• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    有關(guān)MEMS結(jié)構(gòu)運(yùn)動(dòng)過程中產(chǎn)生和輻射電磁波的研究*

    2012-06-10 08:08:36張曉艷黃慶安
    傳感技術(shù)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:慶安硅基電容式

    張曉艷,黃慶安,韓 磊

    (東南大學(xué)MEMS教育部重點(diǎn)實(shí)驗(yàn)室,南京210096)

    Microelectromechanical Systems(MEMS)technology is acquiring an increasing number of applications because of its proven better performance compared to currently available state of art solid state devices[1].One of the unique features of MEMS is that it involves movement of micro mechanical structure that gives rise to new ways of sensing and actuating.Although there already have been many successful applications,it is believed that there is still much space left to be discovered in the application of structural movement in MEMS[2].

    One such potentiality lies in the electromagnetic(E-M)domain.It is well known that moving charges may produce E-M field and wave[3-5].Movement of MEMS structures is a very effective source of moving charges.At least two principles are possible to produce E-M wave by MEMS.First,movement between two MEMS electrostatic structures,like in parallel capacitance,or comb interdigited capacitance,directly alters the electric field in space and generates E-M wave.Second,movement of MEMS structure carrying net charges also produces E-M wave.These origination and transmitting of E-M wave by moving structures may occur in every type of MEMS device and provide plenty of possibilities of both applications and interferences.

    Unfortunately,although there were numerous literatures on designing radio-frequency(RF)and microwave MEMS device[6-7],the dynamic coupling mechanism between MEMS structural movement and E-M wave in space is rarely reported.Previous effort mainly considered E-M characteristics of a static or quasi-static MEMS structure[8-10],instead of the dynamics.This paper presents an early study on the coupling physics between mechanical,electrical and E-M energy domain of typical MEMS structure in dynamic movement.Models in each energy domain are established in turn to find out what kind of E-M wave a moving structure can generate.Parametric study is performed to understand what may influence the E-M wave.Numerical simulations are used for validation.

    1 Coupled Fields Modeling

    1.1 Representative model and simplification

    Since there are so many different shapes of moving structure and types of movement in MEMS,a thorough investigation is not practical at this stage.A most representative model is established instead.As shown in Fig.1,the model consists of a wave guide structure with a gap in the center.The gap is formed by the upper area and bottom area of the wave guide structure.The upper area is movable and the bottom area is fixed.So it is reasonable to think of the gap as a conventional parallel capacitance with movable upper plate and fixed bottom plate.In real cases,the waveguide may be coaxial cable,micro strip,coplanar waveguide(CPW)and so on,and the gap corresponds to structures like switch,phase shifter and reconfigurable capacitance and so on.

    Fig.1 Representative model of MEMS structure that can produce E-M wave

    The key point of the model is that most of E-M wave transmitted or radiated into the open space is screened by the ground of the wave guide except the gap region,so that the movable gap becomes the only efficient source of the E-M wave.Any other topology structure of MEMS can be regarded as a superposition of this model and those of other common structures.As for this model,it can further be regarded as a“quasi”basic element antenna subtracted from a full waveguide,as shown in Fig.2.The element antenna is“quasi”because here it cannot be considered as a line with no diameter.Actually there is a diameter value equal to the length of the plates.The focus of our study is on the quasi element antenna model where the length of the element(i.e.the height of the gap)varies with the movement of MEMS structure.It is obvious that the element antenna is just the“reciprocal”model of the gap,so they are so much distinguished in the following analysis.

    Fig.2 Simplification of the representative model in Fig.1

    1.2 Origin of E-M wave

    Using dynamic mechanical analysis of any MEMS structure,it is always possible to obtain an analytical expression ofmovementofthe upperplate ofthe gap,u(t).So the variation of the gap height g(t)is given by

    The movement of the upper end towards the bottom plate has two results in the electric domain.Both may give rise to E-M wave.

    First,as the gap height changes,the capacitance of the gap changes,and charges flows in and out to become electric current that may generate E-M wave.This can well be considered as the charging or discharging problem of the gap capacitance in Fig.1.The charging speed is affected by two factors.The first one is the charging time constant of the system.The other one is the variation period of the capacitance,like the time length required for the gap to move from the maximum height to the minimum one and then back again to the maximum.Usually,with agood conductorin the waveguide and a very small gap capacitance,the time constant of electrical charging(around 10-9s)is much smaller than the mechanical variation period(around 10-5s).So it is reasonable that the charging is only related to the variation of the gap capacitance and the charging time can be neglected.Assume the gap voltage V is a constant,the dynamic charges Q(t)on either plate of the gap can be denoted by

    where C(t)is the dynamic capacitance of the gap.Based on the result in section 2.1,it is approximately given by

    where S is the area of the gap plates.

