• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of an occupant restraint system model and parametric study on equivalent crash pulse in vehicle frontal offset crash

    2012-06-21 01:58:20LIZhigang李志剛ZHANGJinhuan張金換MAChunsheng馬春生
    關鍵詞:李志剛張金春生

    LI Zhi-gang(李志剛), ZHANG Jin-h(huán)uan(張金換), MA Chun-sheng(馬春生)

    (State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China)

    In general,the primary factors affecting occupant injury are crash pulse severity,restraint system,and occupant cabin space under full frontal and frontal offset crash[1].The crash pulse severity represents the total energy absorbed by vehicle structure during vehicle crash.It represents the performance of a vehicle and its safety level.It is known that the crash pulse will vary with different vehicles,including the peak value of the crash pulse and the time duration.Yu et al conducted optimum on the crash pulse of vehicle and occupant restraint system,in which the crash pulses were given three different peak values and two of them varied based on a baseline value,however,the time duration of each peak value was not treated as design variables[2].Grimes and Lee investigated the effects of several different crash pulse shapes on occupant kinematics and response through simulation[3].According to the comparison and observation,most of the vehicles’pulses can be treated as typical dual-trapezoid shapes with two peak values in frontal offset crash.In order to analyze the effect of more equivalent factors fully,including the peak values and time durations,on dummy injury metrics,①a vehicle finite element(FE)model and occupant restraint system (ORS)model in the offset crash were developed and validated against test;②the crash pulse was equivalent to a dual-trapezoid shape pulse and was quantitatively described by six parameters;③parametric studies were conducted to analyze the sensitivities of the parameters of equivalent crash pulse on drive injury metrics.

    1 Model development and validation

    1.1 Two steps of the numerical study in vehicle passive safety

    Two steps were used to conduct numerical study in vehicle crash safety as shown in Fig.1.The whole vehicle FE model used to conduct crash simulation was treated as the first step and the ORS model used to evaluate occupant injury was regarded as the second step.The vehicle crash pulse and the deformation of vehicle primary structures which were treated as the interface of these two levels were put into the ORS model to conduct further simulation.In this study,the ORS model only refers to the driver side restraint system model.

    Fig.1 Two levels for vehicle crash and occupant protection

    1.2 Development of vehicle FE model and validation against test data

    The frontal offset crash FE model was developed based on one physical vehicle using HYPERMESH and LSDYNA and there are 807 462elements in total.Partial model can be seen from levell in Fig.1.Both simulation and test were conducted under the condition of C-NCAP[4]with the crash velocity of 56km/h.The comparison of linear acceleration between test and simulation are shown in Fig.2which shows that the peak acceleration of the simulation is slightly higher than the test.This was probably because the engine was treated as a rigid body and the front bumper was a little stiffer in the simulation model than in the physical vehicle in the test.The biggest difference of crash pulse between simulation and test is the first peak value as shown in Fig.2,however,the peak value of the dummy injury metrics were caused by the second peak value of the crash pulse which can be observed from the time duration.The deformation of primary structures comparison between test and simulation are shown in Fig.3.Results show that the global vehicle deformation and A-pillar deformation corresponded well between simulation and test which errors were less than 10%.The errors of steering wheel rearward displacement and pedal rearward displacement were also controlled within 15%.The upward displacements of steering wheel and pedal are relatively small in both test data and the simulated result,thus leading to larger errors when calculated based on smaller values obtained experimentally.Discrepancies may be due to the connection types used in connecting pedal and steering column in the model.By taking the simulated deformation of primary components and vehicle acceleration collectively into account,it can be considered that the simulation results correlated reasonably with the test.

    Fig.2 Linear acceleration of vehicle

    Fig.3 Deformations of primary structures

    1.3 Development of ORS model and validation against test data

    The ORS model developed using MADYMO included vehicle floor,pedal,the panel board,seat,seatbelt,airbag,50%Hybrid Ⅲ dummy etc.which can be seen from level 2in Fig.1.Contacts between the dummy and components,such as seat,airbag,panel,airbag and windshield,airbag and steering wheel were defined.The linear acceleration(along vehicle longitudinal direction)and deformations of primary components,such as backward and upward displacement of steering column,backward displacement of pedal etc.extracted from the validated vehicle FE model were put into the ORS model.The B-pillar at the rocker which was not deformed during vehicle crash was treated as rigid,thus the parts surrounding B-pillar can be seen as the plane motion of rigid body.According to kinematic theory,the acceleration at any position of the rigid body can be written as a=ao+ε×r- ω2r. (1)

