• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Early changes of hepatic hemodynamics measured by functional CT perfusion in a rabbit model of liver tumor

    2012-07-07 01:01:25GuoLinMaRongJieBaiHuiJieJiangXueJiaHaoXuPengDongDaQingLiXinDingLiuandLaiWei
    關(guān)鍵詞:前格飛行家航海家

    Guo-Lin Ma, Rong-Jie Bai, Hui-Jie Jiang, Xue-Jia Hao, Xu-Peng Dong, Da-Qing Li, Xin-Ding Liu and Lai Wei

    Harbin, China

    Early changes of hepatic hemodynamics measured by functional CT perfusion in a rabbit model of liver tumor

    Guo-Lin Ma, Rong-Jie Bai, Hui-Jie Jiang, Xue-Jia Hao, Xu-Peng Dong, Da-Qing Li, Xin-Ding Liu and Lai Wei

    Harbin, China

    BACKGROUND:Early detection and treatment of hepatocellular carcinoma is crucial to improving the patients' survival. The hemodynamic changes caused by tumors can be serially measured using CT perfusion. In this study, we used a CT perfusion technique to demonstrate the changes of hepatic hemodynamics in early tumor growth, as a proof-of-concept study for human early hepatocellular carcinoma.

    METHODS:VX2 tumors were implanted in the liver of ten New Zealand rabbits. CT perfusion scans were made 1 week (early) and 2 weeks (late) after tumor implantation. Ten normal rabbits served as controls. CT perfusion parameters were obtained at the tumor rim, normal tissue surrounding the tumor, and control liver; the parameters were hepatic blood flow, hepatic blood volume, mean transit time, permeability of capillary vessel surface, hepatic arterial index, hepatic arterial perfusion and hepatic portal perfusion. Microvessel density and vascular endothelial growth factor were correlated.

    RESULTS:At the tumor rim, compared to the controls, hepatic blood flow, hepatic blood volume, permeability of capillary vessel surface, hepatic arterial index, and hepatic arterial perfusion increased, while mean transit time and hepatic portal perfusion decreased on both early and late scans (P<0.05). Hepatic arterial index increased (135%,P<0.05), combined with a sharp increase in hepatic arterial perfusion (182%,P<0.05) and a marked decrease in hepatic portal perfusion (-76%,P<0.05) at 2 weeks rather than at 1 week (P<0.05). Microvessel density and vascular endothelial growth factor showed significant linear correlations with hepatic blood flow, permeability of capillary vessel surface and hepatic arterial index, but not with hepatic blood volume or mean transit time.

    CONCLUSION:The CT perfusion technique demonstrated early changes of hepatic hemodynamics in this tumor model as proof-of-concept for early hepatocellular carcinoma detection in humans.

    (Hepatobiliary Pancreat Dis Int 2012;11:407-411)

    liver tumor; computed tomography; hemodynamic; animal model; perfusion imaging

    Introduction

    In recent years, the incidence and mortality of hepatocellular carcinoma (HCC) have been increasing worldwide. Early detection and treatment of HCC are crucial to improving patient survival.[1]Imaging examinations are commonly applied to the diagnosis of HCC and provide non-invasive means of tumor visualization, such as MRI, traditional CT or both combined, but they also have difficulty in visualizing small HCCs.[2]It is, therefore, important to develop an alternative method to evaluate early HCC.

    Angiogenesis is responsible for the vascular changes seen in both primary and metastatic blood flow. Angiogenesis can be assessed by CT perfusion techniques due to its alteration of vascular perfusion, blood volume, and permeability. In this study, we used CT perfusion parameters to determine the physiologic changes of angiogenesis in VX2 liver tumors. Our aim was to assess early alterations in hepatic hemodynamics in the VX2 model using this functional imaging method.

    Methods

    Animal model

    This study was approved by the Institutional AnimalCare and Use Committee of the Second Affiliated Hospital, Harbin Medical University. Ten New Zealand rabbits (weighing 2.5-3.0 kg) served as controls. Ten additional rabbits were implanted with VX2 liver tumors, using cell lines derived from rabbit papilloma virusinduced skin cancer.[3,4]The animals were anesthetized with Sumianxin (0.2 mL/kg, Changchun University of Agriculture and Animal Science) by intramuscular injection. Fresh VX2 tumor tissue masses of 1-2 mm3were implanted locally into a tunnel established with an ophthalmic nipper in the left lobe of the liver.[5]

    Data acquisition and perfusion imaging

    The rabbits were fasted for 8 hours before scanning and anesthetized by intramuscular injection of Sumianxin. CT perfusion scans were performed at 1 and 2 weeks after tumor implants. The scans performed at the first week after implantation corresponded to "early" tumoral development, whereas the scans performed at the second week were considered as "late" tumor progression. CT imaging was completed on a multi-slice spiral CT (Lightspeed 16-slice spiral CT; GE Healthcare, Milwaukee, WI, USA). To select the scanning range, a plain CT scan of the liver was done before beginning perfusion scanning. The CT scanning parameters were as follows: 80 kVp, 120 mAs, slice thickness 3 mm, matrix 512×512, FOV15 cm, contrast medium IV injection in marginal ear vein 1 mL/s (1.0-1.5 mL/kg body weight).