    Second,the net charges on the upper plate moves,and the movement may generate E-M wave directly.The bottom plate is also charged,but it does not move.The other part of the waveguide conductor is electrically neutral although there are moving charges and currents in them.So the upper plate is the only source of net charges movement,and it produce E-M wave in a unique and different way from the first one.The amount of the moving charges is still Q(t)as above,and the acceleration of their movement a is given by

    The last important point is,according to the theory of antenna,most part of the E-M wave generated between the two plates is constrained within the central area and cannot be radiated into the open space.Only the fringe part of the gap is able to generate E-M wave we concern in this paper.As in Fig.3,the electric lines in the switch model diverge into the open space only around the corner of the plate.Thus the effective charges Qe(t)as the source of E-M wave on the corner of the gap is

    where η denotes the ratio of the charges on the corner to those on the whole plate[11].

    Fig.3 Charges on the corners of the gap capacitance are the effective origin of E-M wave

    For both origins mention above,their effective charges are the same,namely the corner charges Qe.Hence the effective currents that generates open space E-M wave is denoted by

    As a general case,the gap height changes periodically at an angular frequency of ω,so both charges and current will alter periodically,and the current can be denoted by

    where Ieis the magnitude of the altering current.

    1.3 E-M wave generation and radiation

    For the first origin,the electric current through gap capacitance charging during movement,its generation of E-M wave can well be modeled as that of an element antenna carrying altering current,as shown in Fig.2.As mentioned before,the antenna model is just the reciprocal model of the gap.It generates an EM wave as[7]

    where μ and ε are the magnetic permeability and dielectric constant of the space,k is the magnitude of the E-M wave vector,r is the distance from the center point of the antenna,θ is the angle away from the length direction of the antenna,vector r,θ and φ are the unit vector in the radical,axial and tangential direction of the spherical coordinate system.The center point of the antenna is the origin of the coordinate system.

    For the second origin,the net charge movement on the upper plate of the gap,the generated E-M wave is given by[5]

    Where a is the acceleration of the charges.The final EM wave is the superposition of both.

    2 Case study and discussion

    Case study is performed to investigate the real EM wave generated by moving MEMS.A typical capacitance type switch structure is used as the realistic model of the movable gap.The geometric model of the switch is shown in Fig.4.The material and geometrical parameters of the switch is listed in Table 1.The theory of capacitive type switch is the rather mature and not the focus of our study.The known formulas in related textbook[12]are referenced for the electro-mechanical analysis of the switch.The movement of the switch gap is obtained and substituted into Eq.1 and Eq.4 for the consequent calculation.

    Table 1 Material and geometrical parameters

    Fig.4 Geometric model of the capacitive type switch

    To validate the analytical model,finite element(FE)analysis by the HFSS software is performed.HFSS is unable to perform a real dynamic coupling field analysis of the mechanically movable gap.It is also hard to perform a parametric study in its graphics interface.So it is only used to validate the antenna model.Fig.5(a)shows the vector diagram of the generated electric field around the element antenna in space simulated by HFSS.The size of the simulation volume is 20 mm×20 mm ×20 mm.Fig.5(b)shows the analytical result from section 2 of the electric field intensity component Erat θ=0°,which is located at the red region of Fig.5(a).The values match in orders of magnitude at the boundary and thus validate part of the analytical model.

    Fig.5 Simulated electric field intensity of the antenna model from(a)HFSS results,(b)analytical results.They match in order of magnitude at the boundary region

    Next,the parametric study is performed to see what factors may influence the electric field intensity and to what extent their influences may be.The first factor is the distance away from gap.Fig.6 shows the intensity of Eθat θ=90°and Erat θ=0°with respect to radius r when the line frequency f=100 kHz.These two components are selected for investigation because when the gap is mounted in plane or out of plane on a MEMS chip,respectively,the maximum values of the generated E-M wave must come from the Ercomponent at θ=0°and the Eθcomponent at θ=90°,respectively.It is seen that both components move very slowly within the microscale range.For a normal size of a MEMS chip,like 1 cm,the magnitude of the radius r with altering frequency of the gap at f=100 kHz generated electric field at the other side the chip is nearly the same as that nearby the origin gap.This may mean a universal influence of the generated E-M wave to all the devices on the same chip.