    The acceleration can be decomposed into tangential acceleration along longitudinal direction and vertical acceleration about vertical direction of vehicle as

    whereaAandaBare the linear accelerations of left B-pillar(driver side)and right B-pillar(passenger side)respectively;εistheangularaccelerationaboutleftB-pillar; ωistheangularvelocity,andristhevehicleinnerwidth.TheangularaccelerationεcanbederivedfromEq.(2)as

    The time duration and time step of the ORS model were set as 140ms and 10-6s respectively.Simulation results were validated against the test both in kinematic and dynamic response of the dummy.Fig.4shows the dummy kinematic trajectories between test and simulation at different time points.It can be seen that all the kinematic trajectories of the dummy in the simulation were quite identical to the test except for 40ms at which the dummy kinematics in the simulation displayed a little lag.

    Fig.4 Comparison of dummy trajectories between test and simulation

    The primary dummy injury metrics,such as head acceleration,neck axial force and chest deformation according to C-NCAP[4]were validated against the test,which is shown in Fig.5.The dummy injury metrics are corrected reasonably both in peak values and durations.In global,all the errors of the peak values were less than 20%.

    2 Equivalence of crash pulse and its validation in offset crash

    Fig.6shows a typical crash pulse shape in offset vehicle crash.It can be seen that the original acceleration curve has two peak values and both of them have certain durations.This type crash pulse was simplified as a dual-trapezoid shape curve.The simplified crash pulse had better meet two conditions:①it can be characterized with the smallest number of factors which can represent vehicle dynamic response;②it can adequately evaluate occupant response as the original crash pulse[5-6].In this study,the dummy energy density was also compared between equivalent pulse and original pulse besides the dummy injury metrics.

    Fig.5 Results of major dummy injury metrics

    Fig.6 Original and equivalent accelerations

    2.1 Comparisons of dummy injury metrics among test,simulation with original pulse,and simulation with equivalent pulse

    In order to validate the equivalent crash pulse,comparisons of primary important dummy injury metrics among test,simulation with original pulse,and simulation with equivalent pulse were performed as shown in Fig.5.The primary dummy injury metrics in this study included the head resultant acceleration,neck tensile axial force and chest deformation based on the C-NCAP[4].Re-sults show that the simulation with original pulse and simulation with equivalent pulse corresponded reasonably both in peak values and the time durations.

    2.2 Comparison of occupant energy density between simulations with original pulse and equivalent pulse

    A simplified vehicle-occupant model is used to obtain the occupant energy.The schematic of this model is shown in Fig.7[7-8],in whichMoandMvare the occupant and vehicle masses respectively,δisthegapbetweenseatbeltanddummy,andKandFaretherestraintstiffnessandcrashforce respectively.

    Fig.7 Schematic of vehicle-occupant model

    Theoccupantenergy/energydensitycanbe dividedintotwoparts:restraintsystemenergy(Ers)/energydensity(ers)andride-downenergy(Erd)/energydensity(erd)whichwereexpressed as

    The ride-down efficiency can be seen as

    wherexois occupant displacement during crash;xvis vehicle displacement;xo/v=xo-xv,occupant relative displacement.

    The displacements of the vehicle and occupant can be determined through second integration of dummy acceleration.In this study,the chest acceleration was used to represent the whole dummy acceleration.The displacements of the vehicle and dummy,the ride-down energy density and the restraint energy density of the dummy generated by original pulse and equivalent pulse are shown in Fig.8and Fig.9respectively.The equivalent pulse caused a little lower vehicle displacement and a little higher dummy displacement compared to the original pulse,thus the relative displacement of the dummy caused by equivalent pulse would be greater than the one caused by the original pulse and the corresponding maximum dummy ride-down energy density and restraint energy density became a little lower andhigher respectively.In general,the equivalent crash pulse can reasonably replace the original pulse through the global comparison of dummy energy density in the displacement domain.

    Fig.8 Displacements of vehicle and dummy

    Fig.9 Dummy ride-down and restraint energy density

    3 Parametric studies on vehicle crash equivalent pulse

    Linear acceleration-time history curve is the most important factor affecting dummy injury criteria and mainly determined by the whole vehicle structures.In order to investigate the influence of linear acceleration on occupant injuries,parametric studies were conducted on vehicle equivalent pulse.In general,the linear accelerations varies from vehicle to vehicle,thus four types of vehicle acceleration-time curves obtained from our test database and literatures were used to determine the ranges of equivalent pulse parameters[9,10].The four types of crash pulse were marked as type-A,type-B,type-C,and type-D as shown in Fig.10.All of these pulses were collected under the test condition of C-NCAP[4]except for type-D which was obtained under the test condition of Euro-NCAP[11].

