• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells

    2012-08-02 07:22:22DongLvPeiLinCuiShiWeiYaoYouQingXuZhaoXuYang
    Chinese Journal of Cancer Research 2012年4期

    Dong Lv, Pei-Lin Cui, Shi-Wei Yao, You-Qing Xu, Zhao-Xu Yang

    Gastroenterology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

    Introduction

    Pancreatic cancer is now the fifth leading cause of cancer in the United States, Japan, and Europe, with an overall fiveyear survival rate of <5% (1).One of the major reasons for this serious situation is the peritoneal dissemination and early metastasis of pancreatic cancer, such that most patients present with an already unresectable malignant tumor upon diagnosis (2).Akin to other solid tumors, an adequate blood supply is the key factor in the tumor development of pancreatic cancer, through angiogenesis at both the primary and secondary cancer sites.Thus, anti-angiogenesis therapy has been a challenging target for tumor therapeutics because it theoretically offers long-term control of tumor progression (3).Vascular endothelial growth factor (VEGF), the most active endogenous pro-angiogenic factor and an endothelial cell-specific mitogen, is involved in angiogenesis in various types of tumors, including pancreatic cancer (4).Several studies have discovered a very close correlation between VEGF and pancreatic cancer development (5-8).In pancreatic cancer cells, both VEGF and VEGF receptors(VEGFR) are overexpressed.VEGF promotes cancer growth, dissemination, and metastasis, and its expression level is positively correlated with the prognosis of pancreatic cancer in diagnosed patients or animal models.In pre-clinical and clinical studies, anti-VEGF therapy has a direct role against VEGF in tumor development; it also potently inhibits tumor cell growth, which results in significant improvement of treatment response, patient survival, and progression-free survival.Therefore, VEGF-targeted therapeutic agents are a pivotal research focus, and are a prospective strategy in the treatment of diseases, especially cancer.

    Melatonin, the major secretory product of the pineal gland, is considered the most important natural oncostatic hormone in the human body, which reduces the incidence and growth of tumors based on compelling evidence(9-11).Nevertheless, the oncostatic mechanism of melatonin is still obscure.The immunomodulatory, antiproliferative, and anti-oxidant effects of melatonin explain its oncostatic activity.Even the possible anti-angiogenic effect of melatonin may also be involved in this activity.Some significant basic clinical studies (12,13) have shown that melatonin-induced control of neoplastic growth is associated with a decline in VEGF secretion, which suggests that melatonin could exert its anti-angiogenic activity indirectly through its inhibition of VEGF expression.However, the abovementioned studies are very preliminary.The aim of the present study is to determine the melatonin effects on pancreatic cancer cells and to explore in detail the oncostatic mechanism of melatonin.

    Materials and methods

    Cell culture

    Pancreatic carcinoma cells (PANC-1), a human pancreatic cancer cell line, were obtained from the Cell Biology Center of the Chinese Academy of Medical Sciences and the Peking Union Medical College.The cells were cultured in Dulbecco’s modified eagle medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum, 4 mmol/L glutamine, 100 nmol/L sodium pyruvate, 25 mmol/L HEPES,100 U/mL penicillin, and 100 U/mL streptomycin, and incubated at 37 ℃ in a humidified atmosphere containing 5% CO2.Cells in good condition were selected for the succeeding study.

    Cell proliferation and cell viability assay

    Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)method.The cells were seeded at a density of 5,000-10,000 cells/well on a 96-well culture plate.According to the experimental design, after 24 h, the culture medium respectively containing 1, 10, 100, 1,000, 10,000, 100,000 and 1,000,000 nmol/L melatonin (Sigma, St.Louis, USA)was added to the different pancreatic cell groups for a time range from 0 h to 24 h.Thereafter, the incubation environment was kept away from light.Approximately 24 h later, 20 μL of 5 mg/mL MTT was added to each well of the 96-well plate.The cells were continuously incubated for 4 h, and then the medium was removed and replaced with 150 μL dimethyl sulfoxide (DMSO) per well.The absorbance was measured at 490 nm wavelength using an enzyme-linked immunosorbent assay (ELISA) plate reader(BioRad, Benchmark, Japan).The samples were assayed with eight replicates, and the mean optical density (OD)values were analyzed.Cell viability was determined by trypan blue exclusion test.The same experiments were performed at least three times.

    Determination of VEGF concentration in cultured supernatants by ELISA

    PANC-1 cells were seeded on 60 mm diameter dishes and continually incubated for 24 h.Then, 1 mmol/L melatonin was added to the experiment group.After 48 h of incubation away from light, the VEGF concentrations secreted by PANC-1 cells in the supernatants of the experimental group and the untreated control were quantified by ELISA.The cultured supernatant was collected and centrifuged at 12,000 r/min at 4 ℃ for 15 min, and then ELISA was performed according to the manufacturer’s instructions(VEGF ELISA kit, Promega, Madison, USA).The OD values (A450) were measured at a wavelength of 450 nm.The total cell number was counted using the cell-counting plate for at least three times.The standard curve was determined by SPSS statistical software (SPSS Inc., Chicago, IL, USA).The supernatants were harvested with six replicates, and the experiment was performed three times.