    Fig.6 Erat θ=0°and Eθat θ=90°with respect to

    The second factor is the altering frequency of the gap height.It is the most important factor that may enhance the effect of the generated E-M wave.When the frequency increases,the variation period of the gap height is shortened,and the current through the element antenna and the generated E-M field are increased.Fig.7 shows the electric field components at r=1 cm with respect to the altering line frequency f.It is seen that with the increase of the frequency,the intensity of the generated electric field can be increased 0.15 V/m,which is large enough to induce E-M interference in the whole 1 cm×1 cm chip area.Although it is not possible for current MEMS switch to vibrate or actuate at such a frequency,the next generation of submicron and nano structure are very likely to encounter such a problem.

    Fig.7 Erat θ=0°and Eθat θ=90°with respect to altering line frequency f of the gap at r=1 cm

    The third factor is the gap height itself.It affects both the length of the element antenna and the altering charges.Fig.8 shows the result at f=100 kHz and r=1 cm.The generated E-M field intensity increases with the gap height significantly.Although increasing the gap height may improve the isolation characteristics of most switches,the generated E-M wave and thus the E-M interference to the other MEMS device may be increased.It is observed that the intensity of the electric field is increased linearlywith thegap heightand theErcomponent at θ=0°is increased 5 times when the gap height changes from 1 μm to 5 μm.From the analysis above,the E-M field is influenced by the distance away from the gap most.

    Fig.8 Erat θ=0°and Eθat θ=90°with respect to gap height g with f=100 kHz and r=1 cm

    At last,the E-M wave generated by the two origins is compared in Fig.9.It is seen that the intensity of the E field generated by the two origins differ greatly.It is because the velocity of the charges which move with the plates are relative small.Although E2can be ignored compared with E1,this problem may show up in the future high speed MEMS devices.

    Fig.9 Comparison of the generated E-M waves of the two origins in section 2.2

    Fig.10 Approximate distribution of the generated E-M wave on a real chip with another switch located 1cm away from the movable gap.The gap is mounted(a)out of plane and(b)in plane,both at the edge of the chip.

    For simplicity and clarity,the analysis above assumes an infinitely large space as the boundary condition of the E-M wave.The real boundary conditions are much more complex.Fig.10 shows two examples where the movable gap is mounted in plane and out of plane on a chip that contains another switch at a distance of 1cm from the gap.HFSS is used to simulate an approximate distribution of the generated E-M wave on the whole chip.Comparing the results with those obtained before at infinitely large space,it is found that the E field on the real boundary is much bigger than the free space.In the real boundary conditions,the E-M wave is scattered on the interface and induces variable charges which is the secondary source radiating E-M wave.The MEMS switch in the picture has complex boundary conditions.The EM wave is reflected and refracted several times on the interface.As a result,the intensity of E-M wave will increase.And the E-M wave concentrates in the gap of the switch.It is because this semi-enclosed structure is more declined to constraint E-M wave respect to the open structure.

    3 Conclusion

    Through a couple field analysis of a movable gap in a waveguide,it is proved that the movement of the gap is able to generate considerable E-M wave into the open space at a proper condition.The E-M wave comes from both the electric current charging the dynamic variable gap capacitance and the net charges in movement.Parametric study shows that the generated E-M wave may propagate in centimeters without considerable loss in the open space.The frequency of the gap has the biggest influence on the magnitude of generated E-M wave.It also increases with the height of the gap.Structures on chip may hinder or absorb part of the generated E-M wave,but the complex boundary conditions also result the gather of the E-M wave in the structure.And it may be influence the operation or the reliability of the device.The work indicate that dynamic coupling of the mechanical movement and E-M wave,which is often neglected in previous design,has to be taken into consideration with the continuousminiaturization ofthe MEMS structure and higher operation frequency.

    [1]郭興龍,蔡描,劉蕾.Ku波段硅基MEMS可重構(gòu)微型天線設(shè)計(jì)[J].傳感技術(shù)學(xué)報(bào),2006,19(6):2425-2427.

    [2]袁曉林,黃慶安,廖小平.電容式RF MEMS開關(guān)開關(guān)過程產(chǎn)生的電磁波模型和分析[J].傳感技術(shù)學(xué)報(bào),2006,19(5):1945-1950.

    [3]Sammie Giles,Jr.(Ret.).Poynting Vector of a Uniformly Moving Point Charge[C]//41st Southeastern Symposium on System Theory,2009.169-170.

