• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa

    2012-08-11 15:03:26LiYANGHirotoMAEDATakeshiYOSHIKAWAGuiqinZHOU
    Water Science and Engineering 2012年4期

    Li YANG*, Hiroto MAEDA, Takeshi YOSHIKAWA, Gui-qin ZHOU

    1. College of Environment, Hohai University, Nanjing 210098, P. R. China

    2. College of Environment, Nanjing University of Technology, Nanjing 210009, P. R. China

    3. Laboratory of Microbiology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan

    Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa

    Li YANG*1,2, Hiroto MAEDA3, Takeshi YOSHIKAWA3, Gui-qin ZHOU2

    1. College of Environment, Hohai University, Nanjing 210098, P. R. China

    2. College of Environment, Nanjing University of Technology, Nanjing 210009, P. R. China

    3. Laboratory of Microbiology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan

    The aim of this study was to isolate algicidal bacteria so as to control harmful cyanobacterium Microcystis aeruginosa (M. aeruginosa) blooms using biological methods. Nine bacterial strains were isolated to inhibit the growth of M. aeruginosa, among which the MaI11-5 bacterial strain exhibited remarkable algicidal activity against M. aeruginosa cells during the test. Based on the 16S rDNA analysis, the isolated MaI11-5 was identified as Pedobacter sp. through morphology and homology research. The results of cocultivation of the cyanobacteria with MaI11-5 algicidal isolates showed obvious algicidal activity against cyanobacterial cells. The algicidal effect of MaI11-5 exceeded 50% after two days, exceeded 70% after four days, and reached 80% after seven days. The observation results with a scanning electron microscope showed that the cyanobacterial cells aggregated and produced mucous-like substances when cocultivated with the algicidal bacteria. The results indicated that the MaI11-5 bacterial strain may possess a novel function for controlling harmful blooms and further studies will provide new insights into its role in water environment.

    algicidal bacteria; Pedobacter sp.; algicidal effect; Microcystis aeruginosa

    1 Introduction

    As a result of eutrophication of lakes and reservoirs in recent years, cyanobacterial blooms have become a common problem and attracted extensive attention worldwide (Dai et al. 2008). Frequent outbreaks of cyanobacterial blooms have posed great threats to human health because of the deteriorated freshwater quality and serious economic damage to aquaculture. Furthermore, because of the widespread distribution of cyanobacteria in natural lakes and rivers, the possibility of water blooms of toxic strains in recreational water is considerable. Microcystis aeruginosa (M. aeruginosa), one of the most common toxic strains, always produces microcystins, which are harmful to aquatic organisms and humans (Jacquet et al. 2004; Ernst et al. 2006; Palikova et al. 2007) and are identified as a tumor-promotingcompound (Falconer 1999; Oberholster et al. 2004; Zurawell et al. 2005). Therefore, the development of some useful techniques to predict and eliminate the impacts of cyanobacterial blooms is urgently required. Many approaches and techniques have been used to control blooms (Oberholster et al. 2004; Sengco and Anderson 2004; Choi et al. 2005), among which biological control has been seen as an economical and environment-friendly solution due to the low treatment cost and no secondary pollution (Sigee et al. 1999; Manage et al. 2001; Mayali and Doucette 2002).

    Since the first report on the successfully isolated algicidal bacterium, many researchers have focused on laboratory studies of algicidal bacteria against marine (Imai et al. 1995; Kim et al. 2009) and freshwater (Kim et al. 2008; Ren et al. 2010) algae, and thought of algicidal bacteria as the most promising solution due to their advantages of fast reproduction, high efficiency, and host specificity (Mu et al. 2007). In this study, we totally isolated nine algicidal bacterial stains, among which a bacterial strain of Pedobacter sp., MaI11-5, exhibited distinctive cyanobacterial growth inhibition on M. aeruginosa. Although a lot of reports have demonstrated the algicidal effects of some algicidal bacteria against marine and freshwater algae, using Pedobacter sp. as algicidal bacteria against cyanobacterium M. aeruginosa has been rarely reported. The aims of this study were to study the algicidal effect of MaI11-5 against M. aeruginosa cells and to investigate the algicidal process during cocultivation of the bacteria with cyanobacterial cells with a scanning electron microscope (SEM).

    2 Materials and methods

    2.1 Algal culture

    M. aeruginosa NIES-843, which was isolated from the samples collected in Kasumigaura Lake in Ibaraki, Japan during a cyanobacterial bloom in August 1997, was supplied by the Microbial Culture Collection at the National Institute for Environmental Studies (NIES), Japan. The axenic cyanobacteria culture was incubated with aeration in an MA medium (Ichimura 1979) at 25℃ under a 12L:12D light-dark cycle with a light intensity of 40 μmol/(m2·s). The data of optical density absorption at 680 nm (Abs680nm) were monitored with a microplate reader (Tecan Infinite M200, Switzerland) and showed the cell densities of the NIES-843 cyanobacterial samples.