    Detection of VEGF expression in cultured PANC-1 cells in vitro by immunocytochemistry

    Cells at 105cells/well were seeded on a 24-well culture plate to detect VEGF expression in the PANC-1 cells.Approximately 24 h later, the culture medium was replaced with conditioned medium with or without 1 mmol/L melatonin.The cells were incubated further at 37 ℃ in a CO2incubator under a light-free environment for 24 h.After fixation with buffered paraformaldehyde, the cells were treated with pronase for 30 min, incubated with 0.3%H2O2in methanol for 30 min to eliminate the endogenous peroxide activity, rinsed with phosphate buffered saline(PBS), and then incubated with normal blocking serum for 20 min.Afterward, the cells were incubated overnight with VEGF-A mouse-anti-human polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, USA) at 4 ℃.Thereafter,the bridging antibody [poly-horse radish peroxide (HRP)anti-mouse IgG; Santa Cruz Biotechnology, Santa Cruz,USA] was incubated with the cells for 20 min at 30 ℃.Finally, 3,3'-diaminobenzidine (DAB) was applied according to the manufacturer’s protocol (DAB Kit, Promega,Madison, USA).For the image analysis, 150 cells, each with a clear outline, from 10 microscopic fields (15 cells in each field) were selected randomly from each group under 200× magnification.The average gray value and integral OD of each group were automatically measured using HPIAS-1000, a high resolution pathological image analysis system.

    Detection of VEGF mRNA expression by reverse transcription polymerase chain reaction (RT-PCR)

    PANC-1 cells were seeded on 60 mm diameter dishes,incubated for 24 h, and starved for another 24 h.Then,the medium with 1 mmol/L melatonin was added.After 24 h incubation, total RNA was extracted separately from the cells of each group with TRIzol?reagent following the manufacturer’s instructions.Approximately 2 μg total RNA sample [treated in 8 mL diethylpyrocarbonate(DEPC) water in an Eppendorf centrifuge (Ep) tube and to which 1 μL of 10 mmol/L dNTPmix and 1 μL of 0.5 μg/μL Oligo(dt)12-18were added] was denaturalized by incubating at 65 ℃ for 5 min.The Ep tube was placed in an ice bath for 2 min.The RNA sample was then reverse-transcribed to complementary DNA (cDNA) as follows: the denatured RNA was incubated at 42 ℃ for 2 min with 2 μL of 10×RT buffer, 4 μL of 25 mmol/L MgCl2, 2 μL of 0.1 mol/L dithiothreitol (DTT), and 1 μL of 50 U/μL recombinant RNase inhibitor (RNaseOUTTM).Then, 1 μL (50 units)SuperScriptTMII reverse transcriptase was added, followed by incubation at 42 ℃ for 50 min and termination at 70 ℃ for 15 min in a total volume of 20 μL.Finally, after chilled on ice, 1 μL RNase H was added, and then the solution was incubated for 20 min at 37 ℃ before PCR was performed.For the PCR, 2 μL of the resulting cDNA,36.75 μL of tripled-distilled water, 5 μL of 10× PCR buffer, 3 μL of 25 mmol/L MgCl2, 1 μL of 10 mmol/L dNTPs, 1 μL each of the 10 μmol/L sense and antisense primers, and 0.25 μL of 5 U/μL Taq DNA polymerase in a total volume of 50 μL were added.The samples were amplified through incubation at 94 ℃ for 5 min,30 cycles of denaturation at 94 ℃ for 45 s, annealing at 54 ℃ for 45 s and extension at 72 ℃ for 1 min, and final incubation at 72 ℃ for 7 min.The PCR products were analyzed on 1% agarose gel containing ethidium bromide.The primer sequences for VEGF165 were sense:5'-GGGCAGAATCATCACGAAGT-3' and antisense:5'-AAATGCTTTCTCCGCTCTGA-3' (359 bp); and for b-actin, sense: 5'-GTGCGTGACATTAAGGAG-3' and antisense: 5'-CTAAGTCATAGTCCGCCT-3' (520 bp).

    Statistical analysis

    Statistical analysis was performed using the SPSS version 10.0 statistical package for Windows (SPSS Inc.Chicago,IL, USA).All data were presented as.The t-test was used for the comparison between the groups of cell proliferation, mRNA, and VEGF expression.Correlation regression was used for the correlation between the OD values and VEGF concentrations in the cultured medium.P<0.05 was considered statistically significant.

    Results

    MTT and cell viability test

    After 24 h of incubation, lower melatonin concentrations(1 nmol/L-1,000 nmol/L) had no obvious effect on cellular proliferation (P>0.05).However, higher melatonin concentrations (≥100,000 nmol/L)significantly inhibited cell proliferation, especially when the melatonin concentration reached 1 mmol/L (P<0.01)(Figure 1A).At different time points, 1 mmol/L melatonin treatment on PANC-1 cells induced cell growth downregulation, which was detectable after 3 h of incubation(P<0.05) and increased with treatment time (at 24 h,P<0.01) (Figure 1B).Using the trypan blue exclusion test, the cell viability assay demonstrated that after melatonin treatment, the PANC-1 cells in each group had >98% viability, indicating that 1 mmol/L melatonin had no evident toxic effects, in agreement with our previous study.Moreover, no quantitative evidence of acute cytotoxicity was detected, as determined by the cell viability assay.Therefore, in this experiment, 1 mmol/L melatonin showed the greatest anti-proliferative effect on PANC-1 cells, exhibiting enhanced performance with increased treatment time.