    [4]Vernon Cooray,Gerald Cooray.The Electromagnetic Fields of an Acceletating Charge:Application in Lightning Return-Stroke Models[J].IEEE Transactions on Electromagnetic Compatibility,2010,52(4):944-955.

    [5]Pannofsky W K H,Phillips M.Classical Electricity and Magnetism[M].Reading,MA:Addison-Wesley,1962.

    [6]ReenaAl-Dahleh,RaafatR Mansour.High-Capacitance-Ratio Warped-Beam Capacitive MEMS Switch Designs[J].Journal of Microelectromechanical Systems,2010,19(3):538-547.

    [7]Oren Aharon,LiorGal,YaelNemirovsky.HybridRF-MEMS Switches Realized in SOI Wafers by Bulk Micromachining[J].Journal of Microelectromechanical Systems,2010,19(5):1162-1174.

    [8]Wong C H,Tan M J,Liew K M,et al.Electrical Characterization of RF Capacitive Microswitch[J].Sensors and actuators A,2003,102(3):296-310.

    [9]Vitaly Leus,David Elata.On the Dynamic Response of Electrostatic MEMS Switches[J].Journal of Microelectromechanical Systems,2008,17(1):236-243.

    [10]Sudipto K De,Aluru N R.Full Lagrangian Schemes for Dynamic A-nalysis of Electrostatic MEMS[J].Journal of Microelectromechanical Systems,2004,13(5):737-758.

    [11]Hanno Hammer.Analytical Model for Comb-Capacitance Fringe Fields[J].Journal of Microelectromechanical Systems,2010,19(1):175-182.

    [12]Rebeiz G M.RF MEMS Theory,Design,and Technology,chapter,3,John Willey& Sons(2003).

