時(shí)空旅行是一道懸而未決的難題,而實(shí)現(xiàn)穿越所需的時(shí)間機(jī)器何時(shí)才能誕生,科學(xué)家也沒有明確的時(shí)間表。不過,與其坐等時(shí)間機(jī)器橫空出世,不如去科幻世界中體驗(yàn)一把穿越時(shí)空的樂趣。且隨本文一起乘上神奇的時(shí)間機(jī)器,做一回時(shí)光旅客吧。
There is no shortage of time machines in the world of science fiction.
You could probably name a bunch of them off the top of your head1), from H. G. Wells2)’ iconic creation to such mainstays3) as Dr. Who4)’s Tardis and Dr. Brown5)’s flux-capacitated DeLorean. But just how many fictional time machines can you explain?
In many works of fantasy and science fiction, the time machine is just a magical plot device. No actual science is thrown at the audience. Most of the time, no one asks for any. After all, you’re probably not watching Life on Mars or Terminator Salvation for a lesson in theoretical physics.
Plus, if you’re writing time-traveling fiction, then skipping the science spares you the embarrassment of getting something wrong. Isn’t it enough that you described 1997 as being a world full of flying cars and busty android6) life partners?
Let’s take a look at five examples of the plausible and ridiculous ways fictional TV and film characters have traveled through time.
Superman Spin Control 超人的旋轉(zhuǎn)控制
If we learned anything about the physics of time and space from Richard Donner7)’s 1978 film Superman, it’s that if you fly around the Earth really fast, you can reverse its rotation and roll back time.
Although physicists agree that space and time are interconnected, you’d be hard-pressed8) to find anyone who would back the “science” behind reversing planetary rotation to turn back time.
Far from saving Lois Lane’s life, the feat likely would have caused global chaos.
Slam on the brakes in a moving car and everything inside it continues moving forward. Now imagine this scenario on a global scale, only with oceans, mountains and weather systems continuing to surge forward at up to 1,000 miles per hour, depending on your latitude.
Way to go, Superman.
The Voyage Home to 1986 回到1986年的地球
The Star Trek universe is full of fantastic ideas: aliens with rippled foreheads, holodecks9) and more time travel than you can shake a stick at10). According to the Star Trek Wiki, 50 episodes of the six TV series featured time travel, as did four of the 11 films.
You’d think the space-time continuum11) would just be circling the drain12) after all that tinkering13).
Time paradoxes aside, Star Trek always flirted with real science. Take 1986’s Star Trek IV: The Voyage Home, for example. In this film, the crew of the Starship Enterprise send a Klingon Bird-of-Prey vehicle back to the 1980s by slingshotting it around the sun.
The Star Trek slingshot method involves using the sun’s gravitational pull as an accelerator to reach speeds necessary to travel through time. The premise falls in line14) with some theories about time travel and Einstein’s theory of special relativity15).
The theory says if time slows the closer you get to the speed of light, then travel into the future—or the past—may be possible. One slight problem: faster-than-light travel is physically impossible.
Plus, as Lawrence M. Krauss16) points out in The Physics of Star Trek, the gravitational field near the surface of the sun doesn’t produce anywhere near the boost you’d need to go talk to whales in the past.
Trekking into a Black Hole17) 拖入黑洞
Paradoxical time travel isn’t a thing of the past for the Star Trek legacy.
The plot of the new film concerns two starships that are sucked into an artificial black hole, sending them 154 years into the past.
While the time-travel method employed in Star Trek IV: The Voyage Home depended on a far too weak gravitational slingshot, many physicists believe that a black hole might indeed provide the necessary portal to the past.
Anything that crosses a black hole’s event horizon heads toward an incredibly tiny point of infinitely compressed matter called a singularity18). That’s also one of the huge problems with the new Star Trek film’s plot: What’s to keep the two starships from winding up as one with the singularity?