    Effect of melatonin on VEGF production in cultured supernatants

    After 24 h incubation, the VEGF concentration in the cultured supernatant was significantly decreased in the experimental group (0.006,91±0.001,31 pg/cell, P<0.05)compared with the control group (0.004,61±0.000,926 pg/cell, P<0.05), which indicated that melatonin could inhibit VEGF production in PANC-1 cells (Figure 2A,B).

    Figure 1 Cell growth evaluated by the MTT method under different conditions.A.Groups with melatonin concentrations greater than 10,000 nmol/L showed an anti-proliferative effect, especially when the concentration reached 1 mmol/L (P<0.01); B.In the 1 mmol/L melatonin group, cell growth down-regulation was detectable after 3 h (P<0.05) of incubation, and increased with the treatment time (at 24 h,P<0.01)

    Figure 2 VEGF concentrations.A.The standard curve determined by ELISA using the standard recombined human VEGF provided in the manufacturer’s ELISA kit.The equation is y=-0.9202+0.2644lnx (y.OD values; x.VEGF concentrations); B.The VEGF concentration (per cell) is significantly decreased (P<0.05) compared with the control group after 24 h incubation with melatonin

    Immunocytochemical staining of VEGF protein expression in PANC-1 cells

    From the immunocytochemical staining, VEGF positive staining is clearly seen in the cell cytoplasm and membrane, and shows a markedly deceased VEGF expression compared with the control group (the average gray value: 45.72±7.85vs.91.28±14.56, P<0.05)(Figure 3A,B).

    Effect of melatonin on VEGF mRNA expression in PANC-1 cells

    According to the humanVEGF165cDNA record in GenBank and the trait of the designed specific primers, the whole length of the RT-PCR products identified by agarose gel electrophoresis was accorded with the background reference of the human VEGF165 cDNA (Figure 4A,B).Furthermore, the PCR products were determined by DNA sequence analysis and contained the full length ofVEGF165mRNA similar to that described in GenBank with accession number AF-486837.Based on the RT-PCR analysis results,VEGFmRNA expression was significantly decreased in the melatonin group after 6 h and 24 h treatment (P<0.05),suggesting that melatonin could suppressVEGFmRNA transcription.

    Figure 3 The location of VEGF immunocytochemical staining in the cytoplasm and cell membrane of PANC-1 cells.

    Figure 4 VEGF mRNA expression in PANC-1 cells demonstrated by RT-PCR.A is the representative image and B is the statistical bar graph of VEGF/β-actin ratios (compared with control group).VEGF is significantly decreased in the melatonin group after 6 and 24 h treatments (P<0.05)

    Discussion

    Angiogenesis, which is the sprouting of new blood vessels from the existing endothelium, is essential for wound repair, organ regeneration, embryonic vascular system development, and a variety of pathological conditions,especially tumor angiogenesis.Tumor growth, development,and behavior are dependent on angiogenesis, especially solid tumors (14,15).Increased angiogenesis is associated with tumor metastases, poor prognosis, and reduced patient survival (15-17).The tumor cell properties of releasing and inducing several angiogenic and antiangiogenic factors play a crucial role in regulating endothelial cell (EC)proliferation, migration, apoptosis or survival, and cellcell and cell-matrix adhesion through different intracellular signals, and are the essential mechanisms of tumor inducedangiogenesis (17,18).Theoretically, if antiangiogenic agents are administered before a tumor develops or becomes dependent on a vascular supply, they would act similar to a vaccine in preventing tumor development and tumor growth (15,17,19).Therefore, understanding the angiogenesis-regulating mechanism could provide new therapeutic options for cancer treatment.

    Considering that VEGF, the most important mediator of tumor angiogenesis, is crucial to pancreatic cancer development and extensive vascularization (17), in our experiment, VEGF was selected as a reliable parameter to ascertain whether melatonin has an anti-angiogenic effect on pancreatic cancer cellsin vitro.In our experiment,high levels of VEGF protein and mRNA expression were detected in the control group.This finding agreed with previous studies and supported the view that pancreatic carcinoma has extensive tumor neoangiogenesis and extensive vascularization, which is correlated with the overexpression of several angiogenic factors, such as VEGF,platelet-derived endothelial cell growth factor, and matrix metalloproteinases (18-20).In immunochemistry detection,the VEGF was also markedly detected in the tumor cell cytoplasm, suggesting that VEGF is not just a secreted mediator active in the extracellular environment through the VEGF-VEGFR system.

    Being the most important naturally oncostatic hormone,melatonin possibly exerts its anti-tumor effect through the immunomodulatory, anti-proliferative or anti-oxidant pathway (9,21-24).However, in this experiment, melatonin exhibited a possible anti-angiogenetic mechanism.Previous studies have demonstrated the anti-angiogenic action of melatonin on tumor angiogenesis, either directly or indirectly(13,25,26).In the present study, after 1 mmol/L melatonin administration, a significant decrease of VEGF concentration in the culture supernatants was observed compared with the control group, demonstrating an evident inhibitory effect of melatonin onVEGFmRNA expression.In addition, from the immunocytochemistry study, the VEGF intracellular localization also decreased in the melatonin group.Based on these results, 1 mmol/L melatonin could significantly inhibit VEGF production in PANC-1 cells, thus suggesting its possible anti-angiogenic effect.