    The CT perfusion parameters were hepatic blood flow (HBF, mL/min/100 mg body weight), hepatic blood volume (HBV, mL/100 mg), mean transit time (MTT, sec), permeability of capillary vessel surface (PS, mL/min/100 mg), hepatic arterial index (HAI), hepatic arterial perfusion (HAP, mL/min/100 mg body weight) and hepatic portal perfusion (HPP, mL/min/100 mg body weight). The perfusion images were analyzed by a radiologist, and focal abnormalities were recorded. Regions of interest (ROIs) were carefully drawn as large as possible based on enhanced CT images. Vessels were avoided and not included in ROIs as far as possible. CT perfusion parameters were obtained three times at each area (control, tumor rim, and normal tissue surrounding the tumor) and the mean value of the three measurements was used in the analysis. For the control liver tissue, ROIs were drawn randomly on the normal liver parenchyma. For the tumor rim, ROIs were placed in those regions seen as "ring" enhancement on enhanced CT. For "normal" liver tissue, ROIs were placed on liver parenchyma at least 1 cm away from the tumor; these did not show any abnormality on pathological examination. Equivalent ROIs were placed on the early and late scanning images.

    Pathology

    The liver was fixed in 10% buffered neutral formalin and embedded routinely in paraffin for immunohistochemical study, with hematoxylin and eosin (HE), vascular endothelial growth factor (VEGF) and CD34 staining, using the methods described in a previous study.[5,6]Microvessel density (MVD) was measured by anti-CD34 staining.

    Statistical analysis

    The data were expressed as mean±SD. All analyses were carried out using SPSS version 11.5 (SPSS Inc., Chicago, IL., USA). A two-tailed Student'sttest was used to determine differences in perfusion parameters between the tumor rim and surrounding normal tissues. The correlations between MVD, VEGF and the CT perfusion parameters were analyzed using Pearson's correlation coefficient. Changes in the different perfusion parameters during tumor growth were evaluated by analysis of variance (ANOVA), comparing the effects of time (early and late scans). APvalue <0.05 was considered statistically significant.

    Results

    Pathological findings

    On gross specimen examination, tumor diameter ranged from 10 to 20 mm (mean 16.5). The tumor was clearly visible and showed some central necrosis. A thick layer of granulation tissue surrounded the remainder of the lesion. Tumor cells had large trachychromatic nuclei in a nestlike distribution (Fig. 1A). Tumor tissue was processed for immunohistochemical analysis to demonstrate MVD (Fig. 1B) and VEGF protein levels (Fig. 1C). Positive linear correlations were found between the values of HBF, PS, HAI, and HAP versus MVD and VEGF (P<0.05). On the other hand, HPP showed a negative correlation with MVD and VEGF measurements (P<0.01). There were no correlations between MTT and HBV versus MVD and VEGF. The delimitation between interstitial tissue and the tumor was clear and maximal staining density was observed in the tumor rim, which was seen as "ring" enhancement on the arterial phase of contrast-enhanced CT (Fig. 1D). In addition, an area of intense perfusion was noted at the tumor rim (Fig. 1E).

    CT imaging

    In all rabbits, regions demonstrating both CT enhancement and tumoral perfusion enlarged with tumor growth. Intense enhancement was seen at the tumor rim on arterial phase contrast-enhanced CT. The contour of the tumor was clearly delineated in the increasedperfusion area on HAI, HBF, HBV, and PS maps, and in the lower perfusion area on the MTT map (Fig. 2).

    Fig. 1. A: Tumor cells had a nest-like distribution. Many immature capillaries and abundant fibrous tissue surrounded the tumor (HE staining, original magnification ×100). B: Immunohistochemical staining for positive expression of CD34 (original magnification × 100). The vessels were stained brown and high MVD was apparent. C: Immunohistochemical staining for positive expression of VEGF (original magnification ×40). The cytoplasm of tumor cells was stained brown. Black arrows in A, B and C show the delimitation between interstitial tissue and the tumor tissue. D: On the arterial phase CT image, the central portion of the tumor became hypoattenuated, the enhancement was seen as "ring" enhancement at the tumor rim (black arrow), and no abnormal enhancement surrounded the tumor (white arrow). E: Functional CT perfusion map of HAI; a higher perfusion area was seen at the tumor rim(black arrow), and normal liver tissues surrounded the tumor (white arrow).

    CT perfusion parameters

    CT perfusion parameters were measured three times for each tumor tissue versus control, i.e.,n=30 for each group. The ANOVA showed significant differences in parameters in the tumor group at early scans compared to late scans (Fig. 3). At the tumor rim, the perfusion parameters HBF, HBV, HAI, HAP, and PS increased (P<0.05), but MTT and HPP decreased, compared to the control group. On the early scans, CT perfusion parameters that were related to hepatic hemodynamics caused by the tumors showed an increase in HAI (73%,P<0.05) with an increased HAP (90%,P<0.05) and a decreased HPP (-37%,P<0.05). Compared to normal regions, the perfusion parameters HBF, HBV, HAI, HAP, and PS in the tumor rim were higher at 2 weeks than at 1 week post-implant (P<0.05). HAI increased (135%,P<0.05) in combination with a sharp increase in HAP (182%,P<0.05) and a marked decrease in HPP(-76%,P<0.05). The values of the surrounding "normal" perfusion parameters did not change significantly with tumor growth (Fig. 4).