    猜你喜歡
    慶安硅基電容式
    基于FDC2214電容式傳感器的手勢識(shí)別裝置
    電子制作(2019年10期)2019-06-17 11:44:58
    電容式油量表設(shè)計(jì)
    電子測試(2018年18期)2018-11-14 02:30:28
    電容式蓄電池液位計(jì)設(shè)計(jì)
    涉警輿情反轉(zhuǎn)的生成機(jī)理與治理——以慶安槍擊案為研究樣本
    慶安灌溉試驗(yàn)站
    基于硅基液晶拼接的高對(duì)比度動(dòng)態(tài)星模擬器光學(xué)系統(tǒng)
    硅基互聯(lián)時(shí)代文化在商業(yè)空間景觀設(shè)計(jì)中的構(gòu)建
    慶安灌溉試驗(yàn)站
    硅基光電子學(xué)的最新進(jìn)展
    一種硅基導(dǎo)電橡膠
    免费电影在线观看免费观看| 亚洲五月天丁香| cao死你这个sao货| 国内精品久久久久久久电影| 国内精品久久久久精免费| 亚洲专区国产一区二区| 午夜免费观看网址| 免费看十八禁软件| xxx96com| 久久婷婷成人综合色麻豆| 国产真人三级小视频在线观看| a级毛片a级免费在线| 最近最新免费中文字幕在线| 精品欧美国产一区二区三| 三级毛片av免费| 国产成人av激情在线播放| 婷婷亚洲欧美| 亚洲 欧美 日韩 在线 免费| 男人舔女人下体高潮全视频| 国产精品爽爽va在线观看网站| 国产亚洲精品久久久久5区| 国产成人aa在线观看| 91大片在线观看| 一本综合久久免费| 免费看a级黄色片| 国产一区二区激情短视频| 欧美乱妇无乱码| 黄色丝袜av网址大全| 国内精品一区二区在线观看| 国产真人三级小视频在线观看| 叶爱在线成人免费视频播放| 又爽又黄无遮挡网站| 中文字幕久久专区| 熟女电影av网| 国产成年人精品一区二区| 色精品久久人妻99蜜桃| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 国产精品影院久久| 国产精品爽爽va在线观看网站| av福利片在线| 波多野结衣巨乳人妻| 色哟哟哟哟哟哟| 免费电影在线观看免费观看| 亚洲欧美日韩高清专用| 看片在线看免费视频| 国产一级毛片七仙女欲春2| 国产欧美日韩一区二区三| 亚洲一码二码三码区别大吗| 日本三级黄在线观看| 亚洲午夜精品一区,二区,三区| 在线视频色国产色| 亚洲一码二码三码区别大吗| 在线播放国产精品三级| 动漫黄色视频在线观看| 床上黄色一级片| 欧美精品亚洲一区二区| 色综合亚洲欧美另类图片| 国产成人精品久久二区二区91| 毛片女人毛片| 50天的宝宝边吃奶边哭怎么回事| 12—13女人毛片做爰片一| 亚洲av成人av| 麻豆国产av国片精品| 久久热在线av| 999精品在线视频| 欧美黄色片欧美黄色片| 91国产中文字幕| 观看免费一级毛片| 少妇粗大呻吟视频| 国产一区二区在线av高清观看| 国产亚洲av嫩草精品影院| 成人18禁在线播放| 国产午夜福利久久久久久| 免费电影在线观看免费观看| 亚洲人成电影免费在线| 亚洲国产精品久久男人天堂| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩东京热| 窝窝影院91人妻| 国产激情偷乱视频一区二区| 91九色精品人成在线观看| 国产黄片美女视频| 日本免费一区二区三区高清不卡| 色噜噜av男人的天堂激情| 国产av不卡久久| а√天堂www在线а√下载| 禁无遮挡网站| 国产区一区二久久| 久久热在线av| 亚洲欧美日韩东京热| 久久久久久人人人人人| 搡老岳熟女国产| 国产亚洲欧美在线一区二区| www.www免费av| 婷婷丁香在线五月| 国产99久久九九免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 一级毛片高清免费大全| 久久精品91蜜桃| www日本黄色视频网| 午夜福利免费观看在线| 国产亚洲av嫩草精品影院| 国产成人精品久久二区二区91| 国产精品美女特级片免费视频播放器 | 国产精品久久久久久亚洲av鲁大| 夜夜看夜夜爽夜夜摸| 免费在线观看视频国产中文字幕亚洲| 欧美日韩一级在线毛片| 岛国在线免费视频观看| 中文字幕人成人乱码亚洲影| 久久久久久免费高清国产稀缺| 少妇熟女aⅴ在线视频| 脱女人内裤的视频| 国内久久婷婷六月综合欲色啪| 国产单亲对白刺激| 国产成人一区二区三区免费视频网站| 1024手机看黄色片| 一边摸一边抽搐一进一小说| 黄频高清免费视频| 亚洲人成77777在线视频| 亚洲国产欧美人成| 亚洲国产精品成人综合色| 亚洲一卡2卡3卡4卡5卡精品中文| 中文在线观看免费www的网站 | 在线观看66精品国产| 国产精品 欧美亚洲| 欧美性长视频在线观看| 久久婷婷成人综合色麻豆| 日韩 欧美 亚洲 中文字幕| a级毛片a级免费在线| a级毛片在线看网站| 日本一区二区免费在线视频| 