    Fig.10 Four types of vehicle crash pulse

    The deformations of primary components,especially the deformation of instrument panel varies with the type of vehicle,therefore they would especially affect the injury metrics of femur,knee and tibia due to direct contact during crash.However,collecting the specific deformations of primary components of all the vehicles are time-consuming and unpractical,thus only the injuries of dummy regions above knee were analyzed to try to eliminate these influences brought by different de-formations of primary components.

    Six parameters were used to describe the equivalent crash pulse,as shown in Fig.6:t1is the time-point corresponding to first peak value of pulse;h1is the first peak value;w1is the duration of the first peak value;t2is the time-point corresponding to second peak value of pulse;h2is the second peak value;w2is the duration of second peak value.The ranges of these six parameters were determined based on Fig.10and they also needed to meet the constraint conditions of timepoint:t1+w1<t2andt2+w2<140 (the 140ms can be treated as the end of the crash).The ranges of parameters and levels corresponding to the factors are shown in Tab.1.These levels and factors were arrayed based on a Taguchi Orthogonal standard table L27(313),in which the first 6factors of 13in this standard table were used and combined to 27combinations,therefore the twenty seven equivalent pulses were put into the model respectively to conduct simulations.The results of peak values of head resultant acceleration(Head_Acc),HIC,neck axial force (Neck_Frc),and chest deformation(Chest_Def)were output to conduct sensitivity analysis.

    Tab.1 Levels of factors

    Results show that factorh2was statistically significant on all the injury metrics aforementioned in this study(P=0.001,P=0.000,P=0.000,andP=0.000respectively).Factorh1was significant on peaks of head resultant acceleration,HIC,neck axial force(P=0.011,0.038,and 0.033respectively).The interactive factors oft1andt2were also significant on peak of head resultant acceleration(P=0.03).The effect sizes of all the factors on each injury criterion was normalized which means the maximum effect size on each injury criterion regarded as 1as shown in Fig.11.All the effects generated by factorh1were negative which means the largerh1,the lower injury metrics.Therefore,a higherh1and lowerh2would bring deeply lower injury metrics and decreasing second peak value of the pulse was the most effective way to reduce the human injury criteria.Besides factorsh1andh2,factorst1,t2,w1,andw2also had some effects on HIC,head resultant acceleration,HIC and neck axial force respectively.According to the analysis above,the initial energy of a vehicle was constant.In order to lower the second peak value of the crash pulse,the first peak value should be increased.Another point needed to be pointed out is that the first peak value of crash pulse didn’t have any effect on the maximum chest deformation,because the chest deformation was mainly caused by the constraint force of the seatbelt.The force increased with increasing the dummy relative displacement with seatbelt.When the first peak value of the crash pulse occurred,the dummy just began to move with a smaller displacement,thus the seatbelt force would be very low and the maximum chest deformation would not be influenced.

    Fig.11 Normalized effect sizes of all the factors

    4 Conclusion

    A vehicle FE model and ORS model were developed and validated against test data.Parametric studies were performed to analyze the sensitivities of parameters of the equivalent dual-trapezoid shape pulse on head resultant acceleration,HIC,neck axial force and chest deformation.Three primary conclusions were obtained:①the equivalent dual-trapezoid crash pulse is accurate enough to replace the original pulse;②the first and second peak values of the pulse were statistically significant on most injury criteria above and the interaction of the time-points of first peak value and second peak value also had a significant influence on head resultant acceleration(P=0.03);③a higher first peak value and a lower second peak value of the crash pulse would bring lower injury metrics.In this study,the ranges of the factors used to conduct parametric studies were limited by four types of vehicle tests,more crash pulses in frontal offset crash are needed to further obtain more accurate and wider ranges.

    [1]Bo P S,Sung J H,Won C K,et al.Performance analysis methodology based on crash pulse severity and vehicle occupant packaging for full frontal crash event[C]∥Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles.Stuttgart,Germany:[s.n.],2009:Seo1-Seo6.

    [2]Qiang Y,Naoya K,Hideoki Y,et al.Optimum design of vehicle frontal structure and occupant restraint system for crashworthiness[J].JSME International Journal Series A,2001,44(4):594-601.