    2.2 Isolation and screening of algicidal bacteria

    Algicidal bacteria were isolated from activated sludge samples collected in a sewage treatment plant in Japan in February 2011. The water samples were serially diluted (ten-fold dilutions) and 0.1 mL aliquots of each dilution were spread onto nutrient broth (NB) agar plates (which contained 1% peptone, 0.5% beef extract, 0.2% NaCl, and 1.5% agar and had a pH value of 7.0), followed by incubation for three days at 23℃ . Individual bacterial colonies with distinct morphology were chosen and inoculated onto fresh NB agar plates forpurification and screening. To screen out algicidal bacteria, the bacterial isolates were transferred separately into each well of a 96-well microplate, in which each well contained 0.1 mL of M. aeruginosa cyanobacterial culture, followed by cocultivation at 23℃ for ten days. The cocultures in the 96-well microplate were observed day by day until the color of cultures in some wells changed from green to transparent, and then the bacterial isolates in these wells were selected as algicidal bacterial candidates. All the candidates repeated the cocultivation procedure three times to confirm their inhibitory effects on cyanobacterial growth.

    2.3 Characterization and identification of bacterial strains

    Morphological characters of the isolated algicidal bacterial strains were observed both on NB agar plates and under a light microscope after Gram staining. After being cultivated in the NB liquid medium, bacterial cells were collected by centrifugation (at a velocity of 6 000g for 10 min at 20 )℃ from bacterial cultures, and then subjected to sequential DNA extraction by the DNA extraction kit ISOIL (Nippon Gene, Japan). The 16S ribosomal RNA genes (16S rDNA) were amplified by polymerase chain reaction (PCR) using a forward primer PrSSUF.1 (5’-agagtttgatcctggctcag-3’) and a reverse primer EbITS23S (5’-gggttbccccattcgganatc-3’) in a 50 μL reaction volume, which contained 10× Ex Taq Buffer (Takara Bio Inc., Japan), dNTPs (100 μmol each), forward and reverse primers (0.5 μmol each), 0.025 units/μL Ex Taq DNA polymerase (Hot-Start Version, Takara Bio Inc., Japan), and 1 μL of bacterial DNA. The PCR thermal cycling procedure consisted of an initial denaturation at 94?C for 1 min, followed by 25 cycles of denaturation at 94?C for 30 s, a primer annealing at 56?C or 59?C for 30 s, an extension at 72?C for 1.5 min, and a final elongation at 72?C for 7 min. The PCR products were checked using 1% agarose gel electrophoresis, and then recovered with the MinElute Gel Extraction Kit (Qiagen, Germany). Nucleotide sequences of PCR products were determined with the ABI PRISM BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems Inc., U.S.A.), and the ABI PRISM 3100 Genetic Analyzer (Applied Biosystems Inc., U.S.A.). Inner primers, PrSSUF.3 (5’-tgccagcagccgcggta-3’), PrSSUF.5 (5’-ttaagtcccgcaacgagcg-3’), and PrSSUR.2 (5’-cgctcgttgcgggacttaa-3’), were used for the sequencing reaction. The 16S rDNA sequences of the bacterial strains were aligned with their relatives belonging to the same genera, and phylogenetic trees were constructed using the maximum likelihood method (Felsenstein 1981) with a program megablast (Zhang et al. 2000). The sequences of the bacterial 16S rDNA fragments were submitted to the DNA Data Bank of Japan (DDBJ), and the accession numbers of all bacterial stains were obtained.

    2.4 Algicidal effect of isolated bacteria against M. aeruginosa

    Algicidal isolates were inoculated into 20 mL of NB medium and incubated with rotary shaking (with a frequency of 100 revolutions per minute (rpm)) at 23℃ for 48 h, and then the bacterial cultures were concentrated by centrifugation (6 000g for 10 min at 25℃), followed by two washes with an MA medium and suspension again in the MA medium to obtainbacterial cell suspensions. The absorbance at 600 nm (Abs600nm) of bacterial suspension was adjusted at 3.0 after diluting the culture with the MA medium. The bacterial suspensions, whose volumes were 0, 0.1, 0.2, 0.3, 0.4, and 0.5 mL, were added in a number of separate batches into the wells of a 24-well microplate, in which 0.5 mL of M. aeruginosa culture had been dispensed in each well. Of the six samples, the 0 mL bacterial suspension was regarded as a control sample and others as treatment samples. After adjustment of the volume of each well up to 1.5 mL with the MA medium, the cyanobacterial cells were cocultivated with the algicidal isolates at 25?C under a 12L:12D light-dark cycle with a light intensity of 40 μmol/(m2·s). During a ten-day cocultivation period, 100 μL of every coculture were transferred into a 96-well microplate every few days and the cyanobacterial cell densities of the cocultures were monitored with the microplate reader. The growth of algae was estimated by Abs680nmand the algal cell densities were monitored every two days in the first four days, and then every three days in the next six days. The algicidal effect (E) of the bacterial isolates was calculated by Eq. (1):

    wheretT andtC are the values of Abs680nmin the presence or absence of the algicidal bacteria after the incubation time (t) of the treatment sample and control sample, respectively, and0T and0C are the initial values oftT andtC, respectively. In order to observe the algicidal process with SEM (Hitachi High-Tech TM-1000, Japan), after the cocultures were sampled during the cocultivation period, the SEM samples were pretreated as described in the following procedures: the cyanobacterial cells and algicidal bacteria in the 100 μL coculture were trapped onto 0.2 μm membranes (Whatman, U.K.) by filtering, immediately followed by the air-drying of the membranes and sputter-coating of them with gold.