    How do melatonin and VEGF interact? This issue was not tackled in detail in this experiment.The immunoenhancing activity of melatonin could possibly explain the mechanism for melatonin and VEGF interaction,considering that VEGF suppresses the immune response by blocking dendritic cell maturation (27).From a physiopathological point of view, melatonin may be involved in the regulation of neoangiogenesis due to its modulatory role in immunity and hematopoiesis (28,29).Moreover, melatonin receptors, retinoid Z receptor/retinoid orphan receptor, and other mechanisms are involved in the neoangiogenesis process (30,31), which will be an important focus of our future research.In our previous study, we found that high concentrations of melatonin inhibited elevated cell proliferation and cell migration of the human umbilical vein endothelial cells stimulated by co-culturing with PANC-1 cells through the suppression of VEGF expression in PANC-1 cells (32).Through the anti-proliferative effect (as confirmed by many studies and by this present experiment),but not the possible anti-angiogenic effect (which was not proven in detail elsewhere except in this study) of melatonin,the melatonin action is dependent on the cell type, functional cellular state or several other factors, such as the drug concentration in this experiment (10,33).Melatonin has a marked antitumor effect in the concentration range from nmol/L to several hundreds mmol/L (34,35).In our study, melatonin exhibited a great inhibitory effect on VEGF production when in high concentrations (1 mmol/L).Medical therapeutics using low melatonin concentrations may become realistic goals in the future.

    In summary, our study showed that high concentrations of melatonin inhibited the cellular proliferation of pancreatic carcinoma cells and suppressed endogenous VEGF expression,therefore melatonin may be used in very innovative and challenging antiangiogenesis therapeutics of cancers.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (No.30901745).

    Disclosure:The authors declare no conflict of interest.

    1.Sch?nau KK, Steger GG, Mader RM.Angiogenic effect of naive and 5-fluorouracil resistant colon carcinoma on endothelial cells in vitro.Cancer Lett 2007;257:73-8.

    2.Niedergethmann M, Alves F, Neff JK, et al.Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model.Br J Cancer 2007;97:1432-40.

    3.Xie K, Wei D, Huang S.Transcriptional anti-angiogenesis therapy of human pancreatic cancer.Cytokine Growth Factor Rev 2006;17:147-56.

    4.Thurston G, Kitajewski J.VEGF and Delta-Notch:interacting signalling pathways in tumour angiogenesis.Br J Cancer 2008;99:1204-9.

    5.Doi Y, Yashiro M, Yamada N, et al.Significance of phosphovascular endothelial growth factor receptor-2 expression in pancreatic cancer.Cancer Sci 2010;101:1529-35.

    6.Liang QL, Wang BR, Chen GQ, et al.Clinical significance of vascular endothelial growth factor and connexin43 for predicting pancreatic cancer clinicopathologic parameters.Med Oncol 2010;27:1164-70.

    7.Li K, Li MJ, He T, et al.Expression of vascular endothelial growth factor C in pancreatic cancer and its effect upon lymph node metastasis.Zhonghua Yi Xue Za Zhi 2009;89:2386-90.

    8.Ochi N, Matsuo Y, Sawai H, et al.Vascular endothelial growth factor-C secreted by pancreatic cancer cell line promotes lymphatic endothelial cell migration in an in vitro model of tumor lymphangiogenesis.Pancreas 2007;34:444-51.

    9.Reiter RJ.Mechanisms of cancer inhibition by melatonin.J Pineal Res 2004;37:213-4.

    10.Sainz RM, Mayo JC, Rodriguez C, et al.Melatonin and cell death: differential actions on apoptosis in normal and cancer cells.Cell Mol Life Sci 2003;60:1407-26.

    11.Cabrera J, Negrín G, Estévez F, et al.Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells.J Pineal Res 2010;49:45-54.

    12.Lissoni P, Rovelli F, Malugani F, et al.Anti-angiogenic activity of melatonin in advanced cancer patients.Neuro Endocrinol Lett 2001;22:45-7.

    13.Dai M, Cui P, Yu M, et al.Melatonin modulates the expression of VEGF and HIF-1 alpha induced by CoCl2 in cultured cancer cells.J Pineal Res 2008;44:121-6.

    14.Folkman J.Angiogenesis in cancer, vascular, rheumatoid and other disease.Nat Med 1995;1:27-31.

    15.Cook KM, Figg WD.Angiogenesis inhibitors: current strategies and future prospects.CA Cancer J Clin 2010;60:222-43.

    16.Carmeliet P, Jain RK.Angiogenesis in cancer and other diseases.Nature 2000;407:249-57.

    17.Carmeliet P.VEGF as a key mediator of angiogenesis in cancer.Oncology 2005;69 Suppl 3:4-10.

    18.Gupta MK, Qin RY.Mechanism and its regulation of tumor-induced angiogenesis.World J Gastroenterol 2003;9:1144-55.

    19.Saif MW.Anti-angiogenesis therapy in pancreatic carcinoma.JOP 2006;7:163-73.

    20.Turner HE, Harris AL, Melmed S, et al.Angiogenesis in endocrine tumors.Endocr Rev 2003;24:600-32.

    21.Reiter RJ, Tan DX, Erren TC, et al.Light-mediated perturbations of circadian timing and cancer risk: a mechanistic analysis.Integr Cancer Ther 2009;8:354-60.

    22.Carrillo-Vico A, Guerrero JM, Lardone PJ, et al.A review of the multiple actions of melatonin on the immune system.Endocrine 2005;27:189-200.

    23.Carbajo-Pescador S, García-Palomo A, Martín-Renedo J, et al.Melatonin modulation of intracellular signaling pathways in hepatocarcinoma HepG2 cell line: role of the MT1 receptor.J Pineal Res 2011;51:463-71.