    Fig. 2. Contrast-enhanced CT images and CT perfusion maps in the early and late stage of tumor growth. Black arrows indicate the boundary of the tumor. Red represents the highest measurement value, while yellow, green, blue and black represent decreasing measurement values. A: Contrast-enhanced CT images in the arterial phase; B: Functional maps of HBF; C: Functional maps of HBV; D: Functional maps of MTT.

    Fig. 3. CT perfusion parameters in control and tumor rim from early and late scans (n=30). *: compared to the control group, in tumor rims on early and late scans after implantation, HBF, HAP, HBV and PS significantly increased (P<0.05), and HPP and MTT values significantly decreased (P<0.05).

    Fig. 4. HAI (A), HAP (B) and HPP (C) mean values of control and tumor rim on the early and late scans. In "pathological normal" liver tissue, HAI, HAP and HPP were similar to those in the control group and remained almost unchanged over time. In the tumor rim, HAI and HAP were elevated, and HPP decreased compared to the control group.

    Discussion

    The VX2 tumor has a high rate of successful implantation, stable histology, and is capable of neovascularization. The pathological features of VX2 tumors are similar to those of human HCC, making this animal model especially suitable for imaging tumor angiogenesis.[7-10]Our pathological results showed many immature capillaries and much fibrous tissue in the tumor rim, where the most intensive angiogenesis occurred.[11,12]This was seen as areas of ring enhancement on contrast-enhanced CT, corresponding to high peripheral perfusion, increased blood volume, and elevated permeability on the CT perfusion maps. Thus, it is important to make tumor rims the ROIs for the assessment of tumor angiogenesis. In the present study, we evaluated the timeline underlying changes of parameters on the CT perfusion images, in order to develop a tumor model as a proof-of-concept study for early HCC detection in human subjects.

    In our study, normal liver tissue without tumor implantation served as the control. There were no differences in the perfusion parameters between the control group and the "normal" tissue. The presence of "normal" perfusion in liver tissue implied normal blood flow. This result also suggested that blood flow in some areas was not influenced by the implanted tumor. Thus, CT perfusion quantifies not only the vascular physiology of the tumor itself, but also other blood flow changes of the surrounding parenchyma. Also, both local and distant blood flow caused by tumors can be evaluated by CT perfusion parameters. More importantly, the control group or the "normal" tissue adjacent to the tumor can be considered as a benign state, and the tumor rim seems to reflect a malignant state. Thus, CT perfusion seems to be able to differentiate benign from malignant states of liver tumors based on their perfusion parameters.

    As we concluded in the previous study,[5]HAI is still the most important parameter used to detect regions "that are prone to develop into tumor" on early scans. Therefore, early tumors are visually detectable with this parameter. On the early scan, compared to the normal region, there was an inversion between the arterial and portal blood flow in the tumor, as a high HAP (90%) and a low HPP (-37%). On the later scan, there was a sharp increase in HAP (182%) coinciding with a decrease in HPP (-76%). Thus, the CT perfusion technique can be used to evaluate hepatic hemodynamic changes, including arterial and portal blood supply, and thus determine liver tumor vascular physiology.[13-15]

    Our study had several limitations. The main limitation was due to the retrospective placing the ROI on the CT perfusion image, based on contrast-enhanced CT images and pathological findings. This indicated that our ROIs represented the perfusion parameters of specific regions. Thus, focal abnormal changes of perfusion images involved with the tumor may not be detected freely without knowing the specific areas of the liver beforehand. Therefore, it is important for us to develop a perfusion technique to obtain perfusion parameters throughout the entire liver, which would allow a more objective assessment of vascular physiology in earlier tumor development. Currently, dual-energy CT technology has just started in clinical settings.[16]Pure 80-kVp data acquired from a dual-energy CT scannerproduce greater differences in attenuation between hepatic lesions and the surrounding liver, potentially improving the early assessment and detection of liver tumors. In the future, this technique may be suitable for assessing more promising parameters of early vascular physiology in liver tumors.

    Another limitation of our study was a mismatch between CT perfusion parameters and pathological measurement at the early stage because of differences in the time when the CT scans were performed compared to the time when the pathology measurement was done. Thus, some important pathological results of early tumor may have been lost. Thus, the relationship between the CT perfusion parameters and pathological findings of early tumors requires further investigation. Moreover, our results may not be applicable to studies of early HCC in humans, since HCC frequently occurs in cirrhotic patients, and the VX2 tumor model in our study was not developed using a background of liver cirrhosis. Therefore, further experimental studies are needed to establish an animal model simulating the lesions in human liver carcinogenesis (from liver cirrhosis to early HCC).

    In conclusion, this multi-parametric CT perfusion imaging technique is sensitive, specific and non-invasive. It has the potential to detect the early hemodynamic changes in hepatic tumors and thus has a major advantage in the evaluation of angiogenesis in human early HCC.[17-19]

    Contributors:MGL and BRJ contributed equally to the article. MGL and JHJ proposed the study. MGL, BRJ and JHJ analyzed data and prepared the manuscript. HXJ and DXP completed histopathological examinations of liver biopsy specimens. LDQ and LXD performed the imaging scans. WL prepared animal tests and revised the manuscript. JHJ is the guarantor.

