• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous Determination of Inositols and Carbohydrates in Different Citrus Juices by Gas Chromatography with Pre-column Derivatization

    2012-04-06 01:30:18ZHANGYaohaiZHAOQiyangZHANGXuelianWANGLeiJIAOBiningZHOUZhiqin
    食品科學(xué) 2012年10期
    關(guān)鍵詞:肌醇柑桔西南

    ZHANG Yao-hai,ZHAO Qi-yang,ZHANG Xue-lian,WANG Lei,JIAO Bi-ning,,*,ZHOU Zhi-qin

    (1. Institute of Citrus Research, Southwest University, Chongqing 400712, China;2. College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;3. College of Food Science, Southwest University, Chongqing 400716, China)

    Simultaneous Determination of Inositols and Carbohydrates in Different Citrus Juices by Gas Chromatography with Pre-column Derivatization

    ZHANG Yao-hai1,2,ZHAO Qi-yang1,ZHANG Xue-lian3,WANG Lei1,JIAO Bi-ning1,3,*,ZHOU Zhi-qin2

    (1. Institute of Citrus Research, Southwest University, Chongqing 400712, China;2. College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;3. College of Food Science, Southwest University, Chongqing 400716, China)

    A gas chromatographic method using pre-column derivatization was described for the quantitative analysis of fructose, glucose, sucrose, chiro-, scyllo- and myo-inositol in different citrus juices. Juices from different fresh citrus (looseskin mandarin, sweet orange, pummelo, lemon and kumquat) were prepared in the laboratory. Inositols and carbohydrates were analyzed by GC as their oximes derivatives and their identities were confirmed by retention of pure standards. The method was evaluated for precision and recovery using methyl-α-D-glucoside as an internal standard. The recoveries of the method evaluated at two spiked levels were in the range of 98.1%-106.9% with RSDs from 0.6%-6.1%. The limits of detection (LODs) were from 0.29×10-3-0.41×10-3μg/L (RSN=3). The results support the suitability of the method. The method is simple, quick and reproducible, and applicable to confirm inositols and carbohydrates in different kinds of citrus juice.

    gas chromatography (GC);inositol;citrus juice;internal standard

    It is well known that fruit juices are an important source of energy in the form of glucose, fructose and sucrose being the most abundant in fruit and fruit products[1]. At present, analytical methods of sugar can be roughly divided into two groups. One is chromatography and the other is enzymology. As dominating method, chromatography developed to determine sugar includes gas chromatography (GC)[1-6], high performance liquid chromatography (HPLC)[7-8], high performance anion-exchange chromatography (HPAEC)[9-10]and capillary electrophoresis (CE)[11].

    The biochemical meaterials in citrus such as inositols, flavonoids, limonoides, carotenoids and phenolic acids not only have effects of reducing blood sugar level, cholesterollowering, anti-cancer, prevention and treatment of circulatory and psychiatric disorders and so on, but also can be used as the markers of screening species initially and adulteration detection of orange juice[12-13]. Untill now, a few researches on myo-inositol in citrus have been reported, while rarely on chiroand scyllo-inositol. Both the simultaneous determining method of inositols and carbohydrates in citrus juice and the contents in various of citrus are all lace of systematic research. As an important kind of carbohydrates, inositols are present in plants as minor components and some of them have positive physiological effects in humans[14-15]. Myo-inositol is a minor component of fruits[1]. Scyllo-inositol, which has been detected in grapes, has been proposed, along with myo-inositol, to control the genuineness of the concentrated rectified grape[16]. Myoinositol content and myo-inositol/fructose ratio have been found to provide information on the quality and genuineness of citrus juice[2]. The structure of three inositols was shown in Fig.1.

    Fig.1 Structure of inositols

    Analytical methods developed to determine inositols include titrimetry[17], spectrofluorimetry[18], thin-layer chromatography (TLC)[19], GC[1-6], HPLC[20-21], HPAEC[9-10]and CE[22]. Those traditional analytical methods, such as titrimetry, spectrofluorimetry and TLC, are not suitable for multi-carbohydrates analysis. Although carbohydrates are detected using HPLC and HPAEC without derivatization, HPLC is required to combine with refractive index detector (RID) with poor selectivity and limited sensitivity and also HPAEC is in need of special detector and expensive sugar column. CE is a powerful separation technique that can provide high speed and low cost with poor reproducibility, compared with other chromatographic methods. Since inositol is present in citrus juice in very low concentrations compared to the major carbohydrates, GC technique seemed to be more suitable for its accurate determination. Most of GC separation is carried out using FID (flame ionization detector) due to its response to most volatile organic compound. As inositols and carbohydrates have poor volatility, derivatizing becomes a necessary procedure to determine them.

    In the present paper, we have reported a quantitative GC method for the occurrence and contents of inositols in fresh juices from different citrus (loose-skin mandarin, sweet orange, pummelo, lemon and kumquat) in an attempt to establish if these parameters can be used as indicators of the quality and genuineness of citrus juice. Major carbohydrates have also been determined.

    1 Materials and Methods

    1.1 Meterials, reagents and apparatus

    Methanol, hexamethyldisilazane (HMDS) and trifluoroacetic acid (TFA) were analytical reagent (Sinopharm Chemcial Reagent Co. Ltd., Shanghai, China). D-fructose (CAS No. 57-48-7), glucose (CAS No. 50-99-7) and sucrose (CAS No. 57-50-1) were of chromatographic grade. Methylα-D-glucoside, Myo-inositol (CAS No. 87-89-8, ≥99.0%) were obtained from Fluka Company (CAS No. 97-30-3, ≥99.0%, sum of enantimers, Lithuania). D-chiro-inositol (CAS No. 643-12-9), L-chiro-inositol (CAS No. 551-72-4) and scylloinositol (CAS No. 488-59-5) were purchased from Tokyo Chemical Industry Co. Ltd. (EP, Japan).