    24.Vijayalaxmi, Thomas CR Jr, Reiter RJ, et al.Melatonin:from basic research to cancer treatment clinics.J Clin Oncol 2002;20:2575-601.

    25.Cui P, Luo Z, Zhang H, et al.Effect and mechanism of melatonin’s action on the proliferation of human umbilical vein endothelial cells.J Pineal Res 2006;41:358-62.

    26.Cui P, Yu M, Luo Z, et al.Intracellular signaling pathways involved in cell growth inhibition of human umbilical vein endothelial cells by melatonin.J Pineal Res 2008;44:107-14.

    27.Di Nicola M, Anichini A, Mortarini R, et al.Human dendritic cells: natural adjuvants in antitumor immunotherapy.Cytokines Cell Mol Ther 1998;4:265-73.

    28.Silva SO, Ximenes VF, Livramento JA, et al.High concentrations of the melatonin metabolite, N1-acetyl-N2-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism.J Pineal Res 2005;39:302-6.

    29.Sutherland ER, Martin RJ, Ellison MC, et al.Immunomodulatory effects of melatonin in asthma.Am J Respir Crit Care Med 2002;166:1055-61.

    30.Cho SY, Lee HJ, Jeong SJ, et al.Sphingosine kinase 1 pathway is involved in melatonin-induced HIF-1α inactivation in hypoxic PC-3 prostate cancer cells.J Pineal Res 2011;51:87-93.

    31.Zhang D, Li B, Shi J, et al.Suppression of tumor growth and metastasis by simultaneously blocking vascular endothelial growth factor (VEGF)-A and VEGF-C with a receptor-immunoglobulin fusion protein.Cancer Res 2010;70:2495-503.

    32.Cui P, Yu M, Peng X, et al.Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.J Pineal Res 2012;52:236-43.

    33.Pawlikowski M, Winczyk K, Karasek M.Oncostatic action of melatonin: facts and question marks.Neuro Endocrinol Lett 2002;23:24-9.

    34.García-Santos G, Antolín I, Herrera F, et al.Melatonin induces apoptosis in human neuroblastoma cancer cells.J Pineal Res 2006;41:130-5.

    35.Weinreb O, Mandel S, Youdim MB.cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells.FASEB J 2003;17:935-7.

