胡智輝,聶新宇,王紀(jì)孝,張東輝
氨改性介孔SiO2用于CO2/N2變壓吸附分離
胡智輝,聶新宇,王紀(jì)孝,張東輝
(1. 天津大學(xué)化工學(xué)院化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
在323.15,K下,以月桂酸為結(jié)構(gòu)導(dǎo)向劑(SDA)、γ-氨丙基三乙氧基硅烷為助結(jié)構(gòu)導(dǎo)向劑和硅酸乙酯為硅源,采用陰離子表面活性劑法直接合成氨改性介孔SiO2(AMS)用于CO2/N2變壓吸附分離.對(duì)樣品進(jìn)行低溫N2吸附脫附、X射線衍射(XRD)和透射電鏡(TEM)表征,然后用動(dòng)態(tài)法測(cè)量其CO2、N2穿透曲線并計(jì)算吸附量.結(jié)果發(fā)現(xiàn),在323.15,K、常壓下合成吸附劑AMS對(duì)CO2/N2的吸附量分別為0.60,mmol/g和0.03,mmol/g.采用抽真空的方法對(duì)吸附劑進(jìn)行再生,發(fā)現(xiàn)75%以上的吸附態(tài)CO2能夠解吸,經(jīng)過(guò)多次吸附/解吸循環(huán)CO2吸附特性不變.同時(shí)利用Aspen adsim軟件對(duì)吸附過(guò)程進(jìn)行模擬,模擬結(jié)果與實(shí)驗(yàn)數(shù)據(jù)吻合良好.
氨改性介孔SiO2;CO2吸附;N2吸附;分離;Aspen adsim
CO2作為一種主要的溫室氣體,它的捕集和儲(chǔ)存一直備受?chē)?guó)際社會(huì)的關(guān)注[1].目前從各種工業(yè)生產(chǎn)氣中脫除或提純CO2的方法主要有溶劑吸收法、膜分離法、深冷法和變壓吸附法等[1-6],這些方法在經(jīng)濟(jì)性、選擇性以及適用性等方面都存在各自的特點(diǎn).由于吸附分離具有高選擇性,且低能耗,所以是一種很有前景的CO2捕集方法,但是工業(yè)上的吸附劑對(duì)CO2/N2的吸附選擇性比較低,選擇系數(shù)均小于12.氨基改性的介孔SiO2作為一種吸附劑對(duì)CO2捕集有很多的優(yōu)點(diǎn)[7]:①煙氣中存在水蒸氣,而氨基改性的介孔SiO2在有水蒸氣的存在下對(duì)CO2的吸附量會(huì)提升,也提高了CO2/N2吸附量[8];②CO2是一種酸性氣體,而氨基是堿性基團(tuán),能夠很容易地吸附CO2[9].筆者實(shí)驗(yàn)室先后采用異丁酸和硬脂?;劝彼嶙鳛榻Y(jié)構(gòu)導(dǎo)向劑合成了一系列的帶氨基介孔SiO2,高溫解吸后吸附量基本不變[9-10],但由于其對(duì)CO2吸附量不高,因此筆者采用介孔SiO2陰離子模板劑法,以月桂酸為模板劑合成氨基改性的介孔SiO2(AMS)吸附劑用于變壓吸附分離CO2/N2,并且用Aspen adsim軟件模擬吸附過(guò)程.
1.1材料
硅酸乙酯(TEOS),分析純,南開(kāi)光復(fù)精細(xì)化工研究所;氨丙基三甲乙基硅烷(APS),分析純,北京奧斯曼化學(xué)有限公司;月桂酸,分析純,天津大學(xué)科威公司;無(wú)水乙醇,分析純,天津大學(xué)科威公司;乙醇胺,分析純,天津大學(xué)科威公司.
1.2氨改性介孔SiO2的合成
氨改性介孔SiO2(AMS)的合成方法按照文獻(xiàn)[9-10],按照物質(zhì)的量的比n(TEOS)∶n(APS)∶n(月桂酸)∶n(H2O)∶n(乙醇)=0.6∶0.15∶90∶0.1∶10,將一定量的月桂酸、乙醇溶解到去離子水中,加熱到60,℃,強(qiáng)烈攪拌使之溶解完全,在攪拌下同時(shí)加入TEOS和APS,繼續(xù)攪拌1,h,放入到80,℃的水浴鍋中靜置2,d,過(guò)濾、干燥.按5,g樣品/(100,mL乙醇+20,mL乙醇胺)的比例進(jìn)行回流萃取24,h,重復(fù)1~2次,過(guò)濾、干燥得到帶氨基的介孔SiO2.