    All other reagents were of analytical grade and deionized water purified by a Milli-Q system (Millipore, Bedford, MA, USA) was used throughout.

    The GC analyses were performed on Agilent gas chromatograhy (model 6890, USA) equipped with FID. Three different capillary columns, including HP-1701 (30 m×0.32 mm, 0.25 μm film), HP-1(30 m×0.25 mm, 0.25 μm film) and HP-5MS (30m×0.32mm, 0.25 μm film) were used for the optimization of the experimental conditions.

    1.2 Methods

    1.2.1 Samples and sampling

    Citrus samples were supplied by National Citrus Germplasm Repository officially established in Citrus Research Institute of Chinese Academy of Agricultural Sciences. Citrus juices were crushed after removing skins (and seeds when necessary) and centrifuged at 12000 r/min during 10 min at 5 ℃. 1.00 mL supernatant and 1.00 mL internalstandard solution were mixed in a 25.00 mL volumetric flask and diluted to the mark with methanol/water mixture (70∶30, V/V). Out of the above solution, one portion of 0.40 mL was transferred to a 10 mL colorimetric tube and stored in an oven at 60 ℃ for at least 12 h.

    1.2.2 Derivatization procedure

    To the above colorimetric tube containing sample and internal standard, 0.75 mL of 1.25% hydroxylaminechloride in pyridine was added. The mixture was kept for 20 min at 50 ℃. After oximation reaction, 0.35 mL hexamethyldisilazane (HMDS) and 0.035 mL trifluoroacetic acid (TFA) were carefully added to the tube parked in ice-bath. Then samples were persilylated at 60 ℃ for 25 min and centrifuged at 12000 r/min for 5 min.

    1.2.3 Chromatographic conditions

    Gas chromatographic separation was carried out using a HP-1701 fused silica capillary column. All injections were split, the ratio was 9∶1 and the volume was 1 μL. The flow rates of carrier gas (N2, ≥99.999%), fuel gas (H2, ≥99.999%) and combustion-supporting gas (air, ≥99.999%) were 0.8 mL/ min, 40.0 mL/min and 450.0 mL/min respectively. The injector temperature was 250 ℃. FID detector temperature was 300 ℃. The column temperature program was from 200 ℃ (200℃ for 12 min) to 280 ℃ at 25 ℃/min, then 250 ℃ for 5 min.

    2 Results and Analyses

    2.1 Optimization of derivation reaction

    In order to be detected using GC, those compounds with hydroxyl group, such as carbohydrates, are required of derivation treatment. It has been well documented that HMDS, a widely used silylation reagent produced several by-products when it was directly applied to the derivation of reducing sugars[23]. Multiple peaks found for reducing sugars, which corresponded to the various isomeric forms resulted in severe interference. Once reducing sugars react with methylhydroxylamine hydrochloride, the number of isomeric forms can dramatically decrease when using the silylation procedure. So, ketonic group of reducing sugar is in need of protection before silylation reaction and oximation reaction is an effective approach.

    2.1.1 Optimization of oximation reaction

    It could be seen easily from Fig.2 that neither oximation reaction temperature nor time had remarkable effect on the derivation of three inositols, which resulted from no carbonyl group of their molecular structure. High temperature could accelerate the derivatization reaction of sucrose as well as the hydrolysis of the reagent[24]. Therefore, the experiment aimed at the best temperature to achieve the best derivatization yield. Fig.2(A) indicates that the effect of different temperature on the peak areas. The optimum temperature (50 ℃) was employed.

    Usually, the derivatizing is expected to be performed in a short time with satisfying efficiency. In this experiment, the investigation of suitable reaction time was carefully carried out at 50 ℃. As shown in Fig.2 (B), it was demonstrated that the reaction was completed in 20 min. To get reproducible results, the oximation reaction at 50 ℃ for 20 min was performed.

    2.1.2 Optimization of silylation reaction

    Fig.2 Effect of oximation temperature (oximation time for 20 min) (A) and oximation time (oximation temperature for 50 ℃) (B) on response ratio

    Fig.3 Effect of silylation temperature (silylation time for 25min) (A) and silylation time (silylation temperature for 60 ℃) (B) on response ratio

    As shown in Fig.3(A), at first, the peak areas of the derivatives of chiro-inositol, scyllo-inositol and sucrose increased gradually with the increasing of silylation reaction temperature. At 40 ℃, the maximal were almost obtained. The peak areas of their derivatives dropped down markedly with the increase of temperature. In the latter 20 min, the peak areas remained constant. Moreover, the peak areas of other three derivatives could be stable for about 30 min when it reached maximal. Therefore, the silylation reaction was performed at 60 ℃ for 25 min.

    Additionally, the influence of how to add silylation reagent on the separation of carbohydrates was studied. When HMDS and TFA were entered to the reaction system at the room temperature, multiple peaks was found with poor separation in Fig.4(A) and Fig.5(A). While at the ice bath, the contrary result was shown in Fig.4(B) and Fig.5(B).

