林國漢,李曉秀
(湖南工程學院 電氣信息學院,湘潭411101)
高性能交流傳動系統(tǒng)要求對電動機進行速度閉環(huán)控制,必須實時獲取電機速度反饋信號,這樣就必須安裝光電編碼器或者測速發(fā)電機等高精度的速度和位置傳感器,但傳感器的存在會帶來如維護困難、系統(tǒng)的機械魯棒性和可靠性降低、系統(tǒng)成本增加、在惡劣環(huán)境下傳感器的精度容易受到干擾的影響,以致無法工作等問題.因此,眾多學者轉為研究無速度傳感器的交流傳動系統(tǒng),提出了許多無速度傳感器矢量控制系統(tǒng)的速度辨識方法,主要有兩類:基于理想電動機模型的轉速辨識方法和基于非理想電動機模型的轉速辨識方法.
近年來,對電機速度進行在線辨識一直是個熱門課題,國內外學者針對無速度傳感器技術進行了大量的研究工作,提出了許多算法,這些算法可以分成兩類:第一類方法是基于電機理想模型的方法.這類方法利用電機的數學模型和檢測到的定子電流、電壓信號來估算電機的速度,如直接計算法(又可分為基于電壓模型的轉速辨識、基于電流模型的轉速辨識、基于反電動勢法的速度辨識)[1]、模型參考自適應法(MRAS)[2-3]、擴展卡爾曼濾波法(EKF)[4]、滑模觀測器法(SMO)[5]、速度動態(tài)估算法(SDE)[6]、最小二乘法[7]、利用電機磁化電流無功功率實現(xiàn)轉速辨識[8]、全階閉環(huán)狀態(tài)觀測器法、PI自適應調節(jié)器法等.這類方法對電機模型進行了理想化的假設,依賴于電機的理想數學模型.第二類方法是基于非理想電機模型的方法.這類方法通過提取定子電流、電壓諧波中包含的有關電機轉子位置和速度信息來辨識電機的速度,如轉子齒諧波法、高頻信號注入法[9]、基于人工神經網絡估計法[10]、基于模糊神經網絡的速度辨識法[11],基于魚群算法的速度辨識[12]、基于遺傳算法的速度辨識方法等[13-14]
無速度傳感器技術已獲得了廣泛的應用,現(xiàn)將幾種比較典型的轉速辨識方法介紹如下:
1.1.1 速度動態(tài)估計器法
電機在對稱運行的條件下,定子和轉子的磁場為圓形旋轉磁場并以同步角速度w1進行旋轉,轉子以w旋轉,以轉差ws切割旋轉磁場,產生電磁轉矩.通過磁通觀測器,可以觀測到轉子磁通,由轉子磁通可以得到同步轉速,而由定子dq軸電流又可以得到轉差速度,從而得到轉子的旋轉速度,即:
根據轉子磁通ψra、ψrβ的變化就可以得到轉子磁通旋轉角:
在磁場定向的矢量控制系統(tǒng)中,將轉子磁場定向于以同步速度旋轉的dq軸的d軸上,即ψrd=ψ2,ψrq=0,轉差角速度可由下式求得:
這種方法的優(yōu)點是直觀性強,理論上講速度的計算沒有延時.但是有如下缺點:由于缺少誤差校正環(huán)節(jié),難以保證系統(tǒng)的抗干擾性能,甚至可能出現(xiàn)不穩(wěn)定的情況;需要知道磁通,因而受磁通觀測與控制精度的影響;電機參數發(fā)生變化時,轉速辨識精度會受到影響[1][4].
1.1.2 模型參考自適應法
模型參考自適應(MARS)法是一種常用的估算轉子位置和速度的方法.其主要思想是將不含未知參數的方程作為參考模型,而將含有待辨識參數的方程作為可調模型,兩個模型具有相同物理意義的輸出量,利用兩個模型輸出量的誤差構成合適的自適應律來實時調節(jié)可調模型的參數,以達到控制對象的輸出跟蹤參考模型的目的.這方面較有影響的是Shcuader提出的方法.
(3)提倡女性參加政治。秋瑾有較強的政治意識,提出婦女應當關心時政,擁有愛國思想。因為如果國亡,權利亦亡。保國,就是保權利。應把權利與義務聯(lián)系起來,把女子盡義務,參與革命,作為爭取女性權益的條件之一。岸田俊子首次以國家觀念為媒介而開始參與政治活動,在這種國家觀念中,最為顯著的就是強烈的“愛國之情”。不僅如此,岸田還將矛頭指向男性民權家,期待將女性解放伸張納入到男性民權家的話語中去,以圖謀求女權。
通過異步電動機在兩相靜止坐標系下的電壓電流方程,可以得到轉子磁鏈觀測器的兩種不同模型.
電壓模型:
從式(4)、式(5)可知,電壓模型不含待辨識轉速w,作為參考模型,而含有待辨識轉速 的磁鏈方程(電流模型)作為可調模型,利用電壓模型的輸出作為轉子磁鏈的期望值,電流模型的輸出作為轉子磁鏈的推算值,以轉子磁鏈 和 作為比較輸出量,采用PI自適應律估計轉速^w ,自適應機構的采用波波夫的超穩(wěn)定性理論來進行設計,以保證狀態(tài)收斂[8].其原理框圖如圖1所示.
圖1 模型參考自適應速度辨識框圖
MRAS在異步電機及永磁同步電機的無速度傳感器控制中已有很多應用.但是這種方法基于電機的基波模型,當電機參數發(fā)生變化時,轉速的估計精度將下降,尤其在電機低速運行時更為嚴重.由于MRAS的速度觀測是以參考模型的準確為基礎的,參考模型里包含的電機參數準確程度將影響到速度辨識和控制效果,所以需要考慮對多個參數同時進行辨識,并保證參數和系統(tǒng)狀態(tài)同時收斂到真值[14-15].
1.1.3 滑模觀測器法
滑??刂频幕鞠敕ㄊ嵌x一個切換面S(也叫滑動參數),保證在這個切換面上系統(tǒng)是穩(wěn)定或至少是近似穩(wěn)定的,然后用控制信號把系統(tǒng)調整到這個切換面上.即用一種控制的方法,使s和系統(tǒng)誤差e在有限時間內收斂到零.為確保電流觀測器的收斂性,就產生了等效控制(找一種等效控制,強迫系統(tǒng)運行在滑模面上,即在這種控制下系統(tǒng)的運動正好就是滑模面上滑動模態(tài)的運動).對于滑模面上的運動,應滿足s(X)=0,sg(X),然后將等效控制用于磁通觀測來產生 軸和 軸磁通,繼而使用觀測到的磁通來估算電機轉速.根據在轉子磁場定向的兩相靜止α-β坐標系下,以定子電流和轉子磁通為狀態(tài)變量的異步電動機模型,設計以下的觀測器[5]:
圖2 滑模觀測器速度辨識框圖
1.1.4 擴展卡爾曼濾波器法
卡爾曼濾波是上世紀發(fā)展起來的一種濾波方法,它的突出特點是可有效削弱隨機干擾和測量噪聲的影響.當噪聲是正態(tài)分布時,卡爾曼濾波給出狀態(tài)的最小方差估計,當不是正態(tài)分布的噪聲時,則給出狀態(tài)的線性最小方差估計.一般情況下,卡爾曼濾波用于線性系統(tǒng)的狀態(tài)估計,如果用于估計象異步電動機這樣的非線性系統(tǒng)的狀態(tài)時,則必須考慮使用擴展卡爾曼濾波.擴展卡爾曼濾波器(EKF)是線性卡爾曼濾波器在非線性系統(tǒng)中的推廣應用.它將電機轉速看作狀態(tài)變量,并把電機模型增廣為五階非線性模型,在每一步估計時將時域下的電動機模型在運行點進行線性化,再沿用線性卡爾曼濾波器的遞推公式進行估計,這種方法可有效地抑制噪聲,提高轉速估計的精確度.但EKF的計算量大,即使采用降階的卡爾曼濾波器也是如此,而且在濾波前誤差和測量噪聲的統(tǒng)計特性必須已知.同時,在對參數的魯棒性上仍顯得無能為力,尤其是低速時很難取得較滿意的結果.為滿足實時控制的要求,需要用高速、高精度的數字信號處理器來完成計算,這使得無速度傳感器變頻調速系統(tǒng)的硬件成本提高.
1.2.1 轉子齒諧波法
基于理想電動機模型的轉速辨識方法都依賴于電動機模型,因此不可避免地受到電動機參數變化的影響.為克服速度辨識中對電機參數的依賴性,研究者提出了利用基于轉子齒諧波信號中與轉速相關的頻率成分來提取轉速的思想.轉子齒諧波的轉速估計不是從轉速與電動機狀態(tài)的關聯(lián)中間接地獲取轉速,而是從轉子齒諧波的物理信號中直接提取轉速信息.由于電機定子表面和鐵芯上的齒槽會在氣隙磁場中產生齒諧波,在諧波作用下,電機的電壓和電流信號會產生相應的諧波,這種諧波的頻率與轉速是相關的,因此,可以從齒諧波信號中提取相關頻率,根據頻率與速度的關系來推算轉速.而且電流諧波是由轉子機械和電磁的不對稱引起的,因此辨識不依賴于電機參數,即使在頻率很低時也能可靠工作[1].
1.2.2 高頻信號注入法
轉子齒諧波法中所檢測的諧波是在基波信號激勵下形成的,由于在低速時該信號強度較弱,容易受到噪聲干擾.美國的Lorenz等學者另辟蹊徑,提出了高頻信號注入法.其基本思想是在電機的定子側注入高頻電壓或者電流信號,利用產生的高頻效應來檢測相關量,進而提取其中所包含的電機轉速信息,達到辨識轉速的目的.目前比較常用的高頻信號注入法主要有轉子凸極性法和dq軸阻抗差異法[9].
設高頻信號電壓為u1i,頻率為wi,則在定子靜止坐標系下的電壓方程為:
1.2.3 基于神經網絡、仿生智能的速度辨識法
基于人工神經網絡(ANN)的速度辨識是通過學習系統(tǒng)的輸入輸出量逐漸提高控制器的性能,達到所需的性能指標.因為該速度辨識方法不依賴于電動機參數,所以對電機參數變化和噪聲具有魯棒性.使用ANN辨識常見的方法是多層前饋ANN和基于MRAS的兩層ANN網絡.但前饋神經網絡采用的是沿梯度下降算法,存在訓練時間長,局部極小點等問題.近年來,人們一直在利用來自生物系統(tǒng)的靈感來解決實際問題,并構造和設計出許多仿生優(yōu)化算法,如遺傳算法、蟻群算法、微粒群算法、人工魚群算法等,他們都屬于模擬自然界生物系統(tǒng)行為或過程的最優(yōu)化仿生智能算法,眾多學者將神經網絡與仿生智能算法相結合,并應用于無速度傳感器矢量控制系統(tǒng)的速度辨識,取得了較好的辨識效果.提出的算法主要有:基于遺傳算法的小波神經網絡速度辨識、人工魚群神經網絡速度辨識、蟻群算法優(yōu)化神經網絡的速度辨識方法、基于粒子群算法的BP神經網絡的速度辨識方法.
上式中高頻激勵產生的高頻電流信號中含Ii0一項與轉子位置無關,Ii1則與電機轉子位置有關.因此可以設法去掉Ii0的干擾,只留下Ii1,然后進過濾波環(huán)節(jié)和控制,使得轉子位置的推算值^θ趨向于轉子位置實際值θ,通過下式則可求得轉子角速度:
本文在采用矢量控制基礎上,利用MATLAB/SIMULINK,建立了無速度傳感器矢量控制系統(tǒng)仿真模型,對幾種常用的轉速辨識方法進行了仿真研究,其中所使用的異步電機參數為:額定功率PN=2.5kW,頻率f=50Hz,額定轉速nN=1440r/min,定子電阻Rs=1.85Ω,轉子電阻Rr=2.658Ω,定子電感Ls=0.294H,轉子電感Lr=0.2898H,互感Lm=0.2838H,極對數np=2,轉動慣量J=0.01kg·m2.
仿真實驗一:電機空載啟動實驗.電機給定轉速為額定轉速1440r/min,仿真結果如圖3~圖6所示.
圖6 空載時速度辨識誤差曲線
仿真實驗二:電機帶變化負載啟動實驗.電機給定轉速為額定轉速1440r/min,在t=0.8s時負載為10N·m,時間t=1.3s時撤去負載.仿真曲線如圖7~圖10所示.
圖1 0 負載時速度辨識誤差曲線
從仿真實驗波形中可以看出,不管是空載啟動還是變負載啟動,對于三種速度辨識方法,轉速都能能迅速跟隨給定變化,轉速在轉矩變化時會出現(xiàn)波動,動態(tài)速度估計器法的波動較大,經過一段時間波動后能跟隨速度變化,表明電機有一定的負載能力.相對于其它兩種方法,參滑模觀測器法的辨識誤差較小,但在負載變化瞬間,滑模觀測器的辨識誤差較其它兩種方法大.
本文對無速度傳感器速度辨識方法進行了仿真研究.各國學者在無速度傳感器異步電機矢量控制系統(tǒng)方面已做了很深入的研究,未來一段時間內,主要研究熱點包括:零頻率問題及低頻問題的處理、鐵耗的影響、異步電機磁通的直接檢測、電阻和轉速的同時辨識等.
[1]馮垛生,曾南岳.無速度傳感器矢量控制原理與實踐[M].北京:機械工業(yè)出版社,2006.
[2]徐中領.基于D S P的交流異步電動機無傳感器矢量控制系統(tǒng)的研究[D].南京:南京航空航天大學,2007.
[3]祝龍記,王 賓.基于 MRAS速度辨識矢量控制系統(tǒng)的仿真研究[J].電工技術學報,2005,20(1):60-65.
[4]李劍飛,尹 泉,萬淑蕓.基于擴展卡爾曼濾波器的異步電機轉速辨識[J].電工技術學報,2002,17(5):40-44.
[5]李春菊,劉國榮,蔡斌軍.基于滑模磁通和速度觀測器的異步電動機間接磁場定向控制[J].湖南工程學院學報(自然科學版),2009,(4):48-50.
[6]賈 濤,王耀南,黃守道,李新田.基于轉速動態(tài)估計器的無速度傳感器感應電機矢量控制系統(tǒng)研究[J].電氣傳動自動化,2004,26(4):1-4.
[7]周俊勇,金 陽,南余榮,鐘德剛.異步電動機速度辨識方法的研究[J].電氣傳動自動化,2004,26(2):1-3.
[8]朱鵬程,陳 堅,康 勇.利用電機磁化電流無功功率實現(xiàn)轉速的在線辨識[J].電氣傳動,2003,(5):12-14.
[9]Schauder C.Adaptive Speed Identification for Vector Control of Induction Motors Drive[J].Proceedings of the IEEE,2002,90(8):1359-1394.
[10]楊會東,李 嵐.自適應神經網絡在異步電動機轉速辨識中的應用[J].微特電機,2007,(4):43-45.
[11]彭望成.基于模糊神經網絡的異步電機轉速估計方法[J].電機與控制應用,2008,35(7):5-9.
[12]曹承志,毛春雷.人工魚群神經網絡速度辨識器及應用[J].計算機仿真,2008,25(10):291-294.
[13]張寅孩,嚴利平,張仲超.基于遺傳算法辨識噪聲模型的異步電機閉環(huán)卡爾曼速度估計[J].電機與控制學報,2005,2(9):151-165.
[14]張敬恩.無速度傳感器變頻調速系統(tǒng)轉速辨識方法研究[J].電工電氣,2010,(2):18-22.
[15]佘致廷,袁俊波,鄭 勇等.交互式模型參考自適應PMSM 速度辨識[J].電氣傳動,2011,41(3):3-7.