    Funding:This work was supported by a grant from the Educational Committee of Heilongjiang Province (11541166).

    Ethical approval:This study was approved by our Institutional Animal Care and Use Committee.

    Competing interest:No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    林肯攜由新款林肯MKC、全新林肯航海家Nautilus、全新林肯飛行家Aviator preview、全新林肯領(lǐng)航員Navigator、林肯大陸Continental和林肯MKZ六款車型組成的全系陣容,煥新亮相2018廣州車展。全系車型均采用了重新設(shè)計的家族式林肯星輝式前格柵,呈現(xiàn)出林肯“靜謐之旅”理念下優(yōu)雅精煉的風(fēng)貌。

    1 Yang L, Parkin DM, Ferlay J, Li L, Chen Y. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 2005;14:243-250.

    2 Bruix J, Sherman M; Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005; 42:1208-1236.

    3 Nasseri M, Wettstein FO. Cottontail rabbit papillomavirusspecific transcripts in transplantable tumors with integrated DNA. Virology 1984;138:362-367.

    4 Nasseri M, Wettstein FO. Differences exist between viral transcripts in cottontail rabbit papillomavirus-induced benign and malignant tumors as well as non-virus-producing and virus-producing tumors. J Virol 1984;51:706-712.

    5 Jiang HJ, Zhang ZR, Shen BZ, Wan Y, Guo H, Shu SJ. Functional CT for assessment of early vascular physiology in liver tumors. Hepatobiliary Pancreat Dis Int 2008;7:497-502.

    7 Lijowski M, Caruthers S, Hu G, Zhang H, Scott MJ, Williams T, et al. High sensitivity: high-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. Invest Radiol 2009;44:15-22.

    8 Deng G, Zhao DL, Li GC, Yu H, Teng GJ. Combination therapy of transcatheter arterial chemoembolization and arterial administration of antiangiogenesis on VX2 liver tumor. Cardiovasc Intervent Radiol 2011;34:824-832.

    9 Maehara N. Experimental microcomputed tomography study of the 3D microangioarchitecture of tumors. Eur Radiol 2003;13:1559-1565.

    10 Stewart EE, Chen X, Hadway J, Lee TY. Correlation between hepatic tumor blood flow and glucose utilization in a rabbit liver tumor model. Radiology 2006;239:740-750.

    11 Kan Z, Phongkitkarun S, Kobayashi S, Tang Y, Ellis LM, Lee TY, et al. Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model. Radiology 2005;237: 151-158.

    12 Ogawa M, Yamamoto H, Nagano H, Miyake Y, Sugita Y, Hata T, et al. Hepatic expression of ANG2 RNA in metastatic colorectal cancer. Hepatology 2004;39:528-539.

    13 Choi SH, Chung JW, Kim HC, Baek JH, Park CM, Jun S, et al. The role of perfusion CT as a follow-up modality after transcatheter arterial chemoembolization: an experimental study in a rabbit model. Invest Radiol 2010;45:427-436.

    14 Fournier LS, Cuenod CA, de Bazelaire C, Siauve N, Rosty C, Tran PL, et al. Early modifications of hepatic perfusion measured by functional CT in a rat model of hepatocellular carcinoma using a blood pool contrast agent. Eur Radiol 2004;14:2125-2133.

    15 Cuenod C, Leconte I, Siauve N, Resten A, Dromain C, Poulet B, et al. Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 2001;218:556-561.

    16 Okada M, Kim T, Murakami T. Hepatocellular nodules in liver cirrhosis: state of the art CT evaluation (perfusion CT/ volume helical shuttle scan/dual-energy CT, etc.). Abdom Imaging 2011;36:273-281.

    17 Ippolito D, Sironi S, Pozzi M, Antolini L, Ratti L, Alberzoni C, et al. Hepatocellular carcinoma in cirrhotic liver disease: functional computed tomography with perfusion imaging in the assessment of tumor vascularization. Acad Radiol 2008;15:919-927.

    18 Sahani DV, Holalkere NS, Mueller PR, Zhu AX. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue--initial experience. Radiology 2007;243:736-743.

    19 Tsushima Y, Funabasama S, Aoki J, Sanada S, Endo K. Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data. Acad Radiol 2004;11:215-223.

    December 14, 2011

    Accepted after revision February 17, 2012

    Author Affiliations: Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China (Ma GL); Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China (Bai RJ); Department of Radiology, Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China (Jiang HJ, Hao XJ, Dong XP, Li DQ, Liu XD and Wei L)

    Hui-Jie Jiang, PhD, Department of Radiology, Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China (Tel: 86-451-86605576; Email: jhjemail@163.com)

    ? 2012, Hepatobiliary Pancreat Dis Int. All rights reserved.