    Fig.4 Chromatograms of fructose standard under room temperature (A) and ice-bath (B) conditions

    Fig.5 Chromatograms of glucose standard underroom temperature (A) and ice-bath (B) conditions

    2.2 Typical chromatogram

    Fig.6 Chromatographic profiles of TMS inositols and sugar oximes of mixed standard resolution

    A typical gas chromatogram obtained after use of the optimum conditions for derivatization and separation was shown in Fig.6. The derivatives of inositols and carbohydrates were separated to baseline within 20 min. Although peaks of 2 and 3 from fructose partially overlapped, they were integrated without difficulty. Besides, the effect of different capillary columns on the separation was also taken into consideration. Three types of capillary columns, including HP-1701 (30 m× 0.32 mm, 0.25 μm film), HP-1 (30m×0.25 mm, 0.25 μm film) and HP-5MS (30 m×0.32 mm, 0.25 μm film) were used in the experment. It was observed that chiro-inositol and fruc-tose were not separated to baseline and two peaks of scylloinositol and glucose were completely overlapped either in HP-1 or HP-5MS capillary column. As a result, HP-1701 capillary column was a perfect choice in the separation.

    2.3 Accuracy and precision of analytical methods

    In order to quantify the recovery, a known amount of each compoud was added to half-diluted freshly squeezed citrus juices. Table 1 gives the analysis results of satsuma mandarin samples. The satisfactory recoveries were found to be 98.1%-106.9% with RSDs ranged from 0.6%-6.1%. The results support the suitability of the method.

    2.4 Sample analysis

    Table 1 Range studied for retention time, limits of quantification (LOQs), relative standard deviation (RSD) and mean recovery of inositols and carbohydrates

    The proposed method has been applied to the analysis of citrus samples including loose-skin mandarin, sweet orange, pummelo, lemon and kumquat. Tangerines, mandarins and hybrids were part of loose-skin mandarins. Three major carbohydrates fructose, glucose and sucrose were usually found in a ratio of 1∶1∶2 (m/m). This value was similar to the previous report[6]. Moreover, three inositols have also been found in different fresh citrus juice at low concentrations (Table 2). Chiro-inositol was present in all citrus samples except a portion of pummelos. Scyllo-inositol was found in all citrus juices except a few mandarins, whereas myo-inositol was observed in all analyzed samples.

    Myo-inositol was present in variable amounts, from 0.14 g/L in lemon to 3.15 g/L in pummelo. Myo-inositol content in citrus juice except pummelo was within the ranges 0.12-0.16 g/L and 0.13-0.17 g/L reported by Villamiel et al.[2]and Belitz et al.[25], respectively. Myo-inositol in pummelo (0.95-3.15 g/L) was higher than the maximum of above report. Scyllo-inositol ranged from traces in mandarin to 0.43 g/L in hybrid. Chiroinositol varied from traces in pummelo to 1.75 g/L of hybrid.

    Fig.7 Scatterplot of CI-Is (A), SI-Is (B), MI-Is (C) in citrus juice

    Table 2 Content ranges of fructose, glucose, sucrose, chiro-, scyllo- and myo-inositol in fresh juices from different citrus

    Fig.7(A), (B) and (C) show the scatterplots of CI-Is, SI-Is and MI-Is in different citrus juices, respectively. Compared to the scatterplots of MI-Is and CI-Is, the above citrus juices except lemon and kumquat were not distinguished effectively in the scatterplot of SI-Is. On the other hand, it was obvious that different citrus juices were distinguished either in the scatterplots of MI-Is or CI-Is and even the scatterplots of loose-skin mandarin and sweet citrus were seldom or never overlapped. As a result, these parameters such as the scatterplots of MI-Is and CI-Is be used as indicators of the quality and genuineness of citrus juice.

    3 Conclusions

    From the results above we conclude that our method allows a suitable quantitative determination of inositols and carbohydrates in different citrus juice (loose-skin mandarin, sweet orange, pummelo, lemon and kumquat). Compared with the existing approach, the above is more effective, simple and reproducible. Moreover, the MI-Is and CI-Is scatterplots could afford additional information on the quality and genuineness of commercial citrus juice.

    [1]SANZ M L, VILLAMIEL M, MARTINEZ-CASTRO I. Inositols and carbohydrates in different fresh fruit juices[J]. Food Chemistry, 2004, 87 (3)∶ 325-328.

    [2]VILLAMIEL M, MARTINEZ-CASTRO I, OLANO A, et al. Quantitative determination of carbohydrates in citrus juice by gas chromatography [J]. Zeitschrift fur Lebensmittel Untersuchung und Forschung A, 1998, 206(1)∶ 48-51.

    [3]KATONA Z F, SASS P, MOLNAR-PERL I. Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 1999, 847(1/2)∶ 91-102.

    [4]MACIAS-RODRIGUEZ L, QUERO E, LOPEZ M G. Carbohydrate differences in strawberry crowns and fruit (Fragaria×ananassa) during plant development[J]. Journal of Agriculture Food Chemistry, 2002, 50 (11)∶ 3317-3321.

    [5]FUZFAI Z, KATONA Z F, KOVACS E, et al. Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry[J]. Journal of Agriculture Food Chemistry, 2004, 52(25)∶ 7444-7452.

    [6]FUZFAI Z, MOLNAR-PERL I. Gas chromatographic-mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives∶Analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits[J]. Journal of Chromatography A, 2007, 1149(1)∶ 88-101.