Physicists point to Kerr black holes as a less destructive alternative. These theoretical cosmic phenomena first described by Roy Kerr19) in the 1960s lack the matter-smashing singularity at the center, potentially making it possible to pass the event horizon and come out the other side—in another time.
Donnie Darko20), Creepy Rabbits and Wormholes21) 死亡幻覺、鬼兔子、蟲洞
The 2001 movie Donnie Darko spends most of its time exploring the possible effects of time-travel paradoxes and tangent universes22) on its characters, but it also features a portal through time: a wormhole.
Also called Einstein-Rosen bridges, these hypothetical cosmic structures might offer a traveler the necessary means of not just taking a shortcut through space, but also through time itself.
Einstein’s theory of relativity states that mass curves in spacetime. The most common visual example of this concept is that of space depicted as a curved, two-dimensional plane.
Think of a racetrack: If you’re speeding around a curve, you’re bound to that curve, but what if you could forge a new line of track between its two parallel sides? That’s the idea behind a wormhole. If a mass on one side of the spacetime curve applies enough force and a mass on the other side of the spacetime curve applies enough force, then the two could meet, creating a tunnel.
Lost on a Time-Traveling Island 迷失在一個(gè)時(shí)間旅行島上
If you’ve watched ABC23)’s Lost, then you’re probably used to things not making a lot of sense. A big reason for this is that the show’s mysterious island bounces the characters around through time seamlessly.
Seriously, by the end of the series, everyone will be lucky to make it off the island without becoming their own grandparent.
Yet Lost at least makes an effort to prop up the fiction with a little science. According to blog analysis at Popular Mechanics, the science behind the show’s time travel seems to depend on quantum mechanics, a mysterious substance in the ground called “exotic material” and possibly a wormhole.
Might this buried, volatile substance produce the necessary energy to manipulate a breach24) in spacetime?
You could argue that this is all any writer can achieve when crafting a piece of time-travel fiction—not counting writers who are actually from the future, of course.
科幻作品的世界里從不缺少時(shí)間機(jī)器。
你大概無需多想就能說出好多時(shí)間機(jī)器的名字,從H. G. 威爾斯的標(biāo)志性創(chuàng)造到后來的主力軍——比如神秘博士的Tardis時(shí)空機(jī)和布朗博士那臺(tái)裝備了通量電容器的DeLorean時(shí)空機(jī)——你都耳熟能詳。不過,這些虛構(gòu)的時(shí)間機(jī)器中又有幾臺(tái)是你能解釋清楚的呢?
在很多幻想和科幻作品中,時(shí)間機(jī)器只是一種推動(dòng)情節(jié)的奇特手段,并沒有傳達(dá)給觀眾真正的科學(xué)知識(shí)。大多數(shù)時(shí)候,觀眾也沒有這樣的要求。畢竟你在看電影《火星生活》或是《終結(jié)者:救世主》時(shí),應(yīng)該不是為了想學(xué)點(diǎn)理論物理吧。
另外,如果你打算寫穿越小說的話,略去科學(xué)原理還能讓你避免出錯(cuò)的尷尬。把1997年描繪成滿世界都是飛車和強(qiáng)壯的機(jī)器人生活助手,這難道還不夠荒謬嗎?