    美女高潮的动态| 日韩精品有码人妻一区| 日本欧美国产在线视频| 又大又黄又爽视频免费| 精品久久久久久久末码| 日韩不卡一区二区三区视频在线| 国产黄片美女视频| 又黄又爽又刺激的免费视频.| 国产人妻一区二区三区在| 97在线视频观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利在线观看免费完整高清在| 久热这里只有精品99| 国产成人aa在线观看| 亚洲色图综合在线观看| 久久久久久久久大av| av.在线天堂| 人人妻人人爽人人添夜夜欢视频 | 午夜精品国产一区二区电影 | 亚洲av在线观看美女高潮| 免费黄色在线免费观看| 欧美激情在线99| 久久精品久久久久久噜噜老黄| 亚洲成色77777| 免费av观看视频| 高清毛片免费看| 色婷婷久久久亚洲欧美| 深爱激情五月婷婷| 国产成人精品婷婷| 草草在线视频免费看| 汤姆久久久久久久影院中文字幕| 在线a可以看的网站| 91狼人影院| 观看免费一级毛片| 国产亚洲一区二区精品| 免费黄色在线免费观看| 欧美日韩国产mv在线观看视频 | 久久久精品欧美日韩精品| 国产精品国产三级国产av玫瑰| 国产精品偷伦视频观看了| 天堂中文最新版在线下载 | 久久久久久九九精品二区国产| 一个人看视频在线观看www免费| 欧美一级a爱片免费观看看| 国产精品99久久99久久久不卡 | 国产成人免费无遮挡视频| 一级毛片 在线播放| 国产毛片在线视频| 人妻系列 视频| 老师上课跳d突然被开到最大视频| 亚洲怡红院男人天堂| 亚洲国产日韩一区二区| 三级国产精品片| 亚洲欧美清纯卡通| 精品久久久久久久久av| 色网站视频免费| 成年免费大片在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲最大成人av| 免费电影在线观看免费观看| 国产av码专区亚洲av| 美女被艹到高潮喷水动态| 亚洲国产精品国产精品| 国产乱来视频区| 高清欧美精品videossex| 大片免费播放器 马上看| 成人漫画全彩无遮挡| 欧美精品国产亚洲| 大码成人一级视频| 成人国产av品久久久| 亚洲av欧美aⅴ国产| av福利片在线观看| 黄色日韩在线| 黄色配什么色好看| 黄色一级大片看看| 麻豆成人av视频| 日韩国内少妇激情av| 搞女人的毛片| 欧美人与善性xxx| 赤兔流量卡办理| 免费黄频网站在线观看国产| videos熟女内射| 国产乱人偷精品视频| 国产中年淑女户外野战色| 日韩 亚洲 欧美在线| 麻豆成人午夜福利视频| 日韩亚洲欧美综合| 欧美日韩国产mv在线观看视频 | 在线观看免费高清a一片| 国产av国产精品国产| 男女边吃奶边做爰视频| 国产精品一及| 久久人人爽人人爽人人片va| 国产一区亚洲一区在线观看| 亚洲精品色激情综合| av免费在线看不卡| 最近最新中文字幕免费大全7| 国产欧美另类精品又又久久亚洲欧美| 97超视频在线观看视频| 婷婷色综合大香蕉| 在线观看av片永久免费下载| 欧美精品一区二区大全| 成人亚洲精品一区在线观看 | 热99国产精品久久久久久7| 毛片女人毛片| 亚洲最大成人手机在线| 日本av手机在线免费观看| 国产亚洲最大av| 久久久久久久精品精品| 日本爱情动作片www.在线观看| 成人特级av手机在线观看| 一级a做视频免费观看| 国产亚洲91精品色在线| 综合色av麻豆| 18禁在线无遮挡免费观看视频| 久久久久九九精品影院| 好男人在线观看高清免费视频| 午夜爱爱视频在线播放| 欧美3d第一页| 国产 一区 欧美 日韩| 大又大粗又爽又黄少妇毛片口| 欧美高清成人免费视频www| 高清视频免费观看一区二区| 亚洲经典国产精华液单| 国产女主播在线喷水免费视频网站| 男人舔奶头视频| 日韩欧美精品v在线| 777米奇影视久久| 国产成人免费无遮挡视频| 亚洲欧美中文字幕日韩二区| 国产精品伦人一区二区| 国产淫语在线视频| 不卡视频在线观看欧美| 久久久久久久久久人人人人人人| 久久久亚洲精品成人影院| av免费观看日本| 欧美精品国产亚洲| 啦啦啦中文免费视频观看日本| 在现免费观看毛片| 性色av一级| 国产午夜精品一二区理论片| 少妇高潮的动态图| 亚洲欧美精品自产自拍| 婷婷色综合大香蕉| 青春草亚洲视频在线观看| 亚洲欧美清纯卡通| 国产精品伦人一区二区| 国产精品麻豆人妻色哟哟久久| 日韩,欧美,国产一区二区三区| 午夜日本视频在线| 欧美bdsm另类| 菩萨蛮人人尽说江南好唐韦庄| 国产男人的电影天堂91| 亚洲av一区综合| 日韩亚洲欧美综合| 欧美成人午夜免费资源| 亚洲性久久影院| 天堂中文最新版在线下载 | 五月玫瑰六月丁香| 精品少妇久久久久久888优播| 日本欧美国产在线视频| 国产91av在线免费观看| 中文资源天堂在线| 99精国产麻豆久久婷婷| 国产精品成人在线| 各种免费的搞黄视频| 亚洲aⅴ乱码一区二区在线播放| 在线免费观看不下载黄p国产| 国产91av在线免费观看| kizo精华| 三级国产精品欧美在线观看| 国产午夜福利久久久久久| 精品熟女少妇av免费看| 中国国产av一级| 国产亚洲av嫩草精品影院| 国产精品蜜桃在线观看| 国产在线男女| 人人妻人人澡人人爽人人夜夜| 少妇人妻一区二区三区视频| 又粗又硬又长又爽又黄的视频| 国产成人a∨麻豆精品| 少妇 在线观看| 国产精品麻豆人妻色哟哟久久| 日韩国内少妇激情av| 交换朋友夫妻互换小说| 欧美日韩在线观看h| 亚洲av福利一区| 日韩欧美精品免费久久| 欧美成人精品欧美一级黄| 久久久a久久爽久久v久久| 五月开心婷婷网| 婷婷色麻豆天堂久久| xxx大片免费视频| 男男h啪啪无遮挡| 国产乱来视频区| 国产欧美日韩精品一区二区| 99久久九九国产精品国产免费| 亚洲av日韩在线播放| 午夜日本视频在线| 又粗又硬又长又爽又黄的视频| 亚洲国产精品成人综合色| 黄色视频在线播放观看不卡| 伊人久久国产一区二区| 亚洲最大成人中文| 国产爱豆传媒在线观看| 日韩伦理黄色片| 国产成人免费观看mmmm| 黑人高潮一二区| 国产成人免费无遮挡视频| 久久久久性生活片| a级一级毛片免费在线观看| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产av玫瑰| 