    10.1016/S1499-3872(12)60199-4

    猜你喜歡
    前格飛行家航海家
    林肯航海家
    車主之友(2023年2期)2023-05-22 02:52:26
    廣汽Acura NEW CDX
    汽車觀察(2021年4期)2021-05-10 04:07:14
    林肯航海家Nautilus加州海岸限量版
    汽車觀察(2021年11期)2021-04-24 21:34:38
    陸生動物中的“飛行家”
    全新林肯飛行家Aviator
    汽車觀察(2020年4期)2020-05-27 09:38:10
    林肯在華“起飛”,“飛行家”開啟美式豪華新高度
    全新漢蘭達(dá)“高處再出發(fā)”續(xù)寫豪華大七座SUV傳奇
    全新林肯飛行家Aviator
    汽車觀察(2019年4期)2019-07-01 03:48:44
    全新林肯航海家揚(yáng)帆起航
    車迷(2018年12期)2018-07-26 00:42:24
    多彩前格
    黃河之聲(2017年22期)2017-10-20 00:15:59
    亚洲在线观看片| 夜夜夜夜夜久久久久| 国产高清激情床上av| 插逼视频在线观看| 露出奶头的视频| 日韩人妻高清精品专区| 性插视频无遮挡在线免费观看| 国产老妇女一区| 嫩草影院精品99| 99久久久亚洲精品蜜臀av| 尤物成人国产欧美一区二区三区| 日韩强制内射视频| 成人永久免费在线观看视频| 中国国产av一级| 真人做人爱边吃奶动态| 夜夜夜夜夜久久久久| 国产三级在线视频| 国产黄色视频一区二区在线观看 | 精品午夜福利在线看| 久久久久久久久中文| 国产精品美女特级片免费视频播放器| 国产三级在线视频| 亚洲人与动物交配视频| 亚洲av.av天堂| 色视频www国产| 永久网站在线| 国产精品一区www在线观看| 国产精品久久久久久av不卡| 91狼人影院| 秋霞在线观看毛片| 久久精品国产亚洲av香蕉五月| a级毛色黄片| 97人妻精品一区二区三区麻豆| 欧美3d第一页| 九色成人免费人妻av| 内射极品少妇av片p| 最近中文字幕高清免费大全6| av中文乱码字幕在线| 黄色欧美视频在线观看| 嫩草影院精品99| 黄色日韩在线| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 伦精品一区二区三区| 99九九线精品视频在线观看视频| 亚洲成人久久爱视频| 日日啪夜夜撸| 亚洲人成网站在线播| 男女之事视频高清在线观看| 日本免费一区二区三区高清不卡| 十八禁国产超污无遮挡网站| 亚洲精品影视一区二区三区av| 18禁黄网站禁片免费观看直播| 日韩在线高清观看一区二区三区| 国产视频内射| 一个人免费在线观看电影| 亚洲欧美日韩高清专用| 五月玫瑰六月丁香| 亚洲精品色激情综合| 两个人的视频大全免费| 少妇的逼水好多| 老女人水多毛片| 干丝袜人妻中文字幕| 日本a在线网址| 人人妻人人澡欧美一区二区| 国产精品亚洲一级av第二区| 女同久久另类99精品国产91| 别揉我奶头 嗯啊视频| 精品无人区乱码1区二区| 久久国内精品自在自线图片| 久久久久久久午夜电影| 亚洲成人久久性| 成人高潮视频无遮挡免费网站| 国产综合懂色| 夜夜夜夜夜久久久久| 一级毛片我不卡| 在线看三级毛片| 国产精品无大码| 蜜臀久久99精品久久宅男| 寂寞人妻少妇视频99o| 插逼视频在线观看| 亚洲人成网站在线观看播放| 精品午夜福利视频在线观看一区| 99久国产av精品国产电影| 国产精品一区二区三区四区久久| 少妇被粗大猛烈的视频| 此物有八面人人有两片| 国产午夜福利久久久久久| 日韩成人伦理影院| 日本免费a在线| 日本五十路高清| 大型黄色视频在线免费观看| 日韩欧美 国产精品| 久久久午夜欧美精品| 中文字幕av成人在线电影| 悠悠久久av| 日本与韩国留学比较| 亚洲美女视频黄频| 亚洲熟妇熟女久久| 国产高清有码在线观看视频| 嫩草影院新地址| 国产一区亚洲一区在线观看| 日本 av在线| 亚洲成人久久性| 亚洲欧美精品自产自拍| 亚洲性久久影院| 亚洲丝袜综合中文字幕| 日韩欧美国产在线观看| 在线播放国产精品三级| 亚洲av不卡在线观看| 麻豆精品久久久久久蜜桃| 麻豆成人午夜福利视频| 在现免费观看毛片| 亚洲五月天丁香| 日本免费a在线| 久久精品综合一区二区三区| 免费av毛片视频| 99国产极品粉嫩在线观看| 国产精品一区二区性色av| 波野结衣二区三区在线| 国产精品亚洲美女久久久| 麻豆一二三区av精品| 欧美高清性xxxxhd video| 午夜激情欧美在线| 国产黄色视频一区二区在线观看 | 国产中年淑女户外野战色| 亚洲五月天丁香| 欧美xxxx黑人xx丫x性爽| 一个人观看的视频www高清免费观看| 亚洲最大成人av| a级毛片免费高清观看在线播放| 午夜a级毛片| 亚洲精品成人久久久久久| 亚洲av中文av极速乱| 亚洲中文字幕一区二区三区有码在线看| 精品不卡国产一区二区三区| av.