    3 Results and discussion

    3.1 Isolation and screening of algicidal bacteria

    In total, 96 bacterial strains were isolated from the samples and nine of the 96 strains exhibited cyanobacterial growth inhibition on M. aeruginosa NIES-843 cells. Among these nine bacterial isolates, the MaI11-5 strain showed the most distinctive algicidal effect against the cyanobacterium NIES-843, so it was chosen and subjected to further experiments.

    3.2 Characterization and identification of algicidal bacterial strain

    The MaI11-5 bacterial strain appeared gray-white and showed spreading and growing colonies on an NB agar plate. It was characterized as a Gram-negative bacterium, and its morphology was observed with SEM and showed a rod shape with cell sizes of 1.5 to 2.5 μm in length and 0.5 μm in width. After the PCR amplification of 16S rDNA, the electrophoresis profile of the PCR product of the MaI11-5 bacterial strain was displayed, and the fragment size was between 1375 and 1584 bp. Through comparison with available sequences in the GenBank sequence database, the 16S rDNA sequences of all algicidal strains were aligned (Table 1). Themegablast analysis revealed that the MaI11-5 strain was affiliated with the genus Pedobacter, and the most homologous species was Pedobacter steynii (P. steynii, accession number: AM491372), whose sequence identity was 99% (Table 1). MaI11-5 clustered with P. steynii in the phylogenetic tree (Fig. 1), supporting their close relationship. The sequences of other algicidal bacterial strains were identified as the same procedure as MaI11-5 and the analysis results are listed in Table 1. All of the algicidal strains were registered in the DDBJ database under the accession numbers of AB666450 (MaI11-1), AB666451 (MaI11-2), AB666452 (MaI11-3), AB666453 (MaI11-4), AB666454 (MaI11-5), AB666455 (MaI11-7), AB666456 (MaI11-8), AB666457 (MaI11-9), and AB666458 (MaI11-10).

    Table 1Sequences producing significant alignments of algicidal strains

    Fig. 1Phylogenetic tree of 16S rDNA of MaI11-5 strain

    3.3 Algicidal effect of MaI11-5 strain against M. aeruginosa

    During the cocultivation of the MaI11-5 algicidal bacterial strain and cyanobacterial cells, the Abs680nmvalues of the cocultures were regularly monitored and algicidal effects were calculated using Eq. (1). As shown in Fig. 2, all of the additions of algicidal bacterial suspensions from 0.1 to 0.5 mL induced a gradual increase of algicidal effects in thecocultivation test, showing that MaI11-5 exhibited remarkable algicidal activity against the cyanobacterial cells. Furthermore, the algicidal effect of the additions from 0.2 to 0.5 mL exceeded 50% after two days, exceeded 70% after four days, and reached 80% after seven days. Although the addition of 0.1 mL was not so sufficient to suppress the cyanobacterial growth as completely as other additions of bacterial suspension, its algicidal effect exceeded 40% after two days, reached 65% after four days, and exceeded 70% after seven days. The results indicated that a very small additional amount of MaI11-5 cells can successfully inhibit the growth of M. aeruginosa cells in the natural freshwater environment.

    Fig. 2Algicidal effect of different additional amounts of MaI11-5 bacterial strain on growth of M. aeruginosa

    During the cocultivation of the MaI11-5 bacterial strain with M. aeruginosa NIES-843, samples were transferred from cocultures and subjected to SEM observation every two or three days. As shown in the SEM image, after three days of cocultivation, the cyanobacterial cells (a in Fig. 3(a)) aggregated and their surfaces were rough and irregularly shaped. The SEM image in Fig. 3(b), which is the magnification profile of b in Fig. 3(a), showed that the MaI11-5 isolates did not directly attach to the surface of cyanobacterial cells, and there were large quantities of mucous excretions around the algal cells. While in the SEM image of M. aeruginosa cells in axenic culture (Fig. 4), there were no mucous-like substances and the appearance of the cyanobacterial cells displayed a round shape and smooth surface and were dispersed individually. Based on these SEM observations, it can be speculated that the defense mode of mucous-like excretion release behavior of the cyanobacterial cells may be stimulated bythe algicidal bacterial attack and contribute to their aggregation. Such defense mode of cyanobacteria can also be stimulated with some other factors, such as desiccation (Potts 1999), protistan grazing (Pajdak-Stos et al. 2001), and UV irradiation (Pattanaik et al. 2007). Besides, it was reported that the Sphingobacterial isolates were not dominant among all the classes in natural water samples, but the genus Pedobacter was the majority of the class Sphingobacteria and some results also showed that the Pedobacter bacterial strain can inhibit the cyanobacterial growth to a certain extent (Berg et al. 2009).

