/S0022112079001397]

    Scott, A. C., Chu, F. Y. F., and Mclaughlin, D. W. 1973. The soliton: A new concept in applied science. Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) International Conference, 61(10), 1443-1483. [doi:10.1109/PROC.1973.9296]

    Tang, J., Shen, Y. M., and Cui, L. 2011. Modeling coastal water wave propagation in vegetation field based on parabolic mild slope equation. Acta Oceanologica Sinica, 33(1), 8-11. (in Chinese)

    Trulsen, K., and Stansberg, C. T. 2001. Spatial evolution of water surface waves: Numerical simulation and experiment of bichromatic waves. Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference. Stavanger: The International Society of Offshore and Polar Engineers.

    Zhang, Y. Q., Zhang, N. C., and Hu, J. P. 2007a. Numerical simulation and mechanism analysis of freak waves. Acta Oceanologica Sinica, 26(5), 16-124.

    Zhang, Y. Q., Zhang, N. C., and Pei, Y. G. 2007b. Numerical simulation of freak waves based on the four-order nonlinear Schr?dinger equation. China Ocean Engineering, 21(2), 207-214.

    Zhao, H. J., Song, Z. Y., Xu, F. M., and Li, R. J. 2009. A time-dependent numerical model of the extended mild-slope equation. Journal of Hydrodynamics, Ser. A, 24(4), 503-511. (in Chinese) (Edited by Ye SHI)

    This work was supported by the Central Public-Interest Scientific Institution Basal Research Fund of China (Grant No. TKS100108).

    *Corresponding author (e-mail: haizhongniao@163.com)

