于和平 侯和勝
摘要:主要闡述了WRKY轉(zhuǎn)錄因子在非生物脅迫應(yīng)答中的作用,以及其參與ABA信號轉(zhuǎn)導(dǎo)方向的研究進(jìn)展。
關(guān)鍵詞:WRKY轉(zhuǎn)錄因子;非生物脅迫;ABA信號轉(zhuǎn)導(dǎo)
中圖分類號: S188 文獻(xiàn)標(biāo)識碼:DOI編碼:10.3969/j.issn.1006-6500.2012.06.005
由于植物的固著屬性及自然界的環(huán)境變化,農(nóng)林作物等植物時刻遭受著各種生物和非生物的脅迫,如病蟲害、干旱、低溫、高鹽等,這些脅迫經(jīng)常發(fā)生在植物生長發(fā)育的不同階段,進(jìn)而限制了植物的器官生長、組織發(fā)生和果實成熟等。為了適應(yīng)多變的環(huán)境條件,植物自身存在著復(fù)雜的脅迫應(yīng)答機制,從而實現(xiàn)在不同生長環(huán)境條件下正常生長發(fā)育。基于分子水平的脅迫應(yīng)答信號轉(zhuǎn)導(dǎo)在這一過程中起到了至關(guān)重要的作用,因此,闡明脅迫響應(yīng)信號轉(zhuǎn)導(dǎo)分子機制、識別相關(guān)調(diào)控因子是研究植物抗逆的關(guān)鍵。WRKY轉(zhuǎn)錄因子作為一種多效性、瞬時性轉(zhuǎn)錄因子,能夠參與多種生物或非生物脅迫反應(yīng)以及植物發(fā)育等生理過程[1-2],但其在脫落酸(ABA)響應(yīng)的逆境脅迫信號轉(zhuǎn)導(dǎo)中的作用研究較少。研究表明,ABA作為傳統(tǒng)的植物激素之一,在植物逆境脅迫信號轉(zhuǎn)導(dǎo)機制中扮演重要角色[3]。筆者主要從WRKY轉(zhuǎn)錄因子在非生物脅迫響應(yīng)過程中的作用及其參與的ABA信號轉(zhuǎn)導(dǎo)方面闡述最近的研究進(jìn)展。
1植物WRKY轉(zhuǎn)錄因子
2WRKY轉(zhuǎn)錄因子參與的ABA信號轉(zhuǎn)導(dǎo)
2.1 ABAR受體介導(dǎo)的ABA信號轉(zhuǎn)導(dǎo)
ABAR普遍存在于植物的綠色和非綠色組織,在植物細(xì)胞中發(fā)揮多重功能,不僅參與葉綠素合成,也是質(zhì)體與細(xì)胞核之間信號轉(zhuǎn)導(dǎo)的重要組分。研究表明,在種子發(fā)芽、生長和氣孔運動過程中ABAR作為受體,能夠特異性結(jié)合ABA,參與ABA信號轉(zhuǎn)導(dǎo),并正向調(diào)控信號轉(zhuǎn)導(dǎo)的發(fā)生[22]。通過免疫熒光技術(shù)和酵母雙雜交篩選證明,ABAR定位于葉綠體膜邊緣,能夠橫跨葉綠體膜,并且其N末端和C末端在基質(zhì)一側(cè),C末端能夠結(jié)合ABA或與一組擬南芥WRKY轉(zhuǎn)錄因子(AtWRKY18、AtWRKY40、AtWRKY60)相互作用[6, 26]。其中ABAR與AtWRKY40的相互作用表明,AtWRKY40作為主要的負(fù)調(diào)控因子,可抑制ABA響應(yīng)基因如ABI5的表達(dá)。當(dāng)外源ABA刺激擬南芥植株時,ABA誘導(dǎo)AtWRKY40從細(xì)胞核向細(xì)胞質(zhì)移動,促進(jìn)ABAR與AtWRKY40的相互作用,從而緩解ABA響應(yīng)基因的表達(dá)抑制。除了AtWRKY18、AtWRKY40、AtWRKY60基因的突變體植株,在ABA誘導(dǎo)的情況下,全部表現(xiàn)ABA過敏感型。除ABAR外,利用ChIP技術(shù)發(fā)現(xiàn),WRKY40還能夠直接與許多ABA響應(yīng)基因如ABI4、ABI5、ABF4、MYB2等的啟動子結(jié)合,從而調(diào)控基因表達(dá)[6]。這些試驗結(jié)果也將WRKY確定在其他已知ABA響應(yīng)轉(zhuǎn)錄因子AP2/ERF基因DREB1A、MYB基因MYB2、bZIP基因ABI5等的上游。分析單雙突變和過表達(dá)試驗結(jié)果,在種子發(fā)芽及發(fā)育階段,AtWRKY40負(fù)調(diào)控ABA響應(yīng),AtWRKY18和AtWRKY60正調(diào)控ABA響應(yīng),且AtWRKY18和AtWRKY40能夠被ABA快速誘導(dǎo),AtWRKY60則較慢。研究人員還發(fā)現(xiàn),AtWRKY40和AtWRKY18能夠識別AtWRKY60啟動子,調(diào)節(jié)AtWRKY60表達(dá),這也說明了WRKY轉(zhuǎn)錄因子參與ABA信號轉(zhuǎn)導(dǎo)的復(fù)雜性[8]。
2.2PYR/PYL/RCAR受體介導(dǎo)的ABA信號轉(zhuǎn)導(dǎo)
3展望
隨著新興技術(shù)的發(fā)展,植物逆境脅迫響應(yīng)信號轉(zhuǎn)導(dǎo)與基因調(diào)控領(lǐng)域的研究不斷深入,一些信號受體及轉(zhuǎn)錄調(diào)控因子的識別與定位,為我們更好地理解植物復(fù)雜的信號轉(zhuǎn)導(dǎo)機制提供了新的思路。WRKY轉(zhuǎn)錄因子作為ABA信號通路中的關(guān)鍵調(diào)控因子,其參與植物非生物脅迫響應(yīng)的研究成果,將會在農(nóng)業(yè)生產(chǎn)上發(fā)揮重要的作用。
參考文獻(xiàn):
[1] Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors [J]. Trends in Plant Science, 2010, 15(5):247-258.