    [3]Grimes W D,Lee F D.The effect of crash pulse shape on occupant simulations[C]∥SAE 2000World Congress,Session:Accident Reconstruction:Simulation& Animation.Detroit,MI,USA:[s.n.],2000:1-10.

    [4]China Automotive Technology and Research Center(CATARC).China-New Car Assessment Program(C-NCAP)[R],2009.(in Chinese)

    [5]Liu Zhixin,Shi Yongwan,Chen Hong.Modeling and analysis of crash pulse of vehicle body based on tipped equivalent square wave method[J].Advanced Materials Research,2011,211-212:1007-1011.

    [6]Huang M.Vehicle crash mechanics[M].Boca Raton,Fla:CRC Press,2002.

    [7]Bois P D,Chou C C,Fileta B B,et al.Vehicle crashworthiness and occupant protection[R].Michigan:Automotive Applications Committee,American Iron and Steel Institute Southfield,2004:214-219.

    [8]Huang M,Laya J,Loo M.A study on ride-down efficiency and occupant responses in high speed crash tests[C]∥International Congress & Exposition.Detroit,MI,USA:[s.n.],1995:29-36.

    [9]Qi Licheng,Wu Xiuchun,Wang Chao,et al.Simulating crashworthiness of car in offset impact[J].Journal of Liaoning Institute of Technology,2006,26(4):252-254.(in Chinese)

    [10]Chul K H,Dong S K.Enhancement of offset crash performance in a short carrier front suspension vehicle[C]∥International Body Engineering Conference and Exhibition.Detroit,Michigan,USA:[s.n.],2001.

    [11]Hobbs C A,McDonough P J.Development of the european new car assessment programme(Euro NCAP)[C]∥Proceedings of the 16th International Technical Conference on the Enhanced Safety of Vehicles(ESV).Windsor,England:[s.n.],1998:2439-2453.

    (Edited byCai Jianying)

