• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Basis for the Thermostability of Sulfur Oxygenase Reductases*

    2012-03-22 10:10:34YOUXiaoyan尤曉顏MENGZhen孟珍CHENDongwei陳棟煒GUOXu郭旭JosefZeyerLIUShuangjiang劉雙江andJIANGChengying姜成英
    關(guān)鍵詞:雙江

    YOU Xiaoyan (尤曉顏), MENG Zhen (孟珍), CHEN Dongwei (陳棟煒), GUO Xu (郭旭),Josef Zeyer, LIU Shuangjiang (劉雙江),** and JIANG Chengying (姜成英),**

    1 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

    2 Scientific Data Center, Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190,China

    3 Environmental Microbiology, Institute for Biogeochemistry and Pollutant Dynamics (IBP), Federal Institute of Technology (ETH), Switzerland

    1 INTRODUCTION

    Protein thermostability is essential to microorganisms that grow at elevated temperatures. Structural comparison between thermostable proteins and their thermolabile counterparts has been utilized to resolve factors that contribute to thermostability [1, 2]. Increased hydrophobicity and side-chain branching, and enhanced packing of the buried core of the protein are important for maintaining stability at extreme temperatures. Examples include glutamate dehydrogenases from the thermophiles Pyrococcus furiosus and Thermococcus litoralis [1, 2]. Understanding the biochemistry of thermostability may facilitate the engineering of proteins to withstand high temperatures that are critical for certain industrial processes [2].

    Sulfur oxygenase reductase (SOR) catalyzes the oxidation and reduction of elemental sulfur in the presence of oxygen, yielding sulfite, thiosulfate, and hydrogen sulfide as products. SOR was first discovered in the hyperthermoacidophile Acidianus ambivalens[3], and has been recently found in Acidianus tengchongensis (formerly Acidianus sp. strain S5 [4]), Sulfolobus tokodaii [5], Aquifex aeolicus [6, 7], and Acidithiobacillus sp [8].

    The crystal structures of SORAAand SORATfrom A. ambivalens and A. tengchongensis, respectively,have been resolved [9, 10]. Both SORAAand SORATare homo-oligomers with 24 subunits that form a hollow sphere with pseudo-432 pointgroup symmetry.Each subunit displays α/β folding, with the core structure being formed by internal β-barrels that are partially surrounded by α-helices. Iron atoms are located at the catalytic center of the active site.

    Although there have been several reports on the structure and catalytic mechanism of SOR [8-11], little is known about the thermostability of this oxidoreductase. The objective of this study was to determine the biochemical basis for the thermostability of SOR by three-dimensional homology modeling of SORs from the hyperthermoacidophile A. tengchongensis(optimal growth at 70 °C [4]) and S. tokodaii (