    Received Feb. 14, 2012; accepted Sep. 6, 2012

    日韩成人av中文字幕在线观看| 丝瓜视频免费看黄片| 人妻一区二区av| 亚洲av日韩在线播放| av片东京热男人的天堂| 午夜福利视频精品| 九九爱精品视频在线观看| 欧美激情国产日韩精品一区| 免费高清在线观看视频在线观看| 狂野欧美激情性xxxx在线观看| 人妻人人澡人人爽人人| 新久久久久国产一级毛片| 欧美激情极品国产一区二区三区 | 毛片一级片免费看久久久久| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 亚洲av中文av极速乱| 国产亚洲欧美精品永久| 下体分泌物呈黄色| 男女无遮挡免费网站观看| 久久人妻熟女aⅴ| 亚洲av男天堂| 女性被躁到高潮视频| 在线观看人妻少妇| 欧美日韩综合久久久久久| 久久精品久久久久久噜噜老黄| xxxhd国产人妻xxx| 亚洲美女搞黄在线观看| 99精国产麻豆久久婷婷| 亚洲国产精品专区欧美| 夜夜骑夜夜射夜夜干| 伊人久久国产一区二区| 99国产综合亚洲精品| 草草在线视频免费看| 久久久久久久精品精品| 中文字幕亚洲精品专区| 国产精品一区二区在线观看99| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| 三上悠亚av全集在线观看| 国产探花极品一区二区| 又大又黄又爽视频免费| 国语对白做爰xxxⅹ性视频网站| 久久精品国产鲁丝片午夜精品| 亚洲中文av在线| 99香蕉大伊视频| 91在线精品国自产拍蜜月| 婷婷成人精品国产| 90打野战视频偷拍视频| 日韩三级伦理在线观看| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 亚洲成人av在线免费| 精品一区二区三区四区五区乱码 | 久久亚洲国产成人精品v| 视频在线观看一区二区三区| 天美传媒精品一区二区| 久久精品国产亚洲av天美| 国产免费现黄频在线看| 草草在线视频免费看| 丝袜美足系列| 日韩视频在线欧美| 一级片免费观看大全| 久久久国产一区二区| 国产片特级美女逼逼视频| 欧美97在线视频| 你懂的网址亚洲精品在线观看| 女人精品久久久久毛片| 欧美国产精品va在线观看不卡| 一个人免费看片子| 一级,二级,三级黄色视频| 一级片'在线观看视频| 久久久久网色| 亚洲,欧美精品.| 只有这里有精品99| 黄色怎么调成土黄色| 丝袜在线中文字幕| 99re6热这里在线精品视频| 国产精品成人在线| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 日韩成人伦理影院| 日本与韩国留学比较| 视频中文字幕在线观看| 男人舔女人的私密视频| 你懂的网址亚洲精品在线观看| 日韩大片免费观看网站| 国产亚洲精品久久久com| 国产精品久久久av美女十八| 18在线观看网站| 亚洲情色 制服丝袜| 国产69精品久久久久777片| 精品熟女少妇av免费看| 黑人猛操日本美女一级片| 久久人人爽人人片av| 中国美白少妇内射xxxbb| 香蕉国产在线看| 久久97久久精品| 自线自在国产av| 久久国产精品大桥未久av| 我的女老师完整版在线观看| 99久国产av精品国产电影| 亚洲国产看品久久| 国产精品无大码| 国产成人免费无遮挡视频| 欧美 日韩 精品 国产| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| 欧美日韩国产mv在线观看视频| av在线老鸭窝| 黄片无遮挡物在线观看| 午夜老司机福利剧场| 国产xxxxx性猛交| 男女啪啪激烈高潮av片| 天堂8中文在线网| 久久久久久人人人人人| 亚洲第一区二区三区不卡| 一边亲一边摸免费视频| 麻豆精品久久久久久蜜桃| 深夜精品福利| 又大又黄又爽视频免费| 国产精品一区www在线观看| 亚洲精华国产精华液的使用体验| 草草在线视频免费看| 一本大道久久a久久精品| 成年女人在线观看亚洲视频| 国产精品一国产av| 婷婷色综合www| 亚洲国产看品久久| 26uuu在线亚洲综合色| 成人无遮挡网站| 国产又爽黄色视频| 日本色播在线视频| 欧美国产精品va在线观看不卡| 精品视频人人做人人爽| 欧美人与性动交α欧美精品济南到 | 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx在线观看| 亚洲欧美一区二区三区国产| 国产精品.