    猜你喜歡
    李志剛張金春生
    基于OBE教育理念的醫(yī)用化學課程改革與實踐
    智慧教育背景下民辦高校醫(yī)用化學混合式教學研究
    曹春生作品
    口頭戀人
    現代婦女(2019年11期)2019-11-25 16:55:18
    A numerical model for pipelaying on nonlinear soil stiffness seabed*
    只知其一
    小說月刊(2016年5期)2016-05-06 16:47:52
    曹春生
    Beamforming of Whole Airspace Phased Array TT&C System Based on Linear Subarrays
    不認賬
    雜文選刊(2014年12期)2014-11-17 03:53:48
    《過中國年》
    海峽影藝(2013年3期)2013-11-30 08:15:58
    巨乳人妻的诱惑在线观看| 亚洲久久久国产精品| 久久久精品免费免费高清| 久久精品国产亚洲av香蕉五月 | 18禁裸乳无遮挡免费网站照片 | 午夜福利欧美成人| 99re在线观看精品视频| 人人妻,人人澡人人爽秒播| 欧美 日韩 精品 国产| 在线观看免费视频日本深夜| 久久精品亚洲精品国产色婷小说| 黄色a级毛片大全视频| 欧美中文综合在线视频| 免费久久久久久久精品成人欧美视频| aaaaa片日本免费| 在线观看日韩欧美| 又大又爽又粗| 1024视频免费在线观看| 亚洲精品中文字幕一二三四区| 啦啦啦 在线观看视频| 国产成人精品在线电影| 精品熟女少妇八av免费久了| 国产99久久九九免费精品| 亚洲成人免费电影在线观看| 99国产精品免费福利视频| 十八禁人妻一区二区| 黑人猛操日本美女一级片| 热99国产精品久久久久久7| 十八禁高潮呻吟视频| 欧美日本中文国产一区发布| av福利片在线| 99久久精品国产亚洲精品| 国产精品一区二区在线观看99| 欧美激情久久久久久爽电影 | 1024视频免费在线观看| 精品第一国产精品| 亚洲专区国产一区二区| 色在线成人网| 狠狠狠狠99中文字幕| 亚洲免费av在线视频| 国产成人精品久久二区二区免费| 国产日韩欧美亚洲二区| 18禁美女被吸乳视频| 操美女的视频在线观看| www日本在线高清视频| tube8黄色片| 欧美日韩亚洲综合一区二区三区_| 精品无人区乱码1区二区| 国精品久久久久久国模美| 国产精品亚洲一级av第二区| 香蕉久久夜色| 大型av网站在线播放| 久久精品国产亚洲av高清一级| 超色免费av| 精品无人区乱码1区二区| 美女扒开内裤让男人捅视频| 亚洲情色 制服丝袜| 色播在线永久视频| 亚洲精品成人av观看孕妇| 精品国产亚洲在线| 亚洲少妇的诱惑av| 久热这里只有精品99| 侵犯人妻中文字幕一二三四区| 亚洲午夜精品一区,二区,三区| 精品少妇一区二区三区视频日本电影| 免费在线观看影片大全网站| 少妇粗大呻吟视频| 亚洲全国av大片| 午夜免费成人在线视频| 免费少妇av软件| 亚洲精品在线观看二区| 免费少妇av软件| 午夜福利乱码中文字幕| 国产av一区二区精品久久| 国产精品二区激情视频| 久久国产精品大桥未久av| 极品人妻少妇av视频| 天天躁日日躁夜夜躁夜夜| videos熟女内射| 香蕉丝袜av| 中出人妻视频一区二区| 亚洲午夜精品一区,二区,三区| 久久精品aⅴ一区二区三区四区| 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩国产mv在线观看视频| 乱人伦中国视频| 国产成人精品在线电影| 成人黄色视频免费在线看| 国产成人免费观看mmmm| 国产精品一区二区在线不卡| 一区二区三区国产精品乱码| 精品高清国产在线一区| 高清欧美精品videossex| 中文亚洲av片在线观看爽 | 国产精品 国内视频| 国产成人av教育| 777米奇影视久久| 黄色a级毛片大全视频| 欧美 亚洲 国产 日韩一| 亚洲精品成人av观看孕妇| 亚洲美女黄片视频| 国产亚洲精品久久久久5区| 精品久久蜜臀av无| 精品久久久精品久久久| 波多野结衣av一区二区av| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 国产精品免费视频内射| 日韩欧美一区视频在线观看| 色精品久久人妻99蜜桃| 国产精品一区二区在线不卡| 婷婷成人精品国产| 天堂√8在线中文| 美女 人体艺术 gogo| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 亚洲aⅴ乱码一区二区在线播放 | 日韩中文字幕欧美一区二区| 久久久久精品人妻al黑| 日本一区二区免费在线视频| 在线观看舔阴道视频| 天天躁狠狠躁夜夜躁狠狠躁| 交换朋友夫妻互换小说| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 