1.3表征
采用低溫N2吸附脫附儀(Tristar 3000 Micromeritics corporation)測(cè)量樣品在273,K下N2吸附脫附,得出N2吸附脫附曲線,并計(jì)算出比表面積、孔徑大小. 用X射線衍射儀XRD(X’Pert ProPANAlytical公司)和透射電鏡TEM(Tecnai G2 F20荷蘭菲利普)進(jìn)行表征.
1.4動(dòng)態(tài)吸附量測(cè)定
圖1 動(dòng)態(tài)吸附實(shí)驗(yàn)裝置Fig.1 Schematic flow chart for collecting breakthrough curves
實(shí)驗(yàn)動(dòng)態(tài)吸附測(cè)定裝置見(jiàn)圖1,實(shí)驗(yàn)裝置中吸附床為內(nèi)徑10,mm、長(zhǎng)250,mm、壁厚1,mm的不銹鋼管.壓力通過(guò)與吸附床相連的SY-9411型壓力變送器測(cè)量,量程為2,MPa,精度0.1%.質(zhì)量流量控制器量程為300,cm3/min,測(cè)量精度為±1.5%.吸附床外壁有恒溫水強(qiáng)制循環(huán)以維持吸附過(guò)程中溫度恒定,恒溫水溫度波動(dòng)幅度為±0.1,℃.
2.1氨改性介孔SiO2表征
圖2 AMS樣品的XRD曲線、低溫N2吸附脫附曲線和高效透射電鏡照片F(xiàn)ig.2 XRD,N2sorption isotherm curves and HRTEM image of AMS sample
圖2 為AMS樣品的XRD、低溫N2吸附脫附曲線和高效透射電鏡(HRTEM)圖.從圖2(a)中可以看出AMS的XRD衍射峰只有一個(gè),此峰分布在2θ為2.0°~3.0°之間,這是介孔SiO2的特征峰,說(shuō)明AMS吸附劑的孔道缺乏長(zhǎng)周期性.AMS吸附劑的低溫N2吸附脫附曲線是Ⅳ吸附等溫線,這是介孔材料吸附等溫線的形狀(見(jiàn)圖2(b)),從其計(jì)算出來(lái)的孔徑大小進(jìn)一步證明AMS吸附劑屬于介孔材料.圖2(c)為AMS吸附劑的HRTEM圖,從圖2中可以看出AMS吸附劑孔道是一種蠕狀蟲(chóng)孔,這與XRD表征的結(jié)果一致.表1為合成AMS吸附劑的物理特性.
表1 AMS吸附劑的物理特性Tab.1 Textural properties of AMS
2.2AMS吸附劑對(duì)CO2/N2的穿透曲線
圖3為在323.15,K和0.1,MPa(絕壓)下AMS吸附劑對(duì)CO2/N2的穿透曲線,根據(jù)穿透曲線可以計(jì)算出吸附劑對(duì)CO2/N2的吸附量[11].10.637,g AMS吸附劑填充在吸附塔中并放入到323.15,K的水浴中進(jìn)行保溫,CO2、N2和He的混合氣在常壓下以21,mL/min流速經(jīng)過(guò)吸附塔,其中CO2、N2在AMS吸附劑進(jìn)行吸附,到164,s時(shí)N2從吸附塔中穿透出來(lái),而CO2到達(dá)1,346,s才發(fā)現(xiàn)穿透,說(shuō)明AMS吸附劑對(duì)CO2的吸附量遠(yuǎn)遠(yuǎn)大于N2.計(jì)算AMS對(duì)CO2、N2的吸附量分別為0.60,mmol/g和0.03,mmol/g,分離系數(shù)為20.