国产又黄又爽又无遮挡在线| 国产精品国产高清国产av| 女同久久另类99精品国产91| 欧美又色又爽又黄视频| 国产免费av片在线观看野外av| 国产一区二区三区在线臀色熟女| 午夜精品在线福利| 蜜桃久久精品国产亚洲av| 人人妻人人看人人澡| 精品一区二区三区视频在线观看免费| 一区福利在线观看| 久久中文字幕一级| 真人一进一出gif抽搐免费| 亚洲avbb在线观看| 欧美日本视频| 12—13女人毛片做爰片一| 色综合亚洲欧美另类图片| 亚洲欧美一区二区三区黑人| 午夜激情福利司机影院| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 一边摸一边抽搐一进一小说| 亚洲 欧美一区二区三区| 此物有八面人人有两片| 这个男人来自地球电影免费观看| 欧美日本视频| 国产精品免费一区二区三区在线| 久久久久性生活片| av免费在线观看网站| 国产高清视频在线观看网站| 桃色一区二区三区在线观看| 久久国产精品影院| 哪里可以看免费的av片| 日本在线视频免费播放| 精品国产超薄肉色丝袜足j| 亚洲av日韩精品久久久久久密| 成年免费大片在线观看| 午夜两性在线视频| 我要搜黄色片| 欧美一级a爱片免费观看看 | 欧美中文日本在线观看视频| 不卡一级毛片| cao死你这个sao货| 亚洲中文日韩欧美视频| 国产av一区二区精品久久| 亚洲欧美日韩高清专用| 成年版毛片免费区| 亚洲狠狠婷婷综合久久图片| 日韩欧美国产在线观看| 无遮挡黄片免费观看| 久久精品91无色码中文字幕| 国产成人av激情在线播放| 成人av一区二区三区在线看| 久久亚洲真实| 国产99久久九九免费精品| 在线视频色国产色| 在线观看免费午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 变态另类丝袜制服| 高清在线国产一区| 日韩欧美国产一区二区入口| 禁无遮挡网站| 亚洲午夜精品一区,二区,三区| 天堂动漫精品| 国产久久久一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 91av网站免费观看| 国产区一区二久久| 在线播放国产精品三级| 岛国在线观看网站| 亚洲欧美日韩无卡精品| 免费看十八禁软件| 人人妻人人看人人澡| 草草在线视频免费看| 麻豆成人午夜福利视频| 精品不卡国产一区二区三区| 国产伦人伦偷精品视频| 日日爽夜夜爽网站| 国产91精品成人一区二区三区| x7x7x7水蜜桃| 在线观看66精品国产| 亚洲无线在线观看| 国产精品久久电影中文字幕| 午夜视频精品福利| 亚洲五月天丁香| 日韩欧美在线乱码| 18美女黄网站色大片免费观看| 两个人看的免费小视频| 在线观看www视频免费| 观看免费一级毛片| 日日摸夜夜添夜夜添小说| 色哟哟哟哟哟哟| 1024香蕉在线观看| 国产亚洲欧美在线一区二区| 亚洲人成77777在线视频| 日日干狠狠操夜夜爽| 中亚洲国语对白在线视频| 麻豆av在线久日| 少妇裸体淫交视频免费看高清 | 国产精品免费一区二区三区在线| 午夜免费观看网址| 草草在线视频免费看| 国产精品久久久久久精品电影| 久久精品aⅴ一区二区三区四区| avwww免费| 国产高清激情床上av| 久久99热这里只有精品18| 国产一区在线观看成人免费| 男女午夜视频在线观看| 最好的美女福利视频网| 国产三级黄色录像| 亚洲熟妇中文字幕五十中出| 精品久久久久久久末码| 久久热在线av| 日本黄色视频三级网站网址| 色综合站精品国产| 可以免费在线观看a视频的电影网站| 又黄又爽又免费观看的视频| 18禁国产床啪视频网站| 丝袜人妻中文字幕| 亚洲av成人精品一区久久| 国产精品久久久久久亚洲av鲁大| 亚洲一码二码三码区别大吗| 九色国产91popny在线| 我的老师免费观看完整版| 欧美黑人欧美精品刺激| 麻豆国产av国片精品| 国产精品电影一区二区三区| 岛国在线观看网站| 草草在线视频免费看| 露出奶头的视频| x7x7x7水蜜桃| 国产亚洲精品综合一区在线观看 | 亚洲激情在线av| 日韩欧美一区二区三区在线观看| 男女下面进入的视频免费午夜| 99re在线观看精品视频| 日韩欧美精品v在线| 欧美在线黄色| av欧美777| 啪啪无遮挡十八禁网站| 日本 欧美在线| 精品日产1卡2卡| 日韩欧美在线二视频| 亚洲欧洲精品一区二区精品久久久| 亚洲成人免费电影在线观看| 久久久久久久午夜电影| 长腿黑丝高跟| 久久中文字幕一级| 色播亚洲综合网| 最近最新免费中文字幕在线| 级片在线观看| 成人av一区二区三区在线看| 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面| 精品不卡国产一区二区三区| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 啪啪无遮挡十八禁网站| 狂野欧美激情性xxxx| 制服人妻中文乱码| 精品高清国产在线一区| 国产精品国产高清国产av| 人妻夜夜爽99麻豆av| 