    Fig. 3SEM images of MaI11-5 algicidal bacterial strain with M. aeruginosa in coculture

    Fig. 4SEM image of M. aeruginosa cells in axenic culture (×5000)

    4 Conclusions

    Nine algicidal bacterial strains were isolated from the activated sludge samples collected from a sewage treatment plant in Japan. One of the nine bacterial strains, the MaI11-5 bacterial strain, was identified by the biological morphology analysis, sequence analysis of 16S rDNA, and phylogenetic analysis. The results indicated that MaI11-5 belonged to Pedobacter sp. The cocultivation test results of the MaI11-5 isolates with M. aeruginosa displayed obvious algicidal activity against cyanobacterial cells. SEM observations were also carried out and revealed that the MaI11-5 algicidal bacteria attacked cyanobacterial cells indirectly and some extracellular compounds with a mucous-like appearance were released by cyanobacterial cells out of self-defense. Previous reports on the algicidal mechanism of Pedobacter sp. have rarely been found, so further studies on the MaI11-5 bacterial strain will be carried out to discover more novel functions for controlling harmful blooms.

    Berg, K. A., Lyra, C., Sivonen, K., Paulin, L., Suomalainen, S., Tuomi, P., and Rapala, J. 2009. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. The ISME Journal, 3(3), 314-325. [doi:10.1038/ismej.2008.110]

    Choi, H. J., Kim, B. H., Kim, J. D., and Han, M. S. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biological Control, 33(3), 335-343. [doi:10.1016/j.biocontrol.2005.03.007]

    Dai, R., Liu, H., Qu, J., and Ru, J. 2008. Cyanobacteria and their toxins in Guanting Reservoir of Beijing, China. Journal of Hazardous Materials, 153(1-2), 470-477. [doi:10.1016/j.jhazmat.2007.08.078]

    Ernst, B., Hoeger, S. J., O’Brien, E., and Dietrich, D. R. 2006. Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus). Aquatic Toxicology, 79(1), 31-40. [doi:10.1016/j.aquatox.2006.04.013]

    Falconer, I. R. 1999. An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology, 14(1), 5-12. [doi:10.1002/(SICI)1522-7278(199902) 14:1<5::AID-TOX3>3.3.CO;2-S]

    Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368-376. [doi:10.1007/BF01734359]

    Ichimura, T. 1979. Isolation and culture methods of algae. Nishizawa, K., and Chihara, M., eds., Methods in Phycological Studies, 294-305. Tokyo: Kyoritsu Shuppan. (in Japanese)

    Imai, I., Ishida, Y., Sakaguchi, K., and Hata, Y. 1995. Algicidal marine bacteria isolated from northern Hiroshima Bay, Japan. Fisheries Science, 61(4), 628-636.

    Jacquet, C., Thermes, V., de Luze, A., Puiseux-Dao, S., Bernard, C., Joly, J. S., Bourrat, F., and Edery, M. 2004. Effects of microcystin-LR on development of medaka fish embryos (Oryzias latipes). Toxicon, 43(2), 141-147. [doi:10.1016/j.toxicon.2003.11.010]

    Kim, B. H., Sang, M., Hwang, S. J., and Han, M. S. 2008. In situ bacterial mitigation of the toxic cyanobacterium microcystis aeruginosa: Implications for biological bloom control. Limnology and Oceanography-Methods, 6, 513-522.

    Kim, Y. S., Lee, D. S., Jeong, S. Y., Lee, W. J., and Lee, M. S. 2009. Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina. Journal of Microbiology, 47(1), 9-18. [doi:10.1007/s12275-008-0141-z]

    Manage, P. M., Kawabata, Z., and Nakano, S. 2001. Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality. Limnology, 2(2), 73-78. [doi:10.1007/s102010170002]

    Mayali, X., and Doucette, G. J. 2002. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae, 1(3), 277-293. [doi: 10.1016/S1568-9883(02)00032-X]

    Mu, R. M., Fan, Z. Q., Pei, H. Y., Yuan, X. L., Liu, S. X., and Wang, X. R. 2007. Isolation and algae-lysing characteristics of the algicidal bacterium B5. Journal of Environmental Sciences (China), 19(11), 1336-1340. [doi:10.1016/S1001-0742(07)60218-6]

    Oberholster, P. J., Botha, A. M., and Grobbelaar, J. U. 2004. Microcystis aeruginosa: Source of toxic microcystins in drinking water. African Journal of Biotechnology, 3(3), 159-168.

    Pajdak-Stos, A., Fiakowska, E., and Fyda, J. 2001. Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology, 23(3), 237-244. [doi:10.3354/ame023237]

    Palikova, M., Krejci, R., Hilscherova, K., Babica, P., Navratil, S., Kopp, R., and Blaha, L. 2007. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio). Aquatic Toxicology, 81(3), 312-318. [doi:10.1016/j.aquatox. 2007.01.001]

    Pattanaik, B., Schumann, R., and Karsten, U. 2007. Effects of ultraviolet radiation on cyanobacteria and their protective mechanisms. Cellular Origin and Life in Extreme Habitats and Astrobiology, 11, 29-45. [doi: 10.1007/978-1-4020-6112-7_2]

    Potts, M. 1999. Mechanisms of desiccation tolerance in cyanobacteria. European Journal of Phycology, 34(4), 319-328. [doi:10.1017/S0967026299002267]

    Ren, H. Q., Zhang, P., Liu, C. H., Xue, Y. R., and Lian, B. 2010. The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World Journal of Microbiology and Biotechnology, 26(3), 465-472. [doi:10.1007/s11274-009-0192-2]