    [7]MANGAS J J, MORENO J, PICINELLI A, et al. Characterization of cider apple fruits according to their degree of ripening. A chemometric approach [J]. Journal of Agriculture Food Chemistry, 1998, 46(10)∶ 4174-4178.

    [8]MASUDA R, KANEKO K, YAMASHITA I. Sugar and cyclitol determination in vegetables by HPLC using postcolumn fluorescent derivatization[J]. Journal of Food Science, 1996, 61(6)∶ 1186-1190.

    [9]GUIGNARD C, JOUVE L, BOGEAT-TRIBOULOT M B, et al. Analysis of carbohydrates in plants by high-performance anion-exchange chromatography coupled with electrospray mass spectrometry[J]. Journal of Chromatography A, 2005, 1085(1)∶ 137-142.

    [10]BRUGGINK C, MAURER R, HERRMANN H, et al. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry [J]. Journal of Chromatography A, 2005, 1085(1)∶ 104-109.

    [11]SOGA T, SERWE M. Determination of carbohydrates in food samples by capillary electrophoresis with indirect UV detection[J]. Food Chemistry, 2000, 69(3)∶ 339-344.

    [12]PUPIN A M, DENNIS M J, TOLEDO M C F. Polymethoxylated flavones in brazilian orange juice[J]. Food Chemistry, 1998, 63(4)∶ 513-518.

    [13]PETERSON J J, DWYER J T, BEECHER G R, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos∶ a compilation and review of the data from the analytical literature[J]. Journal of Food Composition and Analysis, 2006, 19(Suppl 1)∶ 66-73.

    [14]McLAURIN J, GOLOMB R, JUREWICZ A, et al. Inositol stereoisomers stabilize an oligomeric aggregate of Alzehimer amyloid β-peptide and inhibit a β-induced toxicity[J]. Journal of Biological Chemistry, 2000, 275(24)∶ 18495-18502.

    [15]NESTLER J E, JAKUBOWICZ D J, REAMER P, et al. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome [J]. The New England Journal of Medicine, 1999, 340(17)∶ 1314-1320.

    [16]MONETTI A, VERSINI G, DALPIAZ G, et al. Sugar adulterations control in concentrated rectified grape musts by finite mixture distribution analysis of the Myo- and scyllo-inositol content and the D/H methyl ratio of fermentative ethanol[J]. Journal of Agriculture Food Chemistry, 1996, 44(8)∶ 2194-2201.

    [17]ZHANG Yanqiu, LI Zhiwei, ZHANG Baotong, et al. The property of inositol and its application in aquaculture[J]. Feed Industry, 2007, 28 (14)∶ 28-30.

    [18]WANG Xiuli, LI Yeyun, ZHOU Hui. Quantitative determination of inositol in herba patriniae[J]. Journal of Anhui Traditional Chinese Medical College, 2002, 21(1)∶ 52-54.

    [19]LIU Renjie, PIAO Chunhong, YU Hansong, et al. TLC determination method research of D-chiro-inositol in buckwheat seed[J]. Food Science and Technology, 2006, 8∶ 263-265.

    [20]DAI Chuanbo, LI Jianqiao, LI Jianxiu. Determination of inositol by high performance liquid chromatography coupled with refraction detector [J]. Journal of Chemistry Industry and Engineering, 2006, 27(4)∶ 57-58.

    [21]YANG Nan, REN G uixing. Determination of D-chiro-Inositol in tartary buckwheat using high performance liquid chromatography with an evaporative light scattering detector[J]. Journal of Agriculture Food Chemistry, 2008, 56(3)∶ 757-760.

    [22]KONG Lingyao, WANG Yun, CAO Yuhua. Determination of Myoinositol and D-chiro-inositol in black rice bran by capillary electrophoresis with electrochemical detection[J]. Journal of Food Composition and Analysis, 2008, 21(6)∶ 501-504.

    [23]BARTOLOZZI F, BERTAZZA G, DANIELE B, et al. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography[J]. Journal of Chromatography A, 1997, 758(1)∶ 99-107.

    [24]SHEPHERD T, DOBSON G, VERRALL S R, et al. Potato metabolomics by GC-MS∶ what are the limiting factors[J]. Metabolomics, 2007, 3(4)∶ 475-482.

    [25]BELITZ H D, GROSCH W. Quimica de los Alimentos∶ food chemistry [M]. Acribia∶ Zaragoza, 1997.

    柱前衍生-氣相色譜法同時(shí)測定不同柑橘汁中的糖和肌醇

    張耀海1,2,趙其陽1,張雪蓮3,王 磊1,焦必寧1,3,*,周志欽2

    (1.西南大學(xué)柑桔研究所,重慶 400712;2.西南大學(xué)園藝園林學(xué)院,重慶 400716;3.西南大學(xué)食品科學(xué)學(xué)院,重慶 400716)

    為建立柱前衍生-氣相色譜技術(shù)同時(shí)測定不同柑橘汁(寬皮柑橘、甜橙、柚子、檸檬和金柑)中3種肌醇(肌肌醇、鯊肌醇、手性肌醇)和3種可溶性糖(果糖、葡萄糖、蔗糖)的方法,以內(nèi)標(biāo)物(甲基-α-D-葡萄糖苷)定量,標(biāo)準(zhǔn)物質(zhì)的保留時(shí)間定性。結(jié)果表明:在兩個(gè)添加水平下,6種成分的平均回收率為98.1%~106.9%,相對標(biāo)準(zhǔn)偏差為0.6%~6.1%,檢測限在0.29×10-3~0.41×10-3μg/L(RSN=3)。本方法簡便快速,結(jié)果準(zhǔn)確可靠。