啦啦啦免费观看视频1| 亚洲av美国av| 中文字幕熟女人妻在线| 日韩av在线大香蕉| 一本一本综合久久| 国产69精品久久久久777片 | 狂野欧美激情性xxxx| 日本三级黄在线观看| 日日爽夜夜爽网站| 激情在线观看视频在线高清| 一区二区三区高清视频在线| 亚洲精品在线观看二区| 一个人免费在线观看电影 | 久久久久精品国产欧美久久久| 久热爱精品视频在线9| 婷婷六月久久综合丁香| 淫秽高清视频在线观看| 欧美日韩一级在线毛片| 中出人妻视频一区二区| 黑人欧美特级aaaaaa片| 亚洲国产日韩欧美精品在线观看 | 国产精品久久视频播放| xxxwww97欧美| 国产久久久一区二区三区| 午夜久久久久精精品| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜a级毛片| 十八禁人妻一区二区| 日韩欧美国产在线观看| 婷婷亚洲欧美| 国产精品免费一区二区三区在线| 国产成人一区二区三区免费视频网站| 国产精品乱码一区二三区的特点| 亚洲,欧美精品.| 国产成人影院久久av| 亚洲精品av麻豆狂野| 色在线成人网| 高清毛片免费观看视频网站| 窝窝影院91人妻| 亚洲国产看品久久| 成在线人永久免费视频| 99热这里只有是精品50| 国产精品久久久av美女十八| av视频在线观看入口| 欧洲精品卡2卡3卡4卡5卡区| 成人精品一区二区免费| 久久久国产欧美日韩av| 一个人免费在线观看的高清视频| 女警被强在线播放| netflix在线观看网站| 色噜噜av男人的天堂激情| 高清毛片免费观看视频网站| 757午夜福利合集在线观看| 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区三| а√天堂www在线а√下载| 欧美人与性动交α欧美精品济南到| 人人妻人人看人人澡| 两个人免费观看高清视频| 亚洲成人久久爱视频| 熟女电影av网| АⅤ资源中文在线天堂| 人成视频在线观看免费观看| 桃色一区二区三区在线观看| 啦啦啦韩国在线观看视频| 欧美一区二区精品小视频在线| 十八禁网站免费在线| 免费看日本二区| 此物有八面人人有两片| 久久亚洲真实| 两人在一起打扑克的视频| 777久久人妻少妇嫩草av网站| 在线免费观看的www视频| 久久久久国产一级毛片高清牌| 精品电影一区二区在线| 久久精品91无色码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频不卡| 精品熟女少妇八av免费久了| 欧美最黄视频在线播放免费| 久久婷婷成人综合色麻豆| 黄色视频不卡| 午夜老司机福利片| 在线国产一区二区在线| 国产av在哪里看| 免费观看人在逋| 久久久国产成人精品二区| 搞女人的毛片| av在线播放免费不卡| 母亲3免费完整高清在线观看| 亚洲国产中文字幕在线视频| 国产乱人伦免费视频| 1024香蕉在线观看| 男女视频在线观看网站免费 | 国产视频一区二区在线看| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看| 在线观看66精品国产| avwww免费| 老司机午夜十八禁免费视频| 小说图片视频综合网站| 九色成人免费人妻av| 欧美日韩亚洲国产一区二区在线观看| 人妻夜夜爽99麻豆av| 欧美日韩中文字幕国产精品一区二区三区| 99久久国产精品久久久| 久久国产精品影院| 国产成人精品久久二区二区91| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看| 免费看日本二区| www.999成人在线观看| 好男人在线观看高清免费视频| 亚洲av五月六月丁香网| 亚洲熟妇熟女久久| 日韩欧美在线二视频| 精品熟女少妇八av免费久了| 淫妇啪啪啪对白视频| 国产一区在线观看成人免费| 听说在线观看完整版免费高清| 久久香蕉国产精品| 国产精品美女特级片免费视频播放器 | 毛片女人毛片| 一本大道久久a久久精品| 哪里可以看免费的av片| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品第一综合不卡| 欧美日韩一级在线毛片| 亚洲成人免费电影在线观看| 在线观看午夜福利视频| 午夜激情av网站| 一夜夜www| 免费一级毛片在线播放高清视频| 老司机靠b影院| 小说图片视频综合网站| 亚洲片人在线观看| 91国产中文字幕| 国产三级在线视频| 午夜两性在线视频| 精品乱码久久久久久99久播| 一级作爱视频免费观看| 蜜桃久久精品国产亚洲av| 欧美不卡视频在线免费观看 | 两人在一起打扑克的视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av电影在线进入| 亚洲欧美精品综合久久99| 亚洲欧洲精品一区二区精品久久久| 91字幕亚洲| 麻豆国产av国片精品| 欧美成人午夜精品| 69av精品久久久久久| 午夜久久久久精精品| 搡老岳熟女国产| 欧美乱妇无乱码| 