    Sengco, M. R., and Anderson, D. M. 2004. Controlling harmful algal blooms through clay flocculation. Journal of Eukaryotic Microbiology, 51(2), 169-172. [doi:10.1111/j.1550-7408.2004.tb00541.x]

    Sigee, D. C., Glenn, R., Andrews, M. J., Bellinger, E. G., Butler, R. D., Epton, H. A. S., and Hendry, R. D. 1999. Biological control of cyanobacteria: Principles and possibilities. Hydrobiologia, 395, 161-172. [doi:10.1023/A:1017097502124]

    Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1-2), 203-214. [doi:10.1089/10665270050081478]

    Zurawell, R. W., Chen, H. R., Burke, J. M., and Prepas, E. E. 2005. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 8(1), 1-37. [doi:10.1080/10937400590889412] (Edited by Yun-li YU)

    This work was supported by the Basic Research Program of Jiangsu Province (Grant No. BK2012828), the grant of Greater Nagoya Project in Environmental Science, and the Open Laboratory Project of Nanjing University of Technology (Grant No. 2012-2013-138).

    *Corresponding author (e-mail: njut.yl@njut.edu.cn)

    Received Oct.13, 2011; accepted Jul. 8, 2012

    午夜老司机福利剧场| 久久久久久久国产电影| 国产一区有黄有色的免费视频 | 国产亚洲91精品色在线| 国产亚洲精品av在线| 中文字幕亚洲精品专区| av专区在线播放| 亚洲最大成人手机在线| 久久久国产成人精品二区| 啦啦啦观看免费观看视频高清| av天堂中文字幕网| 亚洲成人精品中文字幕电影| 久久久久久久午夜电影| 国产淫片久久久久久久久| 在线播放国产精品三级| 久久久久久久久久久免费av| 亚洲成人中文字幕在线播放| 综合色av麻豆| 男人的好看免费观看在线视频| 久久草成人影院| 日韩成人伦理影院| 91午夜精品亚洲一区二区三区| 国产一区亚洲一区在线观看| 一本久久精品| 天堂影院成人在线观看| 99久久九九国产精品国产免费| 欧美日韩在线观看h| 男女国产视频网站| 99热6这里只有精品| 亚洲丝袜综合中文字幕| 亚洲精品aⅴ在线观看| 爱豆传媒免费全集在线观看| 亚洲va在线va天堂va国产| 欧美高清性xxxxhd video| 两性午夜刺激爽爽歪歪视频在线观看| 日本与韩国留学比较| 男女国产视频网站| 人妻系列 视频| 看片在线看免费视频| 1000部很黄的大片| 久久人人爽人人爽人人片va| 在现免费观看毛片| 黄色欧美视频在线观看| 精品一区二区三区人妻视频| 欧美精品国产亚洲| 久久久久网色| 国产淫语在线视频| 纵有疾风起免费观看全集完整版 | 少妇丰满av| 日本爱情动作片www.在线观看| 国产精品国产三级国产专区5o | 午夜亚洲福利在线播放| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 午夜日本视频在线| 久久久久久大精品| 免费在线观看成人毛片| 中国美白少妇内射xxxbb| 神马国产精品三级电影在线观看| av在线天堂中文字幕| 少妇熟女欧美另类| 欧美日本视频| 国产午夜精品久久久久久一区二区三区| 国产亚洲最大av| 三级毛片av免费| 看片在线看免费视频| 国产三级中文精品| 最近视频中文字幕2019在线8| 免费黄色在线免费观看| 在线播放无遮挡| 日本五十路高清| 日韩强制内射视频| 成年免费大片在线观看| 欧美激情国产日韩精品一区| av播播在线观看一区| 免费大片18禁| 亚洲欧美精品综合久久99| 国产精品乱码一区二三区的特点| 97人妻精品一区二区三区麻豆| 观看美女的网站| 男人狂女人下面高潮的视频| 久久精品国产亚洲av涩爱| 欧美日韩在线观看h| 嫩草影院新地址| 极品教师在线视频| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 最后的刺客免费高清国语| 日韩欧美国产在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产一区亚洲一区在线观看| 国产美女午夜福利| 日韩成人伦理影院| 26uuu在线亚洲综合色| 国产免费视频播放在线视频 | 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 最近2019中文字幕mv第一页| 国产午夜精品论理片| www日本黄色视频网| 六月丁香七月| 真实男女啪啪啪动态图| 中文天堂在线官网| or卡值多少钱| 国产91av在线免费观看| 全区人妻精品视频| 又粗又硬又长又爽又黄的视频| av女优亚洲男人天堂| 国产淫语在线视频| 久久99蜜桃精品久久| 深爱激情五月婷婷| 中文字幕制服av| 亚洲色图av天堂| www.