    氣相色譜;肌醇;柑橘汁;內(nèi)標(biāo)物

    TS255.1

    A

    1002-6630(2012)10-0173-06

    2011-07-07

    國家現(xiàn)代農(nóng)業(yè)(柑桔)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-27);重慶市自然科學(xué)基金項(xiàng)目(CSTC 2009BB1136);

    張耀海(1977—),男,助理研究員,博士,研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全檢測。E-mail:zyh26824@sina.com

    第四十七批中國博士后科學(xué)基金面上項(xiàng)目(20100470808);中央高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(XDJK2012C059)

    *通信作者:焦必寧(1964—),男,研究員,研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全檢測。E-mail:bljiao@tom.com

    猜你喜歡
    肌醇柑桔西南
    低蛋白質(zhì)日糧添加植酸酶和肌醇對蛋雞生產(chǎn)性能、蛋品質(zhì)及消化道發(fā)育的影響
    中國飼料(2022年6期)2022-04-22 05:14:30
    “潮”就這么說
    Country Driving
    柑桔無公害栽培技術(shù)研討
    柑桔樹青苔病的發(fā)生與防治
    柑桔園冬季管理技術(shù)
    柑桔砂皮病研究進(jìn)展
    一路向西南——然烏湖、米堆冰川
    啟蒙(3-7歲)(2017年4期)2017-06-15 20:28:55
    磷脂酰肌醇蛋白聚糖3在肝細(xì)胞癌組織中的表達(dá)及臨床意義
    西南絲綢之路及其對西南經(jīng)濟(jì)的影響
    又爽又黄a免费视频| 久久久久久伊人网av| 精品一区二区三区人妻视频| 日本色播在线视频| 有码 亚洲区| 亚洲精品日韩av片在线观看| 国内精品美女久久久久久| 免费看美女性在线毛片视频| 国内精品美女久久久久久| 日韩 亚洲 欧美在线| freevideosex欧美| 亚洲av中文字字幕乱码综合| 最近的中文字幕免费完整| 亚洲国产精品成人久久小说| 午夜福利视频1000在线观看| 久久久精品欧美日韩精品| 精品人妻偷拍中文字幕| 一级爰片在线观看| 欧美xxxx性猛交bbbb| 99九九线精品视频在线观看视频| 日日啪夜夜撸| 婷婷色综合www| 有码 亚洲区| 亚洲综合色惰| 搡老妇女老女人老熟妇| 熟女人妻精品中文字幕| videos熟女内射| 免费黄频网站在线观看国产| 久久久久久久久久人人人人人人| 国产真实伦视频高清在线观看| 亚洲欧美精品专区久久| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美人成| 欧美xxxx黑人xx丫x性爽| 中文乱码字字幕精品一区二区三区 | 欧美xxⅹ黑人| 色综合色国产| 亚洲精品亚洲一区二区| 国产精品久久久久久精品电影| 舔av片在线| 亚洲国产欧美人成| 久久精品久久精品一区二区三区| 国产精品熟女久久久久浪| 搡老乐熟女国产| 一级片'在线观看视频| 精品人妻视频免费看| 男的添女的下面高潮视频| 欧美最新免费一区二区三区| 国产精品.久久久| 91精品一卡2卡3卡4卡| 欧美日本视频| 小蜜桃在线观看免费完整版高清| 国产成人精品一,二区| 亚洲精品一二三| 成人亚洲精品一区在线观看 | 亚洲av免费在线观看| 日韩欧美精品v在线| 人人妻人人澡人人爽人人夜夜 | 国产一区二区在线观看日韩| 建设人人有责人人尽责人人享有的 | 久久人人爽人人爽人人片va| 肉色欧美久久久久久久蜜桃 | 免费人成在线观看视频色| 久久久久九九精品影院| 高清av免费在线| 国产白丝娇喘喷水9色精品| 午夜免费男女啪啪视频观看| 波多野结衣巨乳人妻| 成人欧美大片| 久久精品熟女亚洲av麻豆精品 | 国产av在哪里看| 久久精品人妻少妇| 亚洲av成人av| 春色校园在线视频观看| 天堂网av新在线| 久久久久久久久久久丰满| a级毛色黄片| 婷婷色综合www| 午夜福利视频1000在线观看| 一级毛片 在线播放| 精品久久久精品久久久| 免费不卡的大黄色大毛片视频在线观看 | www.av在线官网国产| 成人一区二区视频在线观看| 人妻一区二区av| 精品久久久久久久人妻蜜臀av| 久久亚洲国产成人精品v| 欧美成人精品欧美一级黄| 国产亚洲一区二区精品| 亚洲精品国产av蜜桃| 美女cb高潮喷水在线观看| 一夜夜www| 欧美极品一区二区三区四区| 久久99热这里只频精品6学生| 国产一区二区在线观看日韩| 国产老妇女一区| 国产白丝娇喘喷水9色精品| 国产精品1区2区在线观看.