久久久| 美女国产视频在线观看| 熟女人妻精品中文字幕| 亚洲经典国产精华液单| 91久久精品国产一区二区三区| 亚洲国产欧美日韩在线播放| 国产福利在线免费观看视频| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 天天操日日干夜夜撸| 青春草亚洲视频在线观看| 国产成人欧美| 国产高清不卡午夜福利| 国产男女内射视频| 九九爱精品视频在线观看| 日本-黄色视频高清免费观看| 国产成人精品婷婷| 少妇熟女欧美另类| 亚洲中文av在线| 黑人高潮一二区| 99热6这里只有精品| 国产在线免费精品| 亚洲内射少妇av| 激情视频va一区二区三区| 看免费成人av毛片| 色哟哟·www| 亚洲国产成人一精品久久久| 国产福利在线免费观看视频| 亚洲 欧美一区二区三区| 亚洲av在线观看美女高潮| 国产免费一级a男人的天堂| 中文字幕最新亚洲高清| 一个人免费看片子| 亚洲精品,欧美精品| 国产免费视频播放在线视频| 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 一二三四在线观看免费中文在 | 国产精品三级大全| av线在线观看网站| 国产极品天堂在线| 99久久精品国产国产毛片| 免费看不卡的av| 久久精品久久久久久噜噜老黄| 色婷婷久久久亚洲欧美| 国产欧美亚洲国产| 伦理电影免费视频| 少妇精品久久久久久久| 免费观看a级毛片全部| 国产在视频线精品| 成年人免费黄色播放视频| 99久久中文字幕三级久久日本| 99热6这里只有精品| 欧美最新免费一区二区三区| 天堂8中文在线网| 91成人精品电影| 丝袜人妻中文字幕| 中文字幕精品免费在线观看视频 | 18禁在线无遮挡免费观看视频| 一区二区日韩欧美中文字幕 | 国产亚洲一区二区精品| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 精品亚洲成国产av| 久久精品国产自在天天线| 精品一区二区三区视频在线| 黑丝袜美女国产一区| av天堂久久9| 97在线人人人人妻| 日本午夜av视频| 免费日韩欧美在线观看| videosex国产| 国产高清国产精品国产三级| 国产日韩欧美在线精品| 日韩制服骚丝袜av| 丝袜在线中文字幕| 2022亚洲国产成人精品| 免费日韩欧美在线观看| 女人久久www免费人成看片| 免费久久久久久久精品成人欧美视频 | 在线精品无人区一区二区三| 国产精品三级大全| 免费黄频网站在线观看国产| 久久精品国产自在天天线| a 毛片基地| 欧美最新免费一区二区三区| 日本av手机在线免费观看| 亚洲三级黄色毛片| 亚洲国产av新网站| 黄色 视频免费看| 边亲边吃奶的免费视频| 午夜91福利影院| 久久亚洲国产成人精品v| 各种免费的搞黄视频| 国产一级毛片在线| 亚洲精品乱码久久久久久按摩| 热re99久久国产66热| 亚洲欧美成人精品一区二区| 2018国产大陆天天弄谢| 精品亚洲成a人片在线观看| 街头女战士在线观看网站| 亚洲欧美清纯卡通| videosex国产| av国产精品久久久久影院| 人妻 亚洲 视频| 亚洲国产av新网站| 亚洲第一av免费看| 又大又黄又爽视频免费| 国产无遮挡羞羞视频在线观看| 国产免费福利视频在线观看| 成人无遮挡网站| 久久久久久久久久成人| 男女国产视频网站| 久久婷婷青草| 日韩三级伦理在线观看| 新久久久久国产一级毛片| 制服诱惑二区| 99热这里只有是精品在线观看| 制服丝袜香蕉在线| 一本久久精品| 国产成人精品在线电影| 久久精品久久精品一区二区三区| 午夜福利,免费看| 大片电影免费在线观看免费| 一个人免费看片子| 美女国产视频在线观看| 丝瓜视频免费看黄片| 国产精品成人在线| 99热全是精品| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 亚洲成av片中文字幕在线观看 | 久久久久久久精品精品| 午夜福利,免费看| 亚洲内射少妇av| 精品人妻一区二区三区麻豆| 只有这里有精品99| 亚洲五月色婷婷综合| 肉色欧美久久久久久久蜜桃| 成人无遮挡网站| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 高清在线视频一区二区三区| 日韩中字成人| 韩国高清视频一区二区三区| 免费高清在线观看视频在线观看| 亚洲欧美日韩另类电影网站| 亚洲精品乱码久久久久久按摩| 国内精品宾馆在线| 你懂的网址亚洲精品在线观看| 免费观看无遮挡的男女| 免费大片黄手机在线观看| 亚洲欧洲精品一区二区精品久久久 | 激情五月婷婷亚洲| 在线观看免费视频网站a站| 99热网站在线观看| 亚洲伊人色综图| 国产熟女午夜一区二区三区| 成人二区视频| 欧美日韩视频精品一区| 99热这里只有是精品在线观看| 欧美精品人与动牲交sv欧美| a 毛片基地| 天堂中文最新版在线下载| 国产综合精华液| 久久久久久人妻| 亚洲精品日韩在线中文字幕| 欧美人与性动交α欧美软件 | 免费大片18禁| 亚洲,欧美精品.