下面我們列舉了五個(gè)例子,來看看電視和電影中的人物是如何進(jìn)行穿越的。這些方法既有貌似可行的,也有滑稽可笑的。
理查德·唐納于1978年拍攝了影片《超人》。如果說我們從這部影片中學(xué)到了什么有關(guān)時(shí)空的物理知識(shí)的話,那就是如果你繞地球飛行的速度足夠快,你就能逆轉(zhuǎn)地球的自轉(zhuǎn)方向,讓時(shí)間倒流。
雖然物理學(xué)家們都同意空間和時(shí)間是彼此聯(lián)系的,但如果你想找一個(gè)人來支持“通過逆轉(zhuǎn)地球自轉(zhuǎn)方向就能使時(shí)間倒流”這一假說背后的“科學(xué)原理”,那就難如上青天了。
超人的壯舉估計(jì)救不了洛伊斯·萊恩(編注:影片中超人的女朋友)的性命,倒很有可能引發(fā)全球性的混亂。
行進(jìn)中的車輛如果急剎車,車?yán)锼械奈矬w會(huì)繼續(xù)向前運(yùn)動(dòng)。想象一下,如果這樣的情形以全球規(guī)模發(fā)生呢?海洋、山巒和氣象系統(tǒng)將繼續(xù)奔騰向前,前進(jìn)速度依你所在的緯度而定,最高可達(dá)每小時(shí)1000英里。
干得好,超人。
《星際迷航》的世界里充滿了奇思妙想:額頭布滿皺紋的外星人、全息甲板以及數(shù)不勝數(shù)的穿越劇情。根據(jù)《星際迷航》維基的記錄,六部《星際迷航》電視系列劇中有50集是以穿越為題材的,而11部《星際迷航》電影中有四部以穿越為題材。
這會(huì)讓你覺得經(jīng)過這么一番瞎折騰,時(shí)空的統(tǒng)一連續(xù)性將支離破碎、消失不再。
除了時(shí)間上的矛盾,《星際迷航》還總是拿真正的科學(xué)開涮。就拿1986年的電影《星際迷航4:回到地球》來說吧。在這部影片中,“企業(yè)號(hào)”星艦的艦員們將一艘“克林貢猛禽艦”送回到了20世紀(jì)80年代,而送的方式居然是把它彈射到太陽附近。
《星際迷航》中所使用的彈射之法是利用太陽的引力對(duì)飛船進(jìn)行加速,使其達(dá)到實(shí)現(xiàn)穿越所必需的速度。這一假想和一些穿越理論以及愛因斯坦的狹義相對(duì)論倒是一致的。
狹義相對(duì)論認(rèn)為,隨著人的運(yùn)動(dòng)速度越來越接近光速,時(shí)間會(huì)逐漸變慢,如果是這樣的話,那么穿越到未來——或者過去——都是有可能的。但有一個(gè)小問題:比光速快的運(yùn)動(dòng)按照自然規(guī)律是不可能實(shí)現(xiàn)的。
此外,正如勞倫斯·克勞斯在《星際迷航物理學(xué)》一書中所指出的,太陽表面附近的引力場(chǎng)根本不足以產(chǎn)生那么強(qiáng)的推動(dòng)力,能讓你借之回到過去和鯨魚對(duì)話。
自相矛盾的時(shí)間穿越可不僅僅出現(xiàn)在昔日的《星際迷航》作品中。
在新版《星際迷航》的電影情節(jié)中,兩艘星艦被吸入到了一個(gè)人造黑洞中,結(jié)果被送回到了154年前。
影片《星際迷航4:回到地球》中依賴引力彈射實(shí)現(xiàn)了穿越。相比于這一過于脆弱的穿越方式,很多物理學(xué)家相信,黑洞也許真能提供一個(gè)回到過去的入口。
任何跨過黑洞“事界”(譯注:即黑洞表面)的東西都會(huì)朝著一個(gè)極其微小的點(diǎn)運(yùn)動(dòng),這個(gè)極其微小的點(diǎn)是被無限壓縮的物質(zhì),叫做奇點(diǎn)。這也是新版《星際迷航》電影情節(jié)中的重大問題之一:如果有奇點(diǎn)存在,那怎樣才能確保兩艘星艦不會(huì)在奇點(diǎn)扭成一團(tuán)呢?