| 国产一区二区三区综合在线观看 | 国产精品麻豆人妻色哟哟久久 | 亚洲精品色激情综合| 精品久久久精品久久久| 天堂影院成人在线观看| 看免费成人av毛片| 亚洲精品久久久久久婷婷小说| a级毛片免费高清观看在线播放| 日日摸夜夜添夜夜爱| 国产精品久久久久久精品电影小说 | 中文字幕av成人在线电影| 国产 亚洲一区二区三区 | 亚洲美女视频黄频| 日韩三级伦理在线观看| 午夜精品在线福利| 狂野欧美激情性xxxx在线观看| 亚洲国产av新网站| 国产av在哪里看| 亚洲精品aⅴ在线观看| 肉色欧美久久久久久久蜜桃 | 三级毛片av免费| 嫩草影院新地址| 69人妻影院| av在线天堂中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 汤姆久久久久久久影院中文字幕 | 国产一级毛片七仙女欲春2| 三级经典国产精品| 内射极品少妇av片p| .国产精品久久| 亚洲在线观看片| av在线老鸭窝| 亚洲在线自拍视频| 日韩一区二区视频免费看| 天堂网av新在线| 尤物成人国产欧美一区二区三区| 看黄色毛片网站| 久久99精品国语久久久| 美女国产视频在线观看| 最近中文字幕高清免费大全6| 成人二区视频| 99久久人妻综合| 91精品一卡2卡3卡4卡| 边亲边吃奶的免费视频| 综合色丁香网| 久热久热在线精品观看| 99久久九九国产精品国产免费| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩卡通动漫| 蜜桃亚洲精品一区二区三区| 亚洲欧美成人精品一区二区| 男女边摸边吃奶| 久久精品综合一区二区三区| 在现免费观看毛片| 国产欧美日韩精品一区二区| 男女下面进入的视频免费午夜| 国精品久久久久久国模美| 国产69精品久久久久777片| 国产午夜精品一二区理论片| 天堂av国产一区二区熟女人妻| 插逼视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 最近手机中文字幕大全| 亚洲人成网站高清观看| 中文字幕av成人在线电影| 久久综合国产亚洲精品| 啦啦啦啦在线视频资源| 亚洲色图av天堂| 欧美日韩精品成人综合77777| 听说在线观看完整版免费高清| 如何舔出高潮| 欧美激情国产日韩精品一区| 热99在线观看视频| 一区二区三区免费毛片| 老女人水多毛片| 国产熟女欧美一区二区| 亚洲成人精品中文字幕电影| 嫩草影院新地址| 晚上一个人看的免费电影| 日本熟妇午夜| 国产精品福利在线免费观看| 日韩av在线大香蕉| a级毛色黄片| 三级经典国产精品| 一级毛片 在线播放| 欧美zozozo另类| 国产精品久久久久久久久免| 免费av不卡在线播放| 一级片'在线观看视频| 简卡轻食公司| 18+在线观看网站| 男女边摸边吃奶| 久久6这里有精品| 久热久热在线精品观看| 国内精品一区二区在线观看| 国产精品久久久久久精品电影| 欧美激情在线99| 老师上课跳d突然被开到最大视频| 国产精品久久久久久久电影| 国产黄a三级三级三级人| 亚洲欧美中文字幕日韩二区| 国产成人精品福利久久| 噜噜噜噜噜久久久久久91| 亚洲精品国产av蜜桃| 国产精品一区二区性色av| 美女xxoo啪啪120秒动态图| 九九爱精品视频在线观看| 三级国产精品欧美在线观看| 久久韩国三级中文字幕| 国产伦理片在线播放av一区| 免费av毛片视频| 久久精品夜色国产| 成年版毛片免费区| 国产精品福利在线免费观看| 99热网站在线观看| 久久97久久精品| 女人被狂操c到高潮| 小蜜桃在线观看免费完整版高清| 人人妻人人澡欧美一区二区| 99热网站在线观看| 国产精品日韩av在线免费观看| 亚洲熟妇中文字幕五十中出| 一级毛片黄色毛片免费观看视频| 国产免费一级a男人的天堂| 91av网一区二区| 亚洲欧美日韩无卡精品| 亚州av有码| 偷拍熟女少妇极品色| 一本一本综合久久| 麻豆精品久久久久久蜜桃| 三级国产精品片| 成人亚洲精品av一区二区| 亚洲天堂国产精品一区在线| 乱码一卡2卡4卡精品| 免费少妇av软件| 欧美成人一区二区免费高清观看| 日韩一本色道免费dvd| 日本色播在线视频| 亚洲av男天堂| 一个人免费在线观看电影| 国产免费视频播放在线视频 | 一夜夜www| 国产高潮美女av| 久久久久久久久久人人人人人人| 亚洲成人av在线免费| 午夜福利在线观看免费完整高清在| 国产乱人视频| 免费播放大片免费观看视频在线观看| 午夜福利视频精品| 久久久精品免费免费高清| 高清午夜精品一区二区三区| 欧美另类一区| 免费在线观看成人毛片| 白带黄色成豆腐渣| 免费电影在线观看免费观看| 51国产日韩欧美| 欧美+日韩+精品| 草草在线视频免费看| 午夜福利在线观看吧| 久久久a久久爽久久v久久| 国产免费福利视频在线观看| 成人特级av手机在线观看| 日韩一区二区三区影片| 日本免费在线观看一区| 天堂√8在线中文| 欧美成人午夜免费资源| ponron亚洲| 观看美女的网站| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| av国产久精品久网站免费入址| 精品久久久噜噜| 国产极品天堂在线| 亚洲国产精品成人综合色| 国产成人a区在线观看| 久久久亚洲精品成人影院| 一夜夜www| 国产色爽女视频免费观看| 