国产午夜精品久久久久久| 久久这里只有精品19| 亚洲专区字幕在线| 女人高潮潮喷娇喘18禁视频| 51午夜福利影视在线观看| 欧美国产精品一级二级三级| 精品国产国语对白av| 热re99久久精品国产66热6| 国产在线观看jvid| 午夜福利免费观看在线| 青草久久国产| 色尼玛亚洲综合影院| 超碰成人久久| 男人舔女人的私密视频| 亚洲久久久国产精品| 午夜福利在线观看吧| 欧美黄色淫秽网站| 亚洲精品av麻豆狂野| 黑人巨大精品欧美一区二区mp4| 婷婷精品国产亚洲av在线 | 亚洲avbb在线观看| 怎么达到女性高潮| 曰老女人黄片| 村上凉子中文字幕在线| 五月开心婷婷网| 丝袜人妻中文字幕| 欧美另类亚洲清纯唯美| 中文字幕精品免费在线观看视频| 久久人人97超碰香蕉20202| 亚洲精品一二三| 久久久久久久久久久久大奶| aaaaa片日本免费| 中文字幕av电影在线播放| 亚洲欧美日韩另类电影网站| 国产精品久久久av美女十八| 国产男女超爽视频在线观看| 日本vs欧美在线观看视频| 久久青草综合色| 久久香蕉精品热| 精品一品国产午夜福利视频| 亚洲av第一区精品v没综合| 国产麻豆69| 国产精品电影一区二区三区 | 十八禁人妻一区二区| 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| av中文乱码字幕在线| 女人久久www免费人成看片| 中文欧美无线码| 国产精品久久电影中文字幕 | 两个人免费观看高清视频| 男女免费视频国产| 在线av久久热| 国产成人精品久久二区二区免费| 99国产精品99久久久久| 亚洲精品成人av观看孕妇| 亚洲精品久久成人aⅴ小说| 久久人妻福利社区极品人妻图片| 黄色片一级片一级黄色片| 9色porny在线观看| 亚洲欧美日韩另类电影网站| 日韩欧美一区视频在线观看| 亚洲av日韩在线播放| 欧美丝袜亚洲另类 | 欧美 日韩 精品 国产| 中文字幕人妻丝袜一区二区| 国产成人影院久久av| www.熟女人妻精品国产| 国产精品99久久99久久久不卡| 日韩精品免费视频一区二区三区| 大型av网站在线播放| 婷婷丁香在线五月| 99国产精品一区二区三区| 丁香欧美五月| 亚洲七黄色美女视频| 大片电影免费在线观看免费| 国产精品乱码一区二三区的特点 | 精品少妇久久久久久888优播| 中文亚洲av片在线观看爽 | 亚洲在线自拍视频| 热re99久久精品国产66热6| 欧美黄色片欧美黄色片| 国产精华一区二区三区| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久| 日韩欧美一区二区三区在线观看 | 人妻丰满熟妇av一区二区三区 | 91成年电影在线观看| 很黄的视频免费| 午夜日韩欧美国产| 亚洲伊人色综图| 黑丝袜美女国产一区| 操美女的视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产野战对白在线观看| 国产伦人伦偷精品视频| 久久久久国产一级毛片高清牌| 美女国产高潮福利片在线看| av欧美777| 亚洲aⅴ乱码一区二区在线播放 | 最新的欧美精品一区二区| 正在播放国产对白刺激| 又紧又爽又黄一区二区| 丰满的人妻完整版| 超色免费av| 亚洲在线自拍视频| 丝袜在线中文字幕| 久久香蕉国产精品| 亚洲人成电影免费在线| 99国产精品99久久久久| 婷婷精品国产亚洲av在线 | 国产成+人综合+亚洲专区| 亚洲伊人色综图| 香蕉丝袜av| 777米奇影视久久| 97人妻天天添夜夜摸| 一进一出好大好爽视频| 欧美日韩成人在线一区二区| 最新美女视频免费是黄的| 久久久精品区二区三区| 国产精品.久久久| 久久久国产成人精品二区 | 又紧又爽又黄一区二区| 欧美老熟妇乱子伦牲交| 欧美日韩成人在线一区二区| 国产精品一区二区免费欧美| 黄色 视频免费看| 亚洲熟妇熟女久久| 国产成人一区二区三区免费视频网站| 亚洲中文日韩欧美视频| 十八禁高潮呻吟视频| 一夜夜www| 欧洲精品卡2卡3卡4卡5卡区| 国产精品免费视频内射| 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频精品一区| 丁香六月欧美| 乱人伦中国视频| 黄频高清免费视频| 午夜久久久在线观看| 少妇 在线观看| 99re6热这里在线精品视频| 亚洲人成电影免费在线| 91在线观看av| 亚洲国产毛片av蜜桃av| 免费人成视频x8x8入口观看| 国产片内射在线| 不卡一级毛片| 色94色欧美一区二区| 国产成人欧美在线观看 | 亚洲精华国产精华精| 国产精品一区二区在线不卡| 丝袜在线中文字幕| 免费高清在线观看日韩| 亚洲精品乱久久久久久| 午夜激情av网站| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 在线观看舔阴道视频| 美女午夜性视频免费| 