物理學(xué)家們指出可以用克爾黑洞來替代,認(rèn)為它沒有那么大的破壞力。克爾黑洞這一理論上的宇宙現(xiàn)象最早由羅伊·克爾在20世紀(jì)60年代進(jìn)行了闡述。此黑洞的中心沒有湮滅物質(zhì)的奇點(diǎn),因此(星艦)有可能通過 “事界”并從另一端出來——來到另一時(shí)空。
2001年上映的影片《死亡幻覺》用了大部分時(shí)間來探討穿越的矛盾和離線宇宙可能給片中人物帶來的影響,但它同時(shí)也展示了一個(gè)實(shí)現(xiàn)穿越的入口:蟲洞。
蟲洞也被稱為“愛因斯坦-羅森橋”。這一假想的宇宙結(jié)構(gòu)也許能為旅行者提供必要的途徑——不僅是穿越空間的捷徑,也是穿越時(shí)間的捷徑。
愛因斯坦的相對(duì)論稱質(zhì)量會(huì)在時(shí)空中發(fā)生彎曲。這一概念最常見的直觀例子就是把空間描繪成一個(gè)彎曲的二維平面。
我們來設(shè)想一條跑道:如果你沿著跑道的弧線快速奔跑,你就和跑道依附在了一起,可如果你能在跑道平行的兩側(cè)中間再新修一條跑道的話,會(huì)發(fā)生什么呢?這正是蟲洞背后的理念。如果時(shí)空曲線一側(cè)的質(zhì)量施加足夠大的力,曲線另一側(cè)的質(zhì)量也施加足夠大的力,兩者就能相遇,并形成通道。
如果你看過美國廣播公司的電視劇《迷失》,那么對(duì)于那些不怎么講得通的事,你可能會(huì)習(xí)以為常。之所以這么說,主要原因在于劇中的神秘島嶼能使人物不留痕跡地在時(shí)間中四處穿越。
說真的,到了該劇的結(jié)尾,所有人能幸運(yùn)地逃離那座島嶼,免于成為自己的祖輩,都該為此感到慶幸。
不過,《迷失》至少還是盡力用了點(diǎn)科學(xué)知識(shí)來支撐虛構(gòu)的故事。根據(jù)《大眾機(jī)械》雜志的博文分析,此劇的穿越原理似乎要仰賴于量子力學(xué)和一種被稱為“異類材料”的神秘地下物質(zhì),還很可能與蟲洞有關(guān)。
但這種深埋地下、易揮發(fā)的神秘物質(zhì)能產(chǎn)生足夠的能量來控制時(shí)空的缺口嗎?
你或許會(huì)爭辯說,創(chuàng)作穿越小說的作家也就只能想出這么多花樣來了。當(dāng)然,這不包括那些真的從未來世界穿越回來的作家們。
1.off the top of one’s head:無需多想(便快速給出一個(gè)大概的答案)
2.H. G. Wells:赫伯特·喬治·威爾斯(Herbert George Wells, 1866~1946),常被稱作H. G. 威爾斯,英國著名小說家,尤以科幻小說創(chuàng)作聞名于世。他于1895年出版《時(shí)間機(jī)器》(The Time Machine)一舉成名,隨后又發(fā)表了《莫洛博士島》(The Island of Dr. Moteau)、《隱身人》(The Invisible Man)、《星際戰(zhàn)爭》(The War of the Worlds)等多部科幻小說。
3.mainstay [#712;me#618;n#716;ste#618;] n. 支柱,中流砥柱
4.Dr. Who:神秘博士,英國科幻電視連續(xù)劇《神秘博士》(Doctor Who)中對(duì)一位名為“博士”的外星時(shí)間旅行者的稱呼。在劇中,神秘博士與他名為Tardis的時(shí)間機(jī)器一起展開了一系列的冒險(xiǎn)故事。Tardis是時(shí)間和空間的相對(duì)維度(Time and Relative Dimension[s] in Space)的縮寫,它的外形酷似英國的警察亭。
5.Dr. Brown:布朗博士,美國科幻系列電影《回到未來》(Back to the Future)中的人物之一。在影片中,布朗博士在發(fā)明時(shí)間機(jī)器DeLorean后被恐怖分子殺害,而他的好友馬蒂駕著DeLorean回到了過去。
6.android ['aelig;ndr#596;id] n. 機(jī)器人