婷婷色麻豆天堂久久| 女人十人毛片免费观看3o分钟| 色尼玛亚洲综合影院| 寂寞人妻少妇视频99o| 丰满乱子伦码专区| 天堂影院成人在线观看| 亚洲精品乱码久久久久久按摩| 嫩草影院新地址| 一级爰片在线观看| 亚洲av日韩在线播放| 国产一区二区亚洲精品在线观看| 九九爱精品视频在线观看| 国产有黄有色有爽视频| 成人漫画全彩无遮挡| 久久精品国产亚洲av天美| 1000部很黄的大片| 天美传媒精品一区二区| 亚洲人成网站高清观看| 五月伊人婷婷丁香| 国产人妻一区二区三区在| 熟妇人妻久久中文字幕3abv| 2018国产大陆天天弄谢| 狠狠精品人妻久久久久久综合| 精品国产露脸久久av麻豆 | 男人爽女人下面视频在线观看| 国产成人午夜福利电影在线观看| 国产精品99久久久久久久久| 听说在线观看完整版免费高清| 欧美精品一区二区大全| 男女啪啪激烈高潮av片| av在线观看视频网站免费| 只有这里有精品99| 亚洲成人中文字幕在线播放| 免费看a级黄色片| 一区二区三区高清视频在线| 国产午夜福利久久久久久| 亚洲av日韩在线播放| 国产精品一区二区性色av| 一区二区三区高清视频在线| 免费高清在线观看视频在线观看| 日韩欧美精品v在线| 校园人妻丝袜中文字幕| 久久精品国产鲁丝片午夜精品| 国产有黄有色有爽视频| 日韩欧美三级三区| 亚洲一区高清亚洲精品| 色网站视频免费| 99久久中文字幕三级久久日本| av女优亚洲男人天堂| 精品久久久久久久人妻蜜臀av| 亚洲成人精品中文字幕电影| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| 亚洲熟女精品中文字幕| 男人和女人高潮做爰伦理| 免费无遮挡裸体视频| 久久综合国产亚洲精品| 亚洲精品一二三| 亚洲一级一片aⅴ在线观看| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 如何舔出高潮| 婷婷色综合大香蕉| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| 亚洲综合精品二区| 欧美激情久久久久久爽电影| 色综合站精品国产| 赤兔流量卡办理| 久久99热这里只有精品18| 免费黄色在线免费观看| 亚洲欧美精品自产自拍| 天天躁日日操中文字幕| 国产午夜精品论理片| 2018国产大陆天天弄谢| 亚洲精品一区蜜桃| 免费看光身美女| 精品久久久久久久久亚洲| 美女xxoo啪啪120秒动态图| 国产高清国产精品国产三级 | 青春草亚洲视频在线观看| 在线观看免费高清a一片| 特大巨黑吊av在线直播| 国产伦在线观看视频一区| 亚洲国产精品成人久久小说| 国产午夜精品论理片| 亚洲18禁久久av| 极品教师在线视频| 国产白丝娇喘喷水9色精品| 亚洲国产欧美在线一区| 午夜福利成人在线免费观看| 婷婷色麻豆天堂久久| 舔av片在线| 少妇人妻一区二区三区视频| 少妇丰满av| 亚洲怡红院男人天堂| 亚洲熟妇中文字幕五十中出| 午夜福利视频1000在线观看| 高清毛片免费看| av天堂中文字幕网| 亚洲综合色惰| 最近手机中文字幕大全| 大又大粗又爽又黄少妇毛片口| 老司机影院毛片| 一级毛片久久久久久久久女| 国产成人午夜福利电影在线观看| 亚洲18禁久久av| 成人亚洲精品av一区二区| 国产永久视频网站| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 啦啦啦中文免费视频观看日本| 欧美一级a爱片免费观看看| 免费播放大片免费观看视频在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久黄片| 在线观看免费高清a一片| 国产成人精品一,二区| 日韩av在线免费看完整版不卡| 亚洲av一区综合| 狠狠精品人妻久久久久久综合| 麻豆成人av视频| 亚洲精品,欧美精品| 超碰av人人做人人爽久久| 51国产日韩欧美| 日韩成人伦理影院| av播播在线观看一区| 成人漫画全彩无遮挡| 超碰97精品在线观看| 精品国产一区二区三区久久久樱花 | 一二三四中文在线观看免费高清| 欧美日韩亚洲高清精品| 久久鲁丝午夜福利片| 欧美日韩在线观看h| 最近视频中文字幕2019在线8| av女优亚洲男人天堂| 久久久精品免费免费高清| 午夜日本视频在线| 青春草亚洲视频在线观看| 亚洲欧美中文字幕日韩二区| 中文字幕久久专区| 少妇丰满av| 日本黄色片子视频| 亚洲精品视频女| 欧美xxxx黑人xx丫x性爽| 伦精品一区二区三区| 亚洲av成人精品一二三区| 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 午夜爱爱视频在线播放| 1000部很黄的大片| 国产亚洲精品久久久com| 国产精品不卡视频一区二区| 亚洲18禁久久av| 亚洲精品国产av蜜桃| 亚洲激情五月婷婷啪啪| 简卡轻食公司| 国产高潮美女av| 2021少妇久久久久久久久久久| www.av在线官网国产| 国产视频首页在线观看| 午夜免费观看性视频| 淫秽高清视频在线观看| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 