| 97在线视频观看| 巨乳人妻的诱惑在线观看| 菩萨蛮人人尽说江南好唐韦庄| 女人被躁到高潮嗷嗷叫费观| 如日韩欧美国产精品一区二区三区| 黄色视频在线播放观看不卡| 精品人妻偷拍中文字幕| av女优亚洲男人天堂| 全区人妻精品视频| 亚洲精品国产av成人精品| av有码第一页| av卡一久久| 不卡视频在线观看欧美| 久久久久久久精品精品| 久久鲁丝午夜福利片| 中国国产av一级| 午夜福利乱码中文字幕| 亚洲内射少妇av| 免费少妇av软件| 99久久中文字幕三级久久日本| 丝瓜视频免费看黄片| 欧美bdsm另类| 日韩制服丝袜自拍偷拍| 中文欧美无线码| 少妇 在线观看| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页| a级毛片在线看网站| 亚洲精品日本国产第一区| 日本免费在线观看一区| 国产亚洲精品久久久com| 美女脱内裤让男人舔精品视频| 丝袜美足系列| 人体艺术视频欧美日本| 最近手机中文字幕大全| 亚洲av电影在线进入| 91精品伊人久久大香线蕉| 免费大片黄手机在线观看| 久久久久久久精品精品| 精品酒店卫生间| 亚洲欧美日韩卡通动漫| 精品酒店卫生间| 亚洲精品av麻豆狂野| 99re6热这里在线精品视频| 黑人欧美特级aaaaaa片| 欧美+日韩+精品| 免费大片18禁| 看免费成人av毛片| 亚洲成人手机| 黑丝袜美女国产一区| 美女内射精品一级片tv| 一级毛片黄色毛片免费观看视频| 亚洲av免费高清在线观看| 天堂中文最新版在线下载| 春色校园在线视频观看| 国产成人精品无人区| 久久国内精品自在自线图片| 制服丝袜香蕉在线| 黄色视频在线播放观看不卡| 这个男人来自地球电影免费观看 | 日本欧美国产在线视频| 男的添女的下面高潮视频| a 毛片基地| 国产精品 国内视频| 九色亚洲精品在线播放| 蜜臀久久99精品久久宅男| 99热全是精品| 亚洲色图 男人天堂 中文字幕 | a级毛片在线看网站| 最近2019中文字幕mv第一页| 只有这里有精品99| 欧美日韩亚洲高清精品| 亚洲av成人精品一二三区| 高清毛片免费看| 一区二区av电影网| videos熟女内射| 一本—道久久a久久精品蜜桃钙片| 老女人水多毛片| 一本色道久久久久久精品综合| 国产深夜福利视频在线观看| av免费在线看不卡| 国产淫语在线视频| 亚洲精品国产色婷婷电影| 考比视频在线观看| 青青草视频在线视频观看| 久久精品国产亚洲av涩爱| 国产av国产精品国产| 日韩熟女老妇一区二区性免费视频| 热re99久久国产66热| 99精国产麻豆久久婷婷| 久久久久网色| 这个男人来自地球电影免费观看 | 人妻少妇偷人精品九色| 丝袜人妻中文字幕| 亚洲国产欧美日韩在线播放| 精品一区二区三区四区五区乱码 | av福利片在线| 亚洲国产精品国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频在线欧美| 狂野欧美激情性xxxx在线观看| 亚洲性久久影院| 一区二区三区四区激情视频| 久久国产精品大桥未久av| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 水蜜桃什么品种好| 如日韩欧美国产精品一区二区三区| 18禁动态无遮挡网站| 久久精品久久久久久噜噜老黄| 亚洲伊人色综图| 久久久久视频综合| 欧美变态另类bdsm刘玥| xxxhd国产人妻xxx| 精品国产一区二区三区久久久樱花| 2021少妇久久久久久久久久久| 满18在线观看网站| 麻豆精品久久久久久蜜桃| 哪个播放器可以免费观看大片| 久久久久久人妻| 毛片一级片免费看久久久久| 久久人妻熟女aⅴ| a 毛片基地| av在线观看视频网站免费| 亚洲精品第二区| 午夜av观看不卡| 在线亚洲精品国产二区图片欧美| 亚洲一级一片aⅴ在线观看| 久久狼人影院| 两个人看的免费小视频| 大香蕉久久网| 热99国产精品久久久久久7| 日韩一本色道免费dvd| 欧美丝袜亚洲另类| 国产一区二区在线观看av| 一级爰片在线观看| 国产视频首页在线观看| 日本黄色日本黄色录像| 亚洲精品国产av成人精品| 纵有疾风起免费观看全集完整版| 天堂俺去俺来也www色官网| 最黄视频免费看| 九九爱精品视频在线观看| 爱豆传媒免费全集在线观看| 亚洲欧美色中文字幕在线| 国产激情久久老熟女| 亚洲,欧美精品.