7.Richard Donner:理查德·唐納(1930~),好萊塢著名導(dǎo)演、電影制片人,其導(dǎo)演的代表影片有《天魔》(The Omen)、《超人》(Superman)、《致命武器》(Lethal Weapon)系列等。
8.hard-pressed:經(jīng)歷大困難或危機(jī)的
9.holodeck:全息甲板,影片《星際迷航》中的一個(gè)發(fā)明物,它是一個(gè)能模擬任意數(shù)量環(huán)境的大屋子,也能模擬進(jìn)去的人的感覺,從而欺騙人的感官,讓人以為是處在真實(shí)的世界。你不用在大腦上連接什么東西,你也可以像進(jìn)出任何屋子一樣進(jìn)出全息甲板,在里面你可以看到在現(xiàn)實(shí)生活中你所沒有的東西。
10.more … than you can shake a stick at:數(shù)不勝數(shù),大量
11.continuum [k#601;n#712;t#618;nj#650;#601;m] n. 連續(xù)統(tǒng)一體,統(tǒng)一體
12.circle the drain:漸漸消失,榨干
13.tinker [#712;t#618;#331;k#601;(r)] vi. (尤指很不熟練或馬虎地)修補(bǔ);徒勞無益地空忙
14.fall in line:使一致,使相似
15.special relativity:狹義相對(duì)論,由愛因斯坦在洛侖茲和龐加萊等人的工作基礎(chǔ)上創(chuàng)立的時(shí)空理論,是對(duì)牛頓時(shí)空觀的拓展和修正。愛因斯坦以光速不變?cè)沓霭l(fā),建立了新的時(shí)空觀。
16.Lawrence M. Krauss:勞倫斯·克勞斯(1954~),美國麻省理工學(xué)院物理學(xué)博士,科普作家,著有以《星際迷航物理學(xué)》為代表的多部科普作品。
17.black hole:黑洞,一種引力極強(qiáng)的天體,就連光也不能逃脫。當(dāng)恒星的史瓦西半徑小到一定程度時(shí),就連垂直表面發(fā)射的光都無法逃逸了,這時(shí)恒星就變成了黑洞。說它“黑”,是指它就像宇宙中的無底洞,任何物質(zhì)一旦掉進(jìn)去,“似乎”就再不能逃出。由于黑洞中的光無法逃逸,所以我們無法直接觀測(cè)到黑洞,但我們可以通過測(cè)量它對(duì)周圍天體的作用和影響來間接觀測(cè)或推測(cè)到它的存在。
18.singularity [#716;s#618;#331;ɡj#650;#712;laelig;r#601;ti] n. 奇點(diǎn)(時(shí)空中的一點(diǎn),在該點(diǎn)重力使物質(zhì)的密度無窮大、體積無窮小,空間和時(shí)間被極度扭曲)
19.Roy Kerr:羅伊·克爾(1934~),國際著名天體物理學(xué)家、數(shù)學(xué)家
20.Donnie Darko:死亡幻覺,該概念來自于2001年推出的美國心理驚悚、科幻電影《死亡幻覺》(Donnie Darko)。該影片的主人公是一位名叫東尼·達(dá)克(Donnie Darko)的青少年,在一個(gè)擬人化兔子(即下文中提到的Creepy Rabbit)的慫恿下,做出了一些要終結(jié)世界的破壞行為。
21.wormhole:請(qǐng)參見45頁注釋11。
22.tangent universe:離線宇宙,指由于某一事件,同時(shí)發(fā)生在同一直線時(shí)間軸內(nèi)的兩個(gè)不連續(xù)的點(diǎn)導(dǎo)致直線時(shí)間軸扭曲斷裂,由此產(chǎn)生了與原發(fā)宇宙有一個(gè)平行的時(shí)間軸的、有固定區(qū)間時(shí)間線的、脫離于原發(fā)宇宙之外的平行宇宙。
23.ABC:美國廣播公司,美國傳統(tǒng)三大廣播電視公司之一,創(chuàng)立于1943年。
24.breach [bri#720;t#643;] n. 缺口,裂口