亚洲国产欧美一区二区综合| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 国产亚洲精品久久久久5区| 法律面前人人平等表现在哪些方面| 午夜两性在线视频| 亚洲中文av在线| 女人精品久久久久毛片| 女性被躁到高潮视频| 一本一本久久a久久精品综合妖精| 69精品国产乱码久久久| 亚洲中文日韩欧美视频| 久久久国产欧美日韩av| 亚洲精华国产精华精| 操美女的视频在线观看| 久久ye,这里只有精品| 麻豆乱淫一区二区| 日韩三级视频一区二区三区| 国产单亲对白刺激| 下体分泌物呈黄色| 天堂动漫精品| 精品久久久久久电影网| 亚洲va日本ⅴa欧美va伊人久久| 国产在线观看jvid| cao死你这个sao货| 久久ye,这里只有精品| 在线观看www视频免费| 日韩欧美三级三区| 在线观看日韩欧美| 国产激情欧美一区二区| 老熟女久久久| 天堂中文最新版在线下载| 欧美中文综合在线视频| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频| 视频区图区小说| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清激情床上av| 亚洲成国产人片在线观看| 亚洲精品在线观看二区| bbb黄色大片| 婷婷成人精品国产| 在线观看免费日韩欧美大片| 国产乱人伦免费视频| 精品免费久久久久久久清纯 | 90打野战视频偷拍视频| 99热国产这里只有精品6| 国产精品自产拍在线观看55亚洲 | 女同久久另类99精品国产91| 亚洲精品美女久久av网站| 免费久久久久久久精品成人欧美视频| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 在线av久久热| 在线观看www视频免费| 国产成人精品在线电影| 婷婷丁香在线五月| 在线观看免费视频日本深夜| 久久中文看片网| 色婷婷av一区二区三区视频| 亚洲专区字幕在线| 国产一卡二卡三卡精品| 亚洲色图 男人天堂 中文字幕| 91在线观看av| 美女午夜性视频免费| 亚洲熟女精品中文字幕| 咕卡用的链子| 国产蜜桃级精品一区二区三区 | 三上悠亚av全集在线观看| 国产精品av久久久久免费| 欧美国产精品一级二级三级| 超碰97精品在线观看| 黑丝袜美女国产一区| 18禁裸乳无遮挡动漫免费视频| 欧美日韩黄片免| 国产男女超爽视频在线观看| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 欧美精品一区二区免费开放| 国产精品久久久久成人av| 国产精品影院久久| 嫁个100分男人电影在线观看| 日日夜夜操网爽| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 夜夜爽天天搞| 久久影院123| 一进一出抽搐gif免费好疼 | 麻豆av在线久日| 久久久久久久久免费视频了| 亚洲美女黄片视频| 久久久久国内视频| 午夜91福利影院| 热99久久久久精品小说推荐| 国产成人一区二区三区免费视频网站| 一边摸一边做爽爽视频免费| 久久久久国内视频| 亚洲成人免费电影在线观看| 中文欧美无线码| 亚洲精品国产区一区二| 69精品国产乱码久久久| 999久久久国产精品视频| 99久久国产精品久久久| 日韩欧美国产一区二区入口| 操美女的视频在线观看| 亚洲国产毛片av蜜桃av| 色综合欧美亚洲国产小说| 日韩 欧美 亚洲 中文字幕| 国产男女内射视频| 国产免费av片在线观看野外av| 国产高清videossex| a级片在线免费高清观看视频| 中文字幕最新亚洲高清| 99精品欧美一区二区三区四区| 精品少妇久久久久久888优播| 国产午夜精品久久久久久| 热re99久久国产66热| 大陆偷拍与自拍| 国产成+人综合+亚洲专区| а√天堂www在线а√下载 | 在线观看免费午夜福利视频| 老熟女久久久| 亚洲精品乱久久久久久| 久久狼人影院| www.熟女人妻精品国产| 99热只有精品国产| 窝窝影院91人妻| 亚洲中文av在线| 午夜91福利影院| 51午夜福利影视在线观看| 手机成人av网站| 麻豆av在线久日| 妹子高潮喷水视频| 午夜精品久久久久久毛片777| 中文字幕制服av| 日韩一卡2卡3卡4卡2021年| 午夜福利视频在线观看免费| 精品午夜福利视频在线观看一区| 久久久精品免费免费高清| 久久影院123| 亚洲精品美女久久av网站| 色综合婷婷激情| 91av网站免费观看| 成年版毛片免费区| 中国美女看黄片| 精品国产亚洲在线| 日本一区二区免费在线视频| 午夜影院日韩av| 亚洲精品国产一区二区精华液| 亚洲视频免费观看视频| 免费观看精品视频网站| 亚洲av电影在线进入| 美国免费a级毛片| 高清黄色对白视频在线免费看| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区免费开放| 欧美+亚洲+日韩+国产| 