色视频.com| 亚洲精品国产av成人精品| 丝袜喷水一区| 国内少妇人妻偷人精品xxx网站| 色综合站精品国产| 色视频www国产| 国产成人freesex在线| 久久久午夜欧美精品| 亚洲av电影在线观看一区二区三区 | 欧美+日韩+精品| 91av网一区二区| 亚洲国产精品成人综合色| 亚洲精品一区蜜桃| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 欧美3d第一页| 亚洲成色77777| 国产欧美另类精品又又久久亚洲欧美| 丝袜美腿在线中文| 午夜福利成人在线免费观看| 精品国产露脸久久av麻豆 | 一个人免费在线观看电影| 欧美成人免费av一区二区三区| 看十八女毛片水多多多| 亚洲成人精品中文字幕电影| 97超视频在线观看视频| 精品不卡国产一区二区三区| 国产伦精品一区二区三区四那| 亚洲av二区三区四区| av在线亚洲专区| 插逼视频在线观看| 97人妻精品一区二区三区麻豆| 精品久久国产蜜桃| 1024手机看黄色片| 久久久久久久久久久丰满| 亚洲,欧美,日韩| 午夜福利在线在线| 亚洲欧洲日产国产| 精品欧美国产一区二区三| 亚洲成人精品中文字幕电影| 免费电影在线观看免费观看| 青春草亚洲视频在线观看| 成人二区视频| 一级黄色大片毛片| 色哟哟·www| 桃色一区二区三区在线观看| 人人妻人人澡人人爽人人夜夜 | 日本wwww免费看| 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| 婷婷色综合大香蕉| 99久久精品国产国产毛片| 午夜视频国产福利| 看非洲黑人一级黄片| 一区二区三区乱码不卡18| 精品国内亚洲2022精品成人| 村上凉子中文字幕在线| 欧美xxxx黑人xx丫x性爽| 欧美97在线视频| 亚洲精品亚洲一区二区| 99国产精品一区二区蜜桃av| 成人美女网站在线观看视频| 自拍偷自拍亚洲精品老妇| 两个人视频免费观看高清| 亚洲人成网站高清观看| 久久欧美精品欧美久久欧美| 国产精品久久久久久av不卡| 成人美女网站在线观看视频| 哪个播放器可以免费观看大片| 亚洲婷婷狠狠爱综合网| 人人妻人人看人人澡| 日韩中字成人| 国产精华一区二区三区| av在线亚洲专区| 久久久久久久久大av| 热99re8久久精品国产| 少妇熟女aⅴ在线视频| 国产精品,欧美在线| 秋霞在线观看毛片| 免费无遮挡裸体视频| 国产成人福利小说| 欧美极品一区二区三区四区| 国产女主播在线喷水免费视频网站 | 天美传媒精品一区二区| videos熟女内射| 国产乱人视频| 一个人观看的视频www高清免费观看| 啦啦啦观看免费观看视频高清| 亚洲国产精品sss在线观看| 午夜老司机福利剧场| 麻豆一二三区av精品| 婷婷色综合大香蕉| 水蜜桃什么品种好| 亚洲成色77777| 九九热线精品视视频播放| 亚洲久久久久久中文字幕| 精品一区二区三区人妻视频| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 亚洲美女视频黄频| 99热6这里只有精品| 亚洲成人av在线免费| 日韩精品有码人妻一区| 毛片一级片免费看久久久久| 大又大粗又爽又黄少妇毛片口| 最近中文字幕2019免费版| 国产男人的电影天堂91| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 国产黄片视频在线免费观看| 欧美97在线视频| 欧美bdsm另类| 99热全是精品| 全区人妻精品视频| 国内精品美女久久久久久| 偷拍熟女少妇极品色| 久久久久久久亚洲中文字幕| 免费观看a级毛片全部| 亚洲四区av| 特级一级黄色大片| 97在线视频观看| 欧美另类亚洲清纯唯美| 欧美一区二区精品小视频在线| 亚洲aⅴ乱码一区二区在线播放| 日韩一区二区视频免费看| eeuss影院久久| 亚洲四区av| 九草在线视频观看| 成人特级av手机在线观看| av黄色大香蕉| 亚洲精品日韩av片在线观看| 国产精品一区www在线观看| 国产在线一区二区三区精 | 一区二区三区乱码不卡18| 亚洲无线观看免费| 国产成人精品婷婷| 亚洲精品乱码久久久v下载方式| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 免费一级毛片在线播放高清视频| 免费av毛片视频| a级毛色黄片| 亚洲中文字幕一区二区三区有码在线看| 狠狠狠狠99中文字幕| 亚洲在线观看片| 日韩中字成人| 