在线天堂| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区免费观看 | 高清毛片免费看| 中文字幕免费在线视频6| 国产69精品久久久久777片| 午夜福利在线观看吧| 日韩av在线大香蕉| 黄色视频,在线免费观看| 国国产精品蜜臀av免费| 国产一区二区在线av高清观看| 国产精品一区二区三区四区久久| avwww免费| 国产不卡一卡二| 91av网一区二区| 精品久久久久久久久亚洲| 在线观看一区二区三区| 在线观看一区二区三区| 成人国产麻豆网| 少妇被粗大猛烈的视频| 在线观看一区二区三区| 99热网站在线观看| 日日撸夜夜添| 久久精品国产清高在天天线| 日日撸夜夜添| 我的女老师完整版在线观看| 久久久久久久久大av| 99热只有精品国产| 黑人高潮一二区| 国产黄a三级三级三级人| a级毛片a级免费在线| 噜噜噜噜噜久久久久久91| 男女之事视频高清在线观看| 国产欧美日韩精品亚洲av| 久久久久久久午夜电影| 成人漫画全彩无遮挡| 午夜爱爱视频在线播放| 乱码一卡2卡4卡精品| 美女被艹到高潮喷水动态| 可以在线观看毛片的网站| 国产av麻豆久久久久久久| 成人一区二区视频在线观看| 看片在线看免费视频| 欧美最黄视频在线播放免费| 中文字幕av在线有码专区| 精品少妇黑人巨大在线播放 | 色哟哟·www| 麻豆国产97在线/欧美| 久久综合国产亚洲精品| 亚洲国产精品成人综合色| 最近2019中文字幕mv第一页| 国产亚洲欧美98| 久久久国产成人精品二区| 国产精品久久电影中文字幕| 乱码一卡2卡4卡精品| 少妇的逼水好多| 看免费成人av毛片| 在线天堂最新版资源| av在线蜜桃| 在线观看av片永久免费下载| 国产一区二区三区av在线 | 国产乱人视频| 波多野结衣高清无吗| 亚洲成人中文字幕在线播放| 波多野结衣高清作品| 深夜精品福利| 少妇的逼好多水| 狂野欧美激情性xxxx在线观看| 免费大片18禁| 日韩欧美精品免费久久| 麻豆成人午夜福利视频| 久久99热6这里只有精品| 精品久久久久久成人av| 午夜精品一区二区三区免费看| 波多野结衣巨乳人妻| 久久久久久久久中文| 色综合色国产| 成人特级黄色片久久久久久久| 精品人妻偷拍中文字幕| 久久国产乱子免费精品| 久久久久久伊人网av| 国国产精品蜜臀av免费| 欧美日韩乱码在线| 插阴视频在线观看视频| 热99re8久久精品国产| 亚洲av不卡在线观看| 成人美女网站在线观看视频| 成人精品一区二区免费| 日韩,欧美,国产一区二区三区 | 午夜免费激情av| 可以在线观看的亚洲视频| 女人被狂操c到高潮| 亚洲天堂国产精品一区在线| 久久久久久久久中文| 黄色日韩在线| 久久久久久九九精品二区国产| 91av网一区二区| 深夜精品福利| 国国产精品蜜臀av免费| 国产高清有码在线观看视频| 久久国内精品自在自线图片| 老司机午夜福利在线观看视频| 日韩欧美国产在线观看| 少妇的逼水好多| 九九在线视频观看精品| 男女啪啪激烈高潮av片| 国产不卡一卡二| 哪里可以看免费的av片| а√天堂www在线а√下载| 午夜爱爱视频在线播放| 日本三级黄在线观看| 99精品在免费线老司机午夜| 国产亚洲精品综合一区在线观看| 欧美不卡视频在线免费观看| 一区二区三区高清视频在线| 美女大奶头视频| 久久精品影院6| 女人十人毛片免费观看3o分钟| 三级毛片av免费| 亚洲国产精品国产精品| 少妇的逼水好多| 国产白丝娇喘喷水9色精品| 成人av一区二区三区在线看| 男人舔女人下体高潮全视频| 国产男人的电影天堂91| 亚洲av第一区精品v没综合| 性色avwww在线观看| 亚洲欧美中文字幕日韩二区| 免费看日本二区| 免费观看精品视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜看夜夜爽夜夜摸| 2021天堂中文幕一二区在线观| 天堂动漫精品| 岛国在线免费视频观看| 亚洲成人久久爱视频| 天堂影院成人在线观看| 内射极品少妇av片p| 伊人久久精品亚洲午夜| 九九在线视频观看精品| 97人妻精品一区二区三区麻豆| 波多野结衣高清作品| 精品人妻熟女av久视频| 免费一级毛片在线播放高清视频| 内射极品少妇av片p| 三级国产精品欧美在线观看| 91av网一区二区| 99在线人妻在线中文字幕| av视频在线观看入口| 亚洲欧美中文字幕日韩二区| 国产精品伦人一区二区| 