男女下面进入的视频免费午夜| 一区二区av电影网| xxx大片免费视频| 国产精品久久久久久av不卡| 精品一区二区三区视频在线| av在线app专区| 三级经典国产精品| 国产一区二区三区av在线| 一级毛片电影观看| 国产美女午夜福利| 一级毛片aaaaaa免费看小| 亚洲第一区二区三区不卡| 国产精品成人在线| 激情 狠狠 欧美| 国产亚洲一区二区精品| 精品久久久久久久人妻蜜臀av| 亚洲第一区二区三区不卡| 免费电影在线观看免费观看| 国产成人免费无遮挡视频| 久热久热在线精品观看| 久久鲁丝午夜福利片| 亚洲精品aⅴ在线观看| 99久久中文字幕三级久久日本| 免费观看性生交大片5| 狂野欧美激情性bbbbbb| 美女被艹到高潮喷水动态| 成人毛片60女人毛片免费| 国产亚洲91精品色在线| 国产精品一区www在线观看| 国产日韩欧美在线精品| 我的老师免费观看完整版| 自拍欧美九色日韩亚洲蝌蚪91 | 天天躁夜夜躁狠狠久久av| 啦啦啦在线观看免费高清www| 欧美xxxx黑人xx丫x性爽| 老女人水多毛片| 夫妻性生交免费视频一级片| 亚洲av男天堂| 亚洲精品国产av成人精品| 日日啪夜夜爽| 99视频精品全部免费 在线| 又大又黄又爽视频免费| 国精品久久久久久国模美| 青春草国产在线视频| 王馨瑶露胸无遮挡在线观看| 久久久久久久国产电影| 亚洲经典国产精华液单| 菩萨蛮人人尽说江南好唐韦庄| 91精品伊人久久大香线蕉| 久久久久久久大尺度免费视频| 人妻制服诱惑在线中文字幕| 亚洲精品日韩av片在线观看| 嫩草影院新地址| 久热久热在线精品观看| 精品酒店卫生间| 日韩中字成人| 最后的刺客免费高清国语| 涩涩av久久男人的天堂| 波野结衣二区三区在线| www.色视频.com| 美女cb高潮喷水在线观看| 国产精品麻豆人妻色哟哟久久| 全区人妻精品视频| 高清日韩中文字幕在线| 禁无遮挡网站| 精品久久久噜噜| 中文字幕av成人在线电影| 国产亚洲午夜精品一区二区久久 | 国产高潮美女av| 2018国产大陆天天弄谢| 99热全是精品| 中国美白少妇内射xxxbb| 亚洲欧美日韩无卡精品| av国产精品久久久久影院| 超碰97精品在线观看| 黄色欧美视频在线观看| 欧美xxⅹ黑人| 国产亚洲91精品色在线| 春色校园在线视频观看| 最近最新中文字幕大全电影3| 在线天堂最新版资源| 免费不卡的大黄色大毛片视频在线观看| 天天躁日日操中文字幕| 99热这里只有精品一区| 国产熟女欧美一区二区| 日韩三级伦理在线观看| 婷婷色综合www| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| 亚洲av一区综合| 久久精品国产a三级三级三级| 欧美三级亚洲精品| 2018国产大陆天天弄谢| 韩国av在线不卡| 人人妻人人看人人澡| av在线观看视频网站免费| 久久久久久国产a免费观看| 秋霞在线观看毛片| 一个人看视频在线观看www免费| 3wmmmm亚洲av在线观看| 97热精品久久久久久| 真实男女啪啪啪动态图| 国产女主播在线喷水免费视频网站| 一边亲一边摸免费视频| 亚洲成人一二三区av| 国产精品一区二区三区四区免费观看| 搡女人真爽免费视频火全软件| 午夜老司机福利剧场| 久久久a久久爽久久v久久| 91久久精品电影网| 美女xxoo啪啪120秒动态图| 在线亚洲精品国产二区图片欧美 | av播播在线观看一区| 天天躁日日操中文字幕| 在线观看人妻少妇| 麻豆久久精品国产亚洲av| 欧美另类一区| 中文字幕免费在线视频6| 国产白丝娇喘喷水9色精品| 国产精品一及| 国产美女午夜福利| 天天一区二区日本电影三级| 七月丁香在线播放| 精品人妻熟女av久视频| 成人高潮视频无遮挡免费网站| 亚洲一级一片aⅴ在线观看| 秋霞在线观看毛片| 亚洲欧美日韩东京热| 亚洲精品色激情综合| 成年人午夜在线观看视频| kizo精华| 久久精品国产自在天天线| 日本一二三区视频观看| 欧美潮喷喷水| 街头女战士在线观看网站| 卡戴珊不雅视频在线播放| 国产成人精品一,二区| 国产乱人视频| 色哟哟·www| 欧美丝袜亚洲另类| 免费大片黄手机在线观看| 草草在线视频免费看| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费| 视频区图区小说| 五月天丁香电影| 熟女av电影| 丰满人妻一区二区三区视频av| 国产视频内射| 人妻制服诱惑在线中文字幕| 亚洲精品乱久久久久久| 老司机影院成人| 亚洲无线观看免费| 99热网站在线观看| 97精品久久久久久久久久精品| 黄色日韩在线| 在线观看三级黄色| 亚洲成人一二三区av| 国产有黄有色有爽视频| 日韩强制内射视频| 亚洲精品国产av蜜桃| 免费观看在线日韩| 成人漫画全彩无遮挡| 高清在线视频一区二区三区| 交换朋友夫妻互换小说| 国产免费视频播放在线视频| 男女无遮挡免费网站观看| 日本色播在线视频| 男插女下体视频免费在线播放| 91狼人影院| 丰满人妻一区二区三区视频av| 韩国av在线不卡| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 青春草国产在线视频| 不卡视频在线观看欧美| 99热网站在线观看| 人妻少妇偷人精品九色| 九草在线视频观看| 有码 亚洲区| 高清毛片免费看| 日韩av不卡免费在线播放| 欧美xxxx黑人xx丫x性爽| 18+在线观看网站| www.