亚洲久久久久久中文字幕| 寂寞人妻少妇视频99o| 久久久精品欧美日韩精品| 成年免费大片在线观看| 日本熟妇午夜| 美女主播在线视频| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 国产有黄有色有爽视频| 欧美xxxx性猛交bbbb| 十八禁国产超污无遮挡网站| 免费无遮挡裸体视频| 菩萨蛮人人尽说江南好唐韦庄| 最近手机中文字幕大全| 天堂影院成人在线观看| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 好男人在线观看高清免费视频| 亚洲成人久久爱视频| 亚洲欧美日韩卡通动漫| 亚洲天堂国产精品一区在线| 亚洲av日韩在线播放| 亚洲一级一片aⅴ在线观看| 观看美女的网站| 日本一本二区三区精品| 亚洲精品久久久久久婷婷小说| 日韩电影二区| 日韩欧美国产在线观看| 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 欧美+日韩+精品| 一边亲一边摸免费视频| 99热全是精品| 全区人妻精品视频| 男女视频在线观看网站免费| 国产探花极品一区二区| 成人特级av手机在线观看| 精品国内亚洲2022精品成人| 我的女老师完整版在线观看| 亚洲av电影不卡..在线观看| 神马国产精品三级电影在线观看| 一区二区三区乱码不卡18| 十八禁网站网址无遮挡 | freevideosex欧美| 国模一区二区三区四区视频| 国产在线男女| 国产成人福利小说| 国产淫语在线视频| 亚州av有码| 男女那种视频在线观看| 国产 亚洲一区二区三区 | 久久久久久久国产电影| 亚洲成人中文字幕在线播放| 天堂俺去俺来也www色官网 | 丰满人妻一区二区三区视频av| 丝瓜视频免费看黄片| 91aial.com中文字幕在线观看| 久久人人爽人人片av| 大话2 男鬼变身卡| 婷婷色综合www| 久久久久国产网址| 色综合站精品国产| 老女人水多毛片| 久久国产乱子免费精品| 18禁裸乳无遮挡免费网站照片| 国产激情偷乱视频一区二区| 九九久久精品国产亚洲av麻豆| 欧美高清性xxxxhd video| 精华霜和精华液先用哪个| 色视频www国产| 亚洲av中文av极速乱| 成人性生交大片免费视频hd| 身体一侧抽搐| 在现免费观看毛片| 欧美三级亚洲精品| 大香蕉97超碰在线| 午夜福利在线观看免费完整高清在| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 天天躁日日操中文字幕| 国产午夜精品论理片| 欧美另类一区| 波多野结衣巨乳人妻| 男女国产视频网站| 看黄色毛片网站| 国产亚洲最大av| 国产又色又爽无遮挡免| av一本久久久久| 尾随美女入室| 欧美一区二区亚洲| 成人亚洲欧美一区二区av| 国产精品一区www在线观看| 美女主播在线视频| 免费人成在线观看视频色| 一区二区三区四区激情视频| 亚洲精品aⅴ在线观看| 久热久热在线精品观看| 午夜激情久久久久久久| 黄色配什么色好看| 国产精品一区www在线观看| 日韩伦理黄色片| 免费人成在线观看视频色| 两个人视频免费观看高清| 1000部很黄的大片| 亚洲精品国产av蜜桃| 色哟哟·www| 国产黄片美女视频| 亚洲精品第二区| 久久久久久伊人网av| 中国美白少妇内射xxxbb| 亚洲精品国产av成人精品| 中文欧美无线码| 日韩欧美国产在线观看| 免费大片18禁| 天堂中文最新版在线下载 | 色视频www国产| 爱豆传媒免费全集在线观看| 国产精品99久久久久久久久| 男人和女人高潮做爰伦理| 婷婷色综合大香蕉| 午夜免费观看性视频| 欧美成人a在线观看| 日韩精品青青久久久久久| 精品久久久久久久久久久久久| 日韩强制内射视频| 夜夜看夜夜爽夜夜摸| 国产单亲对白刺激| 天堂√8在线中文| 欧美不卡视频在线免费观看| 51国产日韩欧美| 久久久久久伊人网av| 国产伦在线观看视频一区| 国内精品宾馆在线| 国产不卡一卡二| 午夜视频国产福利| 丰满少妇做爰视频| 91aial.com中文字幕在线观看| 天堂网av新在线| 亚洲aⅴ乱码一区二区在线播放| 国产精品综合久久久久久久免费| av线在线观看网站| 一级二级三级毛片免费看| 亚洲欧美精品自产自拍| 亚洲av电影不卡..在线观看| av一本久久久久| 高清午夜精品一区二区三区| 蜜桃亚洲精品一区二区三区| 国产成人精品婷婷| 久久久欧美国产精品| 日日干狠狠操夜夜爽| 日本-黄色视频高清免费观看| 国产精品蜜桃在线观看| 久久久久久国产a免费观看| 国产高清不卡午夜福利| 色视频www国产| 国产成人精品婷婷| 黄色一级大片看看| 18禁裸乳无遮挡免费网站照片| 中文天堂在线官网| 欧美成人精品欧美一级黄| 日本猛色少妇xxxxx猛交久久| 赤兔流量卡办理| 一边亲一边摸免费视频| 99热这里只有精品一区| 在线免费观看不下载黄p国产| 亚洲精品,欧美精品| 又爽又黄a免费视频| 精品久久久久久久久av| 久久久久免费精品人妻一区二区| 天美传媒精品一区二区| 精品不卡国产一区二区三区| 国产精品熟女久久久久浪| av在线观看视频网站免费| 亚洲图色成人|