国产单亲对白刺激| 国产免费av片在线观看野外av| 国产高清国产精品国产三级| 日韩欧美一区二区三区在线观看 | 亚洲熟妇熟女久久| 亚洲国产欧美网| 最近最新中文字幕大全免费视频| 亚洲熟女毛片儿| 在线观看免费午夜福利视频| 在线视频色国产色| av一本久久久久| 亚洲久久久国产精品| 中文字幕高清在线视频| 69av精品久久久久久| 黄网站色视频无遮挡免费观看| 日韩有码中文字幕| 国产又爽黄色视频| 国产精品一区二区免费欧美| 黑丝袜美女国产一区| 美女国产高潮福利片在线看| 国产av又大| 亚洲少妇的诱惑av| 免费av中文字幕在线| 一本一本久久a久久精品综合妖精| 久久 成人 亚洲| 黄频高清免费视频| 日韩中文字幕欧美一区二区| 极品人妻少妇av视频| 国产精品香港三级国产av潘金莲| 久久热在线av| 大陆偷拍与自拍| 97人妻天天添夜夜摸| 成人黄色视频免费在线看| 国产日韩欧美亚洲二区| 亚洲精品国产色婷婷电影| 亚洲精品国产精品久久久不卡| 好看av亚洲va欧美ⅴa在| av超薄肉色丝袜交足视频| 国产成人欧美| 少妇的丰满在线观看| 午夜福利欧美成人| 人妻丰满熟妇av一区二区三区 | 丁香六月欧美| 久久精品国产亚洲av高清一级| 一区二区三区激情视频| 国产精品秋霞免费鲁丝片| 精品视频人人做人人爽| 亚洲在线自拍视频| 免费观看人在逋| 少妇 在线观看| 日本一区二区免费在线视频| 国产淫语在线视频| 亚洲 欧美一区二区三区| 国产一区二区三区在线臀色熟女 | 热99久久久久精品小说推荐| 精品高清国产在线一区| 母亲3免费完整高清在线观看| 999精品在线视频| 女人被狂操c到高潮| 久久中文看片网| 91在线观看av| 日韩大码丰满熟妇| 女人高潮潮喷娇喘18禁视频| 国产人伦9x9x在线观看| 天天添夜夜摸| 亚洲五月色婷婷综合| 精品国产一区二区久久| 两个人免费观看高清视频| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲综合一区二区三区_| 在线观看66精品国产| 三级毛片av免费| 欧美黑人精品巨大| 日日爽夜夜爽网站| 国产成人精品久久二区二区91| 999精品在线视频| 久久草成人影院| 免费在线观看完整版高清| 搡老熟女国产l中国老女人| 亚洲一区二区三区欧美精品| 日韩制服丝袜自拍偷拍| 高清av免费在线| 岛国毛片在线播放| a级毛片黄视频| 亚洲熟女精品中文字幕| 欧美在线黄色| 精品国内亚洲2022精品成人 | 亚洲欧美一区二区三区久久| 18禁裸乳无遮挡免费网站照片 | 精品熟女少妇八av免费久了| 日韩精品免费视频一区二区三区| 免费一级毛片在线播放高清视频 | 国产伦人伦偷精品视频| 国产精品久久久久久精品古装| 可以免费在线观看a视频的电影网站| 美女高潮喷水抽搐中文字幕| 不卡av一区二区三区| 两性夫妻黄色片| 一级a爱片免费观看的视频| 国产在线精品亚洲第一网站| 男女之事视频高清在线观看| 丝袜在线中文字幕| 国产男女内射视频| 久久久国产精品麻豆| 亚洲专区国产一区二区| av片东京热男人的天堂| 美女高潮喷水抽搐中文字幕| av不卡在线播放| 一级作爱视频免费观看| 一区二区日韩欧美中文字幕| 亚洲国产欧美网| 国产成人影院久久av| 免费黄频网站在线观看国产| 91老司机精品| 最近最新中文字幕大全免费视频| 午夜精品国产一区二区电影| 成人18禁在线播放| 俄罗斯特黄特色一大片| 不卡一级毛片| 亚洲国产中文字幕在线视频| 国产一区二区三区在线臀色熟女 | 91精品三级在线观看| 亚洲国产精品合色在线| 18禁黄网站禁片午夜丰满| 在线永久观看黄色视频| 午夜福利影视在线免费观看| 大香蕉久久成人网| 啦啦啦免费观看视频1| 国产成人免费无遮挡视频| 亚洲一区二区三区欧美精品| 久久久国产欧美日韩av| 脱女人内裤的视频| 色精品久久人妻99蜜桃| 色在线成人网| 日日夜夜操网爽| 1024视频免费在线观看| 久久国产乱子伦精品免费另类| 91老司机精品| av网站免费在线观看视频| 人人妻,人人澡人人爽秒播| 国产在线精品亚洲第一网站| 在线看a的网站| 好男人电影高清在线观看| 久久午夜综合久久蜜桃| 51午夜福利影视在线观看| 精品电影一区二区在线| 制服人妻中文乱码| 51午夜福利影视在线观看| 亚洲专区中文字幕在线| 国产aⅴ精品一区二区三区波| 51午夜福利影视在线观看| 好男人电影高清在线观看| 91大片在线观看| 满18在线观看网站| 乱人伦中国视频| 夜夜躁狠狠躁天天躁| cao死你这个sao货| av中文乱码字幕在线| xxxhd国产人妻xxx| 亚洲精品自拍成人| 亚洲美女黄片视频| 成人18禁高潮啪啪吃奶动态图| 色94色欧美一区二区| 亚洲午夜精品一区,二区,三区| 午夜精品在线福利| 新久久久久国产一级毛片| 国产男女内射视频| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 免费看十八禁软件|