圖3 AMS吸附劑對(duì)CO2和N2的穿透曲線(323.15,K,0.1,MPa)Fig.3 Breakthrough curves of CO2/N2mixture with AMS as adsorbent(323.15,K,0.1,MPa)
2.3AMS吸附劑再生
吸附飽和后,對(duì)AMS吸附劑進(jìn)行抽真空再生(吸附溫度下),圖4為AMS吸附劑第1次對(duì)CO2的穿透曲線和多次再生后對(duì)CO2的穿透曲線.從圖中可以計(jì)算出再生后吸附劑對(duì)CO2的吸附量能夠達(dá)到新鮮吸附劑的75%以上,并且在后面的吸附中基本保持不變.說(shuō)明AMS吸附劑可以用于323.15,K、0.1,MPa (絕壓)下對(duì)CO2/N2的變壓吸附分離.
圖4 AMS吸附劑對(duì)CO2的吸附穿透曲線(323.15,K,0.1,MPa)Fig.4 Breakthrough curves of CO2with AMS as adsorbent regenerated by vacuuming (323.15,K,0.1,MPa)
2.4Aspen adsim軟件模擬
采用Aspen adsim軟件進(jìn)行AMS吸附劑對(duì)CO2、N2吸附分離過(guò)程進(jìn)行模擬,模擬參數(shù)根據(jù)實(shí)驗(yàn)實(shí)際條件設(shè)定.為了簡(jiǎn)化模擬模型,根據(jù)文獻(xiàn)[12]進(jìn)行如下假設(shè):①氣體為理想氣體,流動(dòng)滿足活塞流,忽略徑向擴(kuò)散;②吸附過(guò)程等溫,無(wú)反應(yīng)發(fā)生;③采用一個(gè)總的傳質(zhì)系數(shù).首先,測(cè)量了AMS吸附劑在323.15,K下對(duì)CO2和N2的吸附等溫線(見(jiàn)圖5),并對(duì)吸附等溫線進(jìn)行l(wèi)angmuir擬合,得到吸附等溫線參數(shù),將等溫線參數(shù)代入模擬中.圖6為用Aspen adsim軟件模擬的CO2、N2和He混合氣在AMS吸附劑上的穿透曲線和實(shí)驗(yàn)對(duì)比.從圖6可以看出,穿透時(shí)間基本一樣,氦氣為惰性氣體在吸附床內(nèi)不吸附而直接穿透,N2作為輕組分由于吸附量非常低很快從吸附床中穿透出來(lái).而CO2由于在吸附劑上吸附量很大,直到吸附床內(nèi)吸附劑對(duì)其吸附量達(dá)到飽和才從吸附床內(nèi)穿透出來(lái),說(shuō)明Aspen adsim軟件能夠很好地模擬此實(shí)驗(yàn).
圖5 在323.15,K下CO2、N2的吸附等溫線Fig.5 Adsorption isotherm of CO2and N2at 323.15,K
圖6 模擬穿透曲線與實(shí)驗(yàn)對(duì)比Fig.6 Breakthrough curves measured in experiment and simulated in model
采用陰離子表面活性劑法合成的氨改性介孔SiO2(AMS)在323.15,K和0.1,MPa(絕壓)下CO2的吸附量明顯大于N2,CO2和N2吸附分離系數(shù)高達(dá)20.合成的AMS吸附劑能夠采用抽真空解吸,解吸程度高于75%,經(jīng)過(guò)多次吸附/解吸循環(huán)后AMS吸附劑能夠保持吸附量基本不變.AMS吸附劑能夠用于CO2和N2的吸附分離.Aspen adsim軟件能夠很好地對(duì)吸附過(guò)程進(jìn)行模擬,模擬穿透曲線和實(shí)驗(yàn)值基本一致.
[1] Aaron D,Tsouris C. Separation of CO2from flue gas:A review[J]. Separation Science and Technology,2005,40(1/2/3):321-348.
[2] 夏明珠,嚴(yán)蓮荷,雷 武,等.二氧化碳的分離回收技術(shù)與綜合利用[J]. 現(xiàn)代化工,1999,19(5):46-48.
Xia Mingzhu,Yan Lianhe,Lei Wu,et al. The separation technology and comprehensive utilization for CO2[J]. Modern Chemical Industry,1999,19(5):46-48(in Chinese).
[3] Yang Hongqun,Xu Zhenghe,F(xiàn)an Maohong,et al. Progress in carbon dioxide separation and capture:A review[J]. Journal of Environmental Science,2008,20(1):14-27.