| 国产成人免费无遮挡视频| 欧美日韩一区二区视频在线观看视频在线| 国产 精品1| 国产一区二区三区av在线| 国产深夜福利视频在线观看| 少妇的逼好多水| 久久av网站| 91精品国产国语对白视频| 熟女电影av网| 亚洲欧美一区二区三区国产| 哪个播放器可以免费观看大片| 高清在线视频一区二区三区| 夫妻午夜视频| 九草在线视频观看| 国产精品嫩草影院av在线观看| 最新的欧美精品一区二区| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区 | 夜夜骑夜夜射夜夜干| 国产精品 国内视频| 婷婷成人精品国产| 日韩大片免费观看网站| 蜜桃在线观看..| 一区二区三区四区激情视频| 成年美女黄网站色视频大全免费| 麻豆精品久久久久久蜜桃| 人人妻人人澡人人看| 亚洲第一av免费看| 人人澡人人妻人| 亚洲成人av在线免费| 国产成人aa在线观看| av免费观看日本| 免费黄频网站在线观看国产| 中国国产av一级| 亚洲经典国产精华液单| 午夜激情av网站| 观看av在线不卡| 亚洲欧美色中文字幕在线| 中文字幕最新亚洲高清| 波野结衣二区三区在线| 亚洲欧美中文字幕日韩二区| 日韩中字成人| 精品国产一区二区三区四区第35| 国产综合精华液| 九九在线视频观看精品| 97精品久久久久久久久久精品| 日韩伦理黄色片| 精品国产一区二区三区四区第35| 久久久久久久精品精品| 欧美xxⅹ黑人| 亚洲精品456在线播放app| 我的女老师完整版在线观看| 熟女av电影| 丰满少妇做爰视频| 2022亚洲国产成人精品| 十八禁高潮呻吟视频| 黑人猛操日本美女一级片| av有码第一页| 97人妻天天添夜夜摸| 看非洲黑人一级黄片| 精品一区二区三卡| 国精品久久久久久国模美| 满18在线观看网站| 女的被弄到高潮叫床怎么办| 亚洲国产欧美在线一区| 亚洲精品美女久久久久99蜜臀 | 亚洲一区二区三区欧美精品| 九九爱精品视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲国产日韩一区二区| 老司机影院成人| 午夜av观看不卡| 午夜影院在线不卡| 久久99热这里只频精品6学生| 人体艺术视频欧美日本| 国产精品一二三区在线看| 色婷婷av一区二区三区视频| 国产精品人妻久久久久久| 9191精品国产免费久久| 日产精品乱码卡一卡2卡三| 国产乱人偷精品视频| 国产亚洲最大av| 成人亚洲精品一区在线观看| 狂野欧美激情性bbbbbb| 亚洲av成人精品一二三区| 考比视频在线观看| 午夜免费鲁丝| 久久久国产精品麻豆| 国语对白做爰xxxⅹ性视频网站| 肉色欧美久久久久久久蜜桃| 国产老妇伦熟女老妇高清| 亚洲av中文av极速乱| 国产成人欧美| 搡女人真爽免费视频火全软件| 日本91视频免费播放| 九色成人免费人妻av| 亚洲人成网站在线观看播放| 一级a做视频免费观看| 熟女av电影| 亚洲精品av麻豆狂野| 波野结衣二区三区在线| 中文字幕精品免费在线观看视频 | 精品人妻一区二区三区麻豆| 久久影院123| 免费观看在线日韩| 丝袜在线中文字幕| 日本猛色少妇xxxxx猛交久久| 伦理电影大哥的女人| 国产成人aa在线观看| 亚洲国产精品专区欧美| 国产毛片在线视频| www日本在线高清视频| 观看av在线不卡| 成年动漫av网址| 18禁在线无遮挡免费观看视频| freevideosex欧美| 少妇精品久久久久久久| 久久97久久精品| 天天躁夜夜躁狠狠久久av| 乱人伦中国视频| 9色porny在线观看| 国产免费一级a男人的天堂| 久久久久久人妻| 伦理电影免费视频| 熟女电影av网| 飞空精品影院首页| 欧美国产精品一级二级三级| 美女脱内裤让男人舔精品视频| 另类精品久久| 高清av免费在线| 久久久国产精品麻豆| 一级黄片播放器| 女人精品久久久久毛片| 亚洲国产精品999| 大香蕉97超碰在线| 最新中文字幕久久久久| 蜜桃在线观看..| 热99国产精品久久久久久7| 又大又黄又爽视频免费| 蜜桃在线观看..| 久久国内精品自在自线图片| 美女主播在线视频| 一区二区日韩欧美中文字幕 | 亚洲国产日韩一区二区| 51国产日韩欧美| 女人精品久久久久毛片| 日本黄色日本黄色录像| 少妇 在线观看| 一区二区av电影网| 国产精品人妻久久久久久| 2021少妇久久久久久久久久久| 26uuu在线亚洲综合色| 免费看不卡的av| 色婷婷久久久亚洲欧美| 亚洲国产av影院在线观看| 亚洲欧美成人精品一区二区| 99久久综合免费|