色视频.com| 亚洲av日韩在线播放| 综合色丁香网| 成人综合一区亚洲| 精品国产乱码久久久久久小说| 亚洲精品日本国产第一区| 日韩国内少妇激情av| 国产成人精品婷婷| 国产精品一二三区在线看| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 国产亚洲av片在线观看秒播厂| 国产精品无大码| 成人无遮挡网站| 午夜视频国产福利| 亚洲美女视频黄频| 国产视频内射| 麻豆久久精品国产亚洲av| 亚洲,一卡二卡三卡| 日韩电影二区| 又大又黄又爽视频免费| 免费黄色在线免费观看| av天堂中文字幕网| av一本久久久久| 国产高清三级在线| 久久国产乱子免费精品| 国产亚洲精品久久久com| 色5月婷婷丁香| 国产男人的电影天堂91| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 亚洲精品影视一区二区三区av| 免费av观看视频| 亚洲自偷自拍三级| 亚洲精品国产av蜜桃| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| 国产伦在线观看视频一区| 在线观看三级黄色| 亚洲国产精品国产精品| 欧美日韩视频精品一区| 水蜜桃什么品种好| 欧美区成人在线视频| 最近中文字幕高清免费大全6| 丝袜喷水一区| 精品国产乱码久久久久久小说| 狂野欧美白嫩少妇大欣赏| 99视频精品全部免费 在线| 一二三四中文在线观看免费高清| 97超碰精品成人国产| 久久精品综合一区二区三区| 新久久久久国产一级毛片| 免费播放大片免费观看视频在线观看| 又爽又黄无遮挡网站| 国产成人精品久久久久久| 国产免费一区二区三区四区乱码| 伦精品一区二区三区| 又粗又硬又长又爽又黄的视频| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 韩国高清视频一区二区三区| 亚洲精品aⅴ在线观看| 美女内射精品一级片tv| 日韩国内少妇激情av| 男女边吃奶边做爰视频| 久久久a久久爽久久v久久| 一区二区av电影网| 亚洲精品成人av观看孕妇| 亚洲精品国产av蜜桃| 国产精品国产三级专区第一集| 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 国产综合精华液| 超碰97精品在线观看| 日日啪夜夜撸| 最后的刺客免费高清国语| 国产成人freesex在线| 久久久精品94久久精品| 国产日韩欧美在线精品| 亚洲一级一片aⅴ在线观看| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 亚洲国产色片| 精品国产一区二区三区久久久樱花 | 亚洲天堂av无毛| 久久久色成人| 人体艺术视频欧美日本| 国产精品女同一区二区软件| 国产色婷婷99| 国产精品福利在线免费观看| 韩国av在线不卡| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| 色综合色国产| 综合色av麻豆| 国产精品人妻久久久久久| 亚洲自偷自拍三级| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 国产中年淑女户外野战色| 天天躁夜夜躁狠狠久久av| 99久国产av精品国产电影| .国产精品久久| 亚洲aⅴ乱码一区二区在线播放| 日韩国内少妇激情av| 免费大片18禁| 国产毛片在线视频| 一级毛片电影观看| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 国产一区有黄有色的免费视频| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av蜜桃| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类| 国产黄色免费在线视频| 黄色视频在线播放观看不卡| 大话2 男鬼变身卡| 五月天丁香电影| 纵有疾风起免费观看全集完整版| 久久久色成人| 天堂中文最新版在线下载 | 国产乱人偷精品视频| 黄片wwwwww| 国产v大片淫在线免费观看| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 婷婷色av中文字幕| 亚洲精品自拍成人| 亚洲精品日本国产第一区| 三级国产精品欧美在线观看| 好男人在线观看高清免费视频| 在线看a的网站| 色婷婷久久久亚洲欧美| 国产免费福利视频在线观看| 成年人午夜在线观看视频| 亚洲精品自拍成人| 人妻系列 视频| 自拍偷自拍亚洲精品老妇| 女人被狂操c到高潮| 亚洲熟女精品中文字幕| 欧美3d第一页| 精品人妻视频免费看| 欧美丝袜亚洲另类| 国产午夜精品久久久久久一区二区三区| 国产精品一二三区在线看| 欧美亚洲 丝袜 人妻 在线| 国产中年淑女户外野战色| 国产极品天堂在线| 国产亚洲一区二区精品| 国产黄频视频在线观看| 性色av一级| av免费观看日本| 久久久久久久久大av| 丝袜喷水一区| 国产成人福利小说| 另类亚洲欧美激情| 观看美女的网站| 欧美+日韩+精品| 亚洲国产精品成人综合色| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 午夜日本视频在线| 啦啦啦啦在线视频资源| 日本色播在线视频| 晚上一个人看的免费电影| 成人国产麻豆网| videos熟女内射| 国产男人的电影天堂91| 国产精品国产av在线观看| 美女xxoo啪啪120秒动态图| 色5月婷婷丁香| av国产精品久久久久影院| 黄色一级大片看看| 嫩草影院入口| 精品国产一区二区三区久久久樱花 | .国产精品久久| 最后的刺客免费高清国语| 国内精品美女久久久久久| 亚洲精品日本国产第一区| 亚洲精品亚洲一区二区| 欧美3d第一页| 在线观看一区二区三区| 别揉我奶头 嗯啊视频| av免费在线看不卡| 夜夜爽夜夜爽视频| 国产精品三级大全| 亚洲精华国产精华液的使用体验| 视频中文字幕在线观看| 女人久久www免费人成看片| 91精品伊人久久大香线蕉| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 男人舔奶头视频| 如何舔出高潮| 亚洲美女视频黄频| 成人美女网站在线观看视频| 激情五月婷婷亚洲| 久久精品国产亚洲av涩爱| 丝袜美腿在线中文| 一级毛片黄色毛片免费观看视频| 男人爽女人下面视频在线观看| 久久99精品国语久久久| 国产91av在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 精品酒店卫生间| 一本久久精品| 91午夜精品亚洲一区二区三区| 国产v大片淫在线免费观看| 最近最新中文字幕免费大全7| 亚洲丝袜综合中文字幕| 免费大片18禁| 肉色欧美久久久久久久蜜桃 | 国产高潮美女av| 国产69精品久久久久777片|