[4] 費(fèi)維揚(yáng),艾 寧,陳 建,等. 溫室氣體CO2的捕集和分離:分離技術(shù)面臨的挑戰(zhàn)與機(jī)遇[J]. 化工進(jìn)展,2005,24(1):1-4.
Fei Weiyang,Ai Ning,Chen Jian,et al. Capture and separation of greenhouse gases CO2:The challenge and opportunity for separation technology [J]. Chemical Industry and Engineering Progress,2005,24(1):1-4(in Chinese).
[5] Figueroa J D,F(xiàn)out T,Plasynski S,et al. Advances in CO2capture technology:The US Department of Energy’s Carbon Sequestration Program[J]. International Journal of Greenhouse Gas Control,2008,2(1):9-20.
[6] Pennline H W,Luebke D R,Jones K L,et al. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources[J]. Fuel Processing Technology,2008,89(9):897-907.
[7] White C M,Strazisar B R,Granite E J,et al. Separation and capture of CO2from large stationary sources and sequestration in geological[J]. Journal of the Air and Waste Management Association,2003,53(6):645-715.
[8] Knowles G P,Delaney S W,Chaffee A L. Diethylenetriamine[propyl(silyl)]-functionalized(DT)mesoporous silicas as CO2adsorbents[J]. Industrial and Engineering Chemistry Research,2006,45(8):2626-2633.
[9] Hu Zhihui,Zhang Donghui,Wang Jixiao. Direct synthesis of amine-functionalized mesoporous silica for CO2adsorption[J]. Chinese Journal of Chemical Engineering,2011,19(3):386-390.
[10] 胡智輝,宮秀坤,張東輝. 負(fù)載氨基的介孔SiO2用于CO2/N2分離[J]. 天然氣化工,2009,34(5):1-4.
Hu Zhihui,Gong Xiukun,Zhang Donghui. Aminofunctionalized silica for CO2and N2separation[J]. Natural Gas Chemical Industry,2009,34(5):1-4(in Chinese).
[11] Wu Qin,Zhou Li,Wu Jiaquan,et al. Adsorption equilibrium of the mixture CH4+N2+H2on activated carbon[J]. Journal of Chemical and Engineering Data,2005,50(2):635-642.
[12] 何東蓉,周向輝,張東輝. 利用ASPEN ADSIM 模擬變壓吸附分離過(guò)程[J]. 天然氣化工,2009,34(3):11-15.
He Dongrong,Zhou Xianghui,Zhang Donghui. Simulation of PSA separation process by ASPEN-ADSIM[J]. Natural Gas Chemical Industry,2009,34(3):11-15(in Chinese).
Amine-Functionalized Mesoporous Silica for CO2and N2Separation by PSA
HU Zhi-hui,NIE Xin-yu,WANG Ji-xiao,ZHANG Dong-hui
(1. State Key Laboratory of Chemical Engineering,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China)
Amine-functionalized mesoporous silica(AMS) was prepared with lauric acid as template,γaminopropyl-triethoxysilane as co-structure directing agent,tetraethyl orthosilicate as silica source and applied to CO2/N2separation by pressure swing adsorption (PSA) at 323.15,K. The amine-functionalized mesoporous silica was characterized by nitrogen physisorption,X-ray diffraction (XRD)and transmission electron microscope(TEM). The adsorption capacity for CO2and N2were measured by dynamic method. The results show that at 323.15,K and under the atmospheric pressure,the adsorption capacity of AMS for CO2and N2are 0.60 mmol/g and 0.03 mmol/g,respectively. The adsorptive saturated adsorbents can be regenerated by vacuuming,and above 75% of adsorbed CO2can be desorbed. The CO2adsorptive capacity remains unchangeable after a long adsorption/desorption run. The process has been simulated with Aspen-adsim and the simulation results agree well with the experimental data.
amine-functionalized mesoporous silica;carbon dioxide adsorption;nitrogen adsorption;separation;Aspen adsim
O647.3
A
0493-2137(2012)11-1020-04
2012-05-04;
2012-06-29.
天津市科技支撐計(jì)劃資助項(xiàng)目(2009F3-0005).
胡智輝(1985— ),男,博士研究生,huzhihui9@yahoo.com.cn.
張東輝,donghuizhang@tju.edu.cn.