一边摸一边做爽爽视频免费| 欧美黑人巨大hd| 成年版毛片免费区| 51午夜福利影视在线观看| 啦啦啦观看免费观看视频高清| 一进一出好大好爽视频| 亚洲国产精品久久男人天堂| 亚洲国产精品sss在线观看| 国产成人aa在线观看| 18禁观看日本| 国模一区二区三区四区视频 | 免费看日本二区| 亚洲熟女毛片儿| 亚洲九九香蕉| 久久伊人香网站| 国产一区在线观看成人免费| 美女扒开内裤让男人捅视频| 日韩 欧美 亚洲 中文字幕| 欧美另类亚洲清纯唯美| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 日韩精品中文字幕看吧| 淫秽高清视频在线观看| 欧美久久黑人一区二区| 十八禁网站免费在线| xxx96com| 色综合亚洲欧美另类图片| 午夜福利成人在线免费观看| 村上凉子中文字幕在线| 亚洲免费av在线视频| 一区二区三区高清视频在线| 久久午夜亚洲精品久久| 身体一侧抽搐| 国产av又大| 在线观看免费视频日本深夜| 18美女黄网站色大片免费观看| 国产精品国产高清国产av| 男女之事视频高清在线观看| 一本综合久久免费| 99在线人妻在线中文字幕| 黑人欧美特级aaaaaa片| 免费在线观看完整版高清| 国产高清videossex| 色综合亚洲欧美另类图片| 日本在线视频免费播放| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲国产一区二区在线观看| 五月伊人婷婷丁香| 国产v大片淫在线免费观看| 久久国产乱子伦精品免费另类| 免费在线观看成人毛片| av中文乱码字幕在线| 很黄的视频免费| 久久精品国产亚洲av香蕉五月| 亚洲人成伊人成综合网2020| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 亚洲精品中文字幕在线视频| 真人一进一出gif抽搐免费| 亚洲成人久久性| 欧美日韩福利视频一区二区| 午夜视频精品福利| 国产熟女午夜一区二区三区| 每晚都被弄得嗷嗷叫到高潮| tocl精华| 老司机靠b影院| 欧美人与性动交α欧美精品济南到| 欧美三级亚洲精品| 中亚洲国语对白在线视频| 亚洲最大成人中文| 男女之事视频高清在线观看| 香蕉久久夜色| 制服丝袜大香蕉在线| 少妇熟女aⅴ在线视频| 日本a在线网址| 国产乱人伦免费视频| 一个人观看的视频www高清免费观看 | 国产精品香港三级国产av潘金莲| 国产成人啪精品午夜网站| 久久天堂一区二区三区四区| 最新美女视频免费是黄的| 久久精品国产清高在天天线| 国产久久久一区二区三区| 亚洲国产看品久久| 久久伊人香网站| 国产精品久久久久久精品电影| 亚洲欧洲精品一区二区精品久久久| 精品国产美女av久久久久小说| 国产精品永久免费网站| av欧美777| 亚洲天堂国产精品一区在线| 久久久久久久久久黄片| 可以在线观看毛片的网站| 色综合欧美亚洲国产小说| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 91国产中文字幕| ponron亚洲| 国产v大片淫在线免费观看| av国产免费在线观看| 级片在线观看| 日韩欧美三级三区| 亚洲中文日韩欧美视频| 亚洲七黄色美女视频| 欧美日韩精品网址| 毛片女人毛片| 久久久久久人人人人人| 两人在一起打扑克的视频| 一级a爱片免费观看的视频| 精品久久久久久成人av| www日本黄色视频网| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| xxx96com| 琪琪午夜伦伦电影理论片6080| netflix在线观看网站| 叶爱在线成人免费视频播放| 日韩精品中文字幕看吧| 中国美女看黄片| 国产精品久久久久久久电影 | 男女之事视频高清在线观看| 后天国语完整版免费观看| 国产爱豆传媒在线观看 | 老熟妇仑乱视频hdxx| 午夜激情福利司机影院| av天堂在线播放| 久久精品国产99精品国产亚洲性色| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 亚洲中文日韩欧美视频| 日本a在线网址| 精品少妇一区二区三区视频日本电影| 午夜免费激情av| 亚洲专区中文字幕在线| 国产亚洲欧美98| 欧美黑人精品巨大| 亚洲人成网站高清观看| 女生性感内裤真人,穿戴方法视频| 好看av亚洲va欧美ⅴa在| 成人特级黄色片久久久久久久| 俺也久久电影网| 亚洲av成人不卡在线观看播放网| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 两个人看的免费小视频| 麻豆国产97在线/欧美 | 亚洲熟女毛片儿| 一进一出抽搐动态| 丁香欧美五月| 亚洲天堂国产精品一区在线| 久久精品综合一区二区三区| 亚洲自偷自拍图片 自拍| 久久天躁狠狠躁夜夜2o2o| 12—13女人毛片做爰片一| 久久久久久亚洲精品国产蜜桃av| 国产av一区二区精品久久| 窝窝影院91人妻| 一夜夜www|