青春草国产在线视频| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影| av专区在线播放| 久久久久久伊人网av| 九色成人免费人妻av| 成人二区视频| 久久欧美精品欧美久久欧美| 国产老妇伦熟女老妇高清| 黄色一级大片看看| 亚洲精品乱久久久久久| 91精品国产九色| 男女啪啪激烈高潮av片| 久久久色成人| 你懂的网址亚洲精品在线观看 | 国产探花在线观看一区二区| 亚洲中文字幕日韩| 亚洲自偷自拍三级| 亚洲五月天丁香| 国产一级毛片在线| 亚洲性久久影院| 哪个播放器可以免费观看大片| 六月丁香七月| 欧美97在线视频| 神马国产精品三级电影在线观看| 日本av手机在线免费观看| 久久久久久久国产电影| 高清午夜精品一区二区三区| 国产精品一区二区三区四区久久| 国产精品一区www在线观看| 亚洲性久久影院| 日韩制服骚丝袜av| 禁无遮挡网站| 久久久久久久久中文| 少妇丰满av| 午夜精品在线福利| 看黄色毛片网站| 97人妻精品一区二区三区麻豆| 亚洲欧美一区二区三区国产| 国产女主播在线喷水免费视频网站 | 亚洲四区av| .国产精品久久| 观看美女的网站| 18+在线观看网站| 一边亲一边摸免费视频| 黄色欧美视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日摸夜夜添夜夜爱| 18+在线观看网站| 天堂√8在线中文| 级片在线观看| 日日撸夜夜添| 亚洲国产精品久久男人天堂| 黄片无遮挡物在线观看| 日本黄色片子视频| 精品人妻偷拍中文字幕| 乱系列少妇在线播放| 日本黄色视频三级网站网址| av国产久精品久网站免费入址| 成人高潮视频无遮挡免费网站| 成人漫画全彩无遮挡| 99久久精品一区二区三区| 日韩欧美三级三区| 国产高清三级在线| 七月丁香在线播放| 亚洲精品一区蜜桃| 亚洲国产精品专区欧美| 天堂影院成人在线观看| 亚洲av.av天堂| 午夜精品国产一区二区电影 | 日本熟妇午夜| 狠狠狠狠99中文字幕| 国产伦在线观看视频一区| 欧美一区二区国产精品久久精品| 可以在线观看毛片的网站| 亚洲精品乱久久久久久| 亚洲在线自拍视频| 国产男人的电影天堂91| 久久久久久久亚洲中文字幕| 五月玫瑰六月丁香| 国产成人a区在线观看| 精品一区二区免费观看| 99久久人妻综合| 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片| 国产午夜精品久久久久久一区二区三区| 精品无人区乱码1区二区| 国产乱人视频| 99热全是精品| 国产三级在线视频| 色视频www国产| 久久99精品国语久久久| 麻豆精品久久久久久蜜桃| 中文字幕av成人在线电影| 简卡轻食公司| 亚洲精品自拍成人| 中文字幕精品亚洲无线码一区| 国产女主播在线喷水免费视频网站 | 久久人人爽人人片av| 久久精品人妻少妇| 精品人妻熟女av久视频| 日韩人妻高清精品专区| 最近的中文字幕免费完整| 一区二区三区高清视频在线| 国产麻豆成人av免费视频| 欧美精品一区二区大全| 国产精品一区www在线观看| 边亲边吃奶的免费视频| 久久精品夜色国产| 亚洲精品,欧美精品| 久久人人爽人人片av| 午夜福利在线在线| 国产单亲对白刺激| 成人国产麻豆网| 欧美成人午夜免费资源| www.色视频.com| 级片在线观看| 欧美精品国产亚洲| 小蜜桃在线观看免费完整版高清| 听说在线观看完整版免费高清| 国产又色又爽无遮挡免| 一级二级三级毛片免费看| 亚洲无线观看免费| 久久6这里有精品| 白带黄色成豆腐渣| videossex国产| 美女脱内裤让男人舔精品视频| 久久午夜福利片| 精品国产一区二区三区久久久樱花 | 久久精品国产鲁丝片午夜精品| www.色视频.com| videos熟女内射| 亚州av有码| 又黄又爽又刺激的免费视频.| 我的女老师完整版在线观看| 久久久精品大字幕| 国产精品三级大全| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人a∨麻豆精品| 成年版毛片免费区| 春色校园在线视频观看| 成人毛片60女人毛片免费| 精品一区二区三区视频在线| 婷婷色麻豆天堂久久 | 草草在线视频免费看| 亚洲国产精品久久男人天堂| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| 国产成人福利小说| av在线亚洲专区| 91在线精品国自产拍蜜月| 亚洲最大成人中文| 美女内射精品一级片tv| 欧美日韩一区二区视频在线观看视频在线 | 国产精品综合久久久久久久免费| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 极品教师在线视频| 日日撸夜夜添| av专区在线播放| 舔av片在线| 麻豆成人av视频| 久久6这里有精品| 三级男女做爰猛烈吃奶摸视频| 能在线免费看毛片的网站| 永久网站在线| 韩国av在线不卡| 日本色播在线视频| 级片在线观看| 亚洲欧洲日产国产| 精品少妇黑人巨大在线播放 | 国内精品美女久久久久久| 精品人妻熟女av久视频| 国产一区二区三区av在线| 如何舔出高潮| 丰满人妻一区二区三区视频av| 国产成人精品一,二区| 国产一区二区亚洲精品在线观看| 尾随美女入室| av免费观看日本| 