[2] Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity [J]. Plant Physiology, 2009, 150(4):1648-1655.
[3] Zhang J, Jia W, Yang J, et al. Role of ABA in integrating plant responses to drought and salt stresses [J]. Field Crops Research, 2006, 97(1):111-119.
[4] Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses [J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 18,19(2):120-128.
[5] Zhang H, Jin J, Tang L, et al. Plant TFDB 2.0: Update and improvement of the comprehensive plant transcription factor database [J]. Nucleic Acids Research, 2011, 39(1):1114-1117.
[6] Shang Y, Yan L, Liu Z-Q, et al. The Mg-chelatase H subunit of arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition [J]. The Plant Cell Online, 2010, 22(6):1909-1935.
[7] Rushton D L, Tripathi P, Rabara R C, et al. WRKY transcription factors: Key components in abscisic acid signalling [J]. Plant Biotechnology Journal, 2012, 10(1):2-11.
[8] Chen H, Lai Z, Shi J, et al. Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress [J]. BMC Plant Biology, 2010, 10(1):281.
[9] Jiang W, Yu D. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid [J]. BMC Plant Biology, 2009, 9(1):96.
[10] Zhou X, Jiang Y, Yu D. WRKY22 transcription factor mediates dark-induced leaf senescence inArabidopsis [J]. Molecules and Cells, 2011, 31(4):303-313.
[11] Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance [J]. Planta, 2011, 233(6):1237-1252.
[12] Ren X, Chen Z, Liu Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis [J]. The Plant Journal, 2010, 63(3):417-429.
[13] Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis [J]. Environmental and Experimental Botany, 2009, 65(1):35-47.
[14] Zhou Q-Y, Tian A-G, Zou H-F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants [J]. Plant Biotechnology Journal, 2008, 6(5):486-503.
[15] Wei W, Zhang Y, Han L, et al. A novel WRKY transcriptional factor from thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco [J]. Plant Cell Reports, 2008, 27(4):795-803.
[16] Mangelsen E, Wanke D, Kilian J, et al. Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses [J]. Plant physiology, 2010, 153(1):14-33.
[17] Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory [J]. The Plant Cell Online, 2008, 20(7):1984-2000.
[18] Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: Emergence of a core signaling network [J]. Annual Review of Plant Biology, 2010, 61(1):651-679.
[19] Razem F A, El-Kereamy A, Abrams S R, et al. The RNA-binding protein FCA is an abscisic acid receptor [J]. Nature, 2006, 439(7074):290-294.
[20] Liu X, Yue Y, Li B, et al. A G Protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid [J]. Science, 2007, 315(5819):1712-1716.
[21] Pandey S, Nelson D C, Assmann S M. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis [J]. Cell, 2009, 136(1):136-148.
[22] Shen Y Y, Wang X F, Wu F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor [J]. Nature, 2006, 443(7113):823-826.
[23] Park S Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins [J]. Science, 2009, 324(5930):1068-1071.
[24] Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors [J]. Science, 2009, 324(5930):1064-1068.
[25] Antoni R, Rodriguez L, Gonzalez-Guzman M, et al. News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling [J]. Current Opinion in Plant Biology, 2011, 14(5):547-553.
[26] Wu F-Q, Xin Q, Cao Z, et al. The Magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: New evidence in Arabidopsis[J]. Plant physiology, 2009, 150(4):1940-1954.
[27] Fujii H, Chinnusamy V, Rodrigues A, et al. In vitro reconstitution of an abscisic acid signalling pathway [J]. Nature, 2009, 462(7273):660-664.
[28] Finkelstein R R, Gampala S S L, Rock C D. Abscisic acid signaling in seeds and seedlings [J]. The Plant Cell Online, 2002, 14(1):15-45.