国产色婷婷99| h日本视频在线播放| 自拍偷自拍亚洲精品老妇| 亚洲内射少妇av| 天天躁日日操中文字幕| 夜夜夜夜夜久久久久| 欧美一级a爱片免费观看看| 成年版毛片免费区| 亚洲精品一区av在线观看| 99热只有精品国产| av视频在线观看入口| 国产成人aa在线观看| 日韩欧美国产在线观看| 亚洲最大成人中文| 亚洲精品亚洲一区二区| 97超视频在线观看视频| 亚洲av第一区精品v没综合| 欧美xxxx性猛交bbbb| 精品一区二区三区av网在线观看| 大香蕉久久网| av在线蜜桃| 国产精品一及| 男女之事视频高清在线观看| 国产成人aa在线观看| 国产色婷婷99| 看十八女毛片水多多多| 日韩欧美 国产精品| 色吧在线观看| av在线播放精品| 人妻少妇偷人精品九色| 乱码一卡2卡4卡精品| 国产免费男女视频| 22中文网久久字幕| 亚洲一级一片aⅴ在线观看| 欧美精品国产亚洲| 国产成人a∨麻豆精品| 美女高潮的动态| 少妇的逼水好多| 麻豆久久精品国产亚洲av| 精品一区二区免费观看| av视频在线观看入口| 夜夜夜夜夜久久久久| 成人一区二区视频在线观看| av.在线天堂| 日韩一本色道免费dvd| 一级a爱片免费观看的视频| 91麻豆精品激情在线观看国产| 床上黄色一级片| 久久国内精品自在自线图片| 国产乱人偷精品视频| 国产毛片a区久久久久| 欧美日韩在线观看h| 中文字幕熟女人妻在线| 能在线免费观看的黄片| 日韩大尺度精品在线看网址| 在线天堂最新版资源| 丰满的人妻完整版| 精品免费久久久久久久清纯| 亚洲成a人片在线一区二区| 看黄色毛片网站| 一进一出抽搐gif免费好疼| 搡女人真爽免费视频火全软件 | 国产美女午夜福利| av在线老鸭窝| 亚洲人成网站在线播放欧美日韩| 国产高清激情床上av| 日日干狠狠操夜夜爽| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 国产精品一区二区性色av| 久久久久久久久久黄片| 亚洲精品国产av成人精品 | 深夜a级毛片| 国产精品女同一区二区软件| 少妇人妻精品综合一区二区 | 亚洲欧美清纯卡通| 最近最新中文字幕大全电影3| 亚洲人成网站在线播放欧美日韩| 欧美日本亚洲视频在线播放| 最近视频中文字幕2019在线8| 少妇熟女欧美另类| 人人妻人人看人人澡| 两个人的视频大全免费| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美 国产精品| 国产精品av视频在线免费观看| 一级毛片我不卡| 国产av一区在线观看免费| 一级黄色大片毛片| 亚洲美女视频黄频| 亚洲av熟女| 亚洲欧美精品综合久久99| 小说图片视频综合网站| 一区福利在线观看| 国产成人a∨麻豆精品| 国产亚洲av嫩草精品影院| 精品一区二区三区av网在线观看| 日本黄色视频三级网站网址| 亚洲精品粉嫩美女一区| 可以在线观看的亚洲视频| 成人二区视频| 三级男女做爰猛烈吃奶摸视频| 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| 在线播放国产精品三级| 免费无遮挡裸体视频| 国产真实伦视频高清在线观看| 99久久无色码亚洲精品果冻| 色尼玛亚洲综合影院| 身体一侧抽搐| 日本爱情动作片www.在线观看 | 大型黄色视频在线免费观看| 亚洲av成人av| 最新在线观看一区二区三区| 97超碰精品成人国产| 久久国产乱子免费精品| 岛国在线免费视频观看| 精品99又大又爽又粗少妇毛片| 欧美不卡视频在线免费观看| 久久亚洲精品不卡| 最后的刺客免费高清国语| 成人美女网站在线观看视频| 精品人妻偷拍中文字幕| 欧美性感艳星| 国产精品久久电影中文字幕| 成人特级黄色片久久久久久久| 十八禁网站免费在线| 午夜激情欧美在线| a级一级毛片免费在线观看| 亚洲精品一区av在线观看| 亚洲av第一区精品v没综合| 色尼玛亚洲综合影院| 国产极品精品免费视频能看的| 亚洲精品国产成人久久av| 日本三级黄在线观看| av.在线天堂| 欧美性猛交黑人性爽| 一级av片app| 在线a可以看的网站| 亚洲熟妇熟女久久| a级毛色黄片| 小说图片视频综合网站| 亚洲一级一片aⅴ在线观看| 熟女人妻精品中文字幕| 日本熟妇午夜| 欧美精品国产亚洲| 非洲黑人性xxxx精品又粗又长| 少妇熟女aⅴ在线视频| 国产精品一及| 一级黄片播放器| 人妻制服诱惑在线中文字幕| 国产精品,欧美在线| 亚洲国产色片| 亚洲性久久影院| 久久久成人免费电影| 99久国产av精品国产电影| 亚洲性久久影院| 久久久久久久久大av| 51国产日韩欧美| 亚洲专区国产一区二区| 日韩三级伦理在线观看| 久久久久性生活片| 伦理电影大哥的女人| 亚洲国产欧洲综合997久久,| 成年免费大片在线观看| av天堂中文字幕网| 欧美精品国产亚洲| 国产v大片淫在线免费观看| 日韩欧美 国产精品| 欧美zozozo另类| 99精品在免费线老司机午夜| 日日啪夜夜撸| 国产成人a∨麻豆精品| 国产在线男女| 看非洲黑人一级黄片| 毛片女人毛片| 成人永久免费在线观看视频| 亚洲av.av天堂| 久久99热6这里只有精品| 国产黄片美女视频| 精品乱码久久久久久99久播| 久久精品夜色国产| 久久久久国产网址| АⅤ资源中文在线天堂| 一级黄片播放器| 国产白丝娇喘喷水9色精品| 国产欧美日韩精品亚洲av| 最新在线观看一区二区三区| 身体一侧抽搐| 成人漫画全彩无遮挡| 国产精品一区二区免费欧美| 欧美日本亚洲视频在线播放| 亚洲va在线va天堂va国产| 成人永久免费在线观看视频| 国产成人91sexporn| 亚洲av免费高清在线观看| 内射极品少妇av片p| 国产亚洲91精品色在线| 老司机福利观看| 老熟妇仑乱视频hdxx| 99久久无色码亚洲精品果冻| 联通29元200g的流量卡| 人妻夜夜爽99麻豆av| 丰满的人妻完整版| 99热6这里只有精品| 国产亚洲精品久久久久久毛片| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 人人妻人人澡欧美一区二区| 男人的好看免费观看在线视频| 伊人久久精品亚洲午夜| 九色成人免费人妻av| 国产久久久一区二区三区| 99国产极品粉嫩在线观看| 亚洲欧美清纯卡通| 亚洲欧美日韩东京热| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 久久精品国产自在天天线| 秋霞在线观看毛片| av.在线天堂| 免费人成视频x8x8入口观看| 亚洲成av人片在线播放无| 深夜精品福利| 精品日产1卡2卡| 此物有八面人人有两片| 亚洲四区av| 伦理电影大哥的女人| 最近视频中文字幕2019在线8| 亚洲av成人精品一区久久| 搡老岳熟女国产| 亚洲图色成人| 村上凉子中文字幕在线| 最近在线观看免费完整版| 99久久九九国产精品国产免费| 免费看美女性在线毛片视频| 国产成人a区在线观看| 我的女老师完整版在线观看| 国产精品永久免费网站| 2021天堂中文幕一二区在线观| 欧美色视频一区免费| 欧美日韩综合久久久久久| 日本爱情动作片www.在线观看 | 一区二区三区高清视频在线| 成人无遮挡网站| 搞女人的毛片| 免费观看人在逋| 波多野结衣巨乳人妻| 精品乱码久久久久久99久播| 成熟少妇高潮喷水视频| 国产高清激情床上av| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 精品无人区乱码1区二区| 国产精品综合久久久久久久免费| 成人无遮挡网站| 成年版毛片免费区| 综合色丁香网| 不卡视频在线观看欧美| 亚洲性夜色夜夜综合| 国产伦精品一区二区三区四那| 亚洲av免费在线观看| 亚洲美女搞黄在线观看 | 中文字幕精品亚洲无线码一区| 亚洲成人久久性| 99久久精品国产国产毛片| 国产高清不卡午夜福利| 亚洲国产精品成人综合色| 国产免费男女视频| 99九九线精品视频在线观看视频| av专区在线播放| 国产男人的电影天堂91| 又黄又爽又刺激的免费视频.| 久久这里只有精品中国| 色av中文字幕| 久久欧美精品欧美久久欧美| 老司机影院成人| 亚洲欧美精品自产自拍| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 国产精品精品国产色婷婷| 成人一区二区视频在线观看| 99热只有精品国产| 观看免费一级毛片| 久久久久久久久大av| 别揉我奶头 嗯啊视频| 日韩精品有码人妻一区| 中文字幕免费在线视频6| 国产 一区精品| 又爽又黄无遮挡网站| 午夜福利18| 又爽又黄无遮挡网站| 国产三级在线视频| 国产亚洲欧美98| 色在线成人网| 又爽又黄无遮挡网站| 精品人妻视频免费看| 免费看av在线观看网站| 色在线成人网| 一级av片app| 精品人妻视频免费看| 最新在线观看一区二区三区| 人人妻人人澡欧美一区二区| 国产亚洲欧美98| 国产午夜精品久久久久久一区二区三区 | 中国美女看黄片| 国产精品久久久久久久电影| 国产精华一区二区三区| 国产极品精品免费视频能看的| 国内精品宾馆在线| 麻豆久久精品国产亚洲av| 人妻少妇偷人精品九色| 日韩精品青青久久久久久| 熟女人妻精品中文字幕| 欧美+亚洲+日韩+国产| 非洲黑人性xxxx精品又粗又长| 国产高清视频在线播放一区| 简卡轻食公司| 波多野结衣高清无吗| 51国产日韩欧美| 久久久午夜欧美精品| 美女高潮的动态| 国产精品福利在线免费观看| 男人狂女人下面高潮的视频| 亚洲精品成人久久久久久| 亚洲久久久久久中文字幕|