欧美成人精品欧美一级黄| 日韩制服骚丝袜av| 免费人成在线观看视频色| 久久久久久久午夜电影| 久久鲁丝午夜福利片| 亚洲国产最新在线播放| av在线蜜桃| 狂野欧美白嫩少妇大欣赏| 国产av在哪里看| 亚洲精品456在线播放app| 婷婷六月久久综合丁香| 久久精品熟女亚洲av麻豆精品 | 亚洲国产高清在线一区二区三| a级毛片免费高清观看在线播放| 级片在线观看| 日本午夜av视频| 99热全是精品| 日韩欧美 国产精品| 欧美成人a在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人a∨麻豆精品| 国产av码专区亚洲av| 欧美色视频一区免费| 日产精品乱码卡一卡2卡三| 老司机福利观看| 国产成人91sexporn| 久久久精品大字幕| 欧美一区二区亚洲| 国产精品1区2区在线观看.| 1024手机看黄色片| 91aial.com中文字幕在线观看| 午夜精品国产一区二区电影 | 身体一侧抽搐| 久久精品国产亚洲网站| 草草在线视频免费看| 成人综合一区亚洲| 欧美性猛交╳xxx乱大交人| 黄色配什么色好看| 日本一二三区视频观看| 国产av在哪里看| 九九爱精品视频在线观看| 国产高清视频在线观看网站| 国产伦在线观看视频一区| 久久午夜福利片| 男的添女的下面高潮视频| 桃色一区二区三区在线观看| 亚洲国产精品专区欧美| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区成人| 亚洲中文字幕一区二区三区有码在线看| 韩国av在线不卡| 成人国产麻豆网| 精品国内亚洲2022精品成人| 久久99热这里只频精品6学生 | 成人午夜高清在线视频| 夜夜看夜夜爽夜夜摸| 精品无人区乱码1区二区| 日韩精品有码人妻一区| 亚洲丝袜综合中文字幕| 久久6这里有精品| 天堂中文最新版在线下载 | 搡老妇女老女人老熟妇| 日本免费在线观看一区| 99热全是精品| 国产成人91sexporn| 午夜视频国产福利| 毛片一级片免费看久久久久| 22中文网久久字幕| 女的被弄到高潮叫床怎么办| 长腿黑丝高跟| 一个人看视频在线观看www免费| 最近手机中文字幕大全| 日本与韩国留学比较| 国产乱人偷精品视频| 91久久精品国产一区二区三区| 久久久久久久久久久免费av| 国产精品美女特级片免费视频播放器| 日本午夜av视频| 欧美一级a爱片免费观看看| 综合色丁香网| 亚洲中文字幕一区二区三区有码在线看| 色视频www国产| 色吧在线观看| 亚洲欧美成人精品一区二区| 日韩高清综合在线| 欧美又色又爽又黄视频| 级片在线观看| 深爱激情五月婷婷| 亚洲第一区二区三区不卡| 少妇熟女欧美另类| 亚洲av.av天堂| 欧美日本视频| 美女cb高潮喷水在线观看| 亚洲精品久久久久久婷婷小说 | eeuss影院久久| 大又大粗又爽又黄少妇毛片口| 最近中文字幕高清免费大全6| 日本黄大片高清| 国产v大片淫在线免费观看| 日韩三级伦理在线观看| 国产午夜精品论理片| 99久久精品国产国产毛片| 亚洲欧美日韩无卡精品| 国产精品麻豆人妻色哟哟久久 | 亚洲国产成人一精品久久久| 国产成人福利小说| 国产黄片美女视频| 免费在线观看成人毛片| 最近最新中文字幕免费大全7| 国产伦在线观看视频一区| 大香蕉97超碰在线| 日韩欧美精品v在线| 精品久久久噜噜| 观看美女的网站| 人妻夜夜爽99麻豆av| 极品教师在线视频| 亚洲国产欧美人成| 成人亚洲欧美一区二区av| 非洲黑人性xxxx精品又粗又长| 99热网站在线观看| 日韩在线高清观看一区二区三区| av国产久精品久网站免费入址| 亚洲真实伦在线观看| 又黄又爽又刺激的免费视频.| 精品免费久久久久久久清纯| 男的添女的下面高潮视频| 国产久久久一区二区三区| 久久久精品94久久精品| 美女脱内裤让男人舔精品视频| 干丝袜人妻中文字幕| 久久精品影院6| 网址你懂的国产日韩在线| 欧美xxxx性猛交bbbb| 亚洲av.av天堂| 国产免费男女视频| 国产人妻一区二区三区在| 久久99热这里只有精品18| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产av成人精品| 久久国产乱子免费精品| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看| 蜜臀久久99精品久久宅男| 国产大屁股一区二区在线视频| 天美传媒精品一区二区| 日本免费一区二区三区高清不卡| 又爽又黄a免费视频| 午夜亚洲福利在线播放| 国内少妇人妻偷人精品xxx网站| 国产av一区在线观看免费| 我要搜黄色片| 久久久久久九九精品二区国产| 亚洲不卡免费看| 综合色av麻豆| 日本-黄色视频高清免费观看| 久久草成人影院| 久久久久久久午夜电影| 在线天堂最新版资源| 亚洲欧美精品综合久久99| 国产一区二区在线av高清观看| 黄色日韩在线| 成人二区视频| 97在线视频观看| 日本黄色视频三级网站网址| 成人亚洲精品av一区二区| 嫩草影院精品99| 日本-黄色视频高清免费观看| 99热这里只有精品一区| 国产精品爽爽va在线观看网站| 亚洲中文字幕日韩| 欧美极品一区二区三区四区| 男女国产视频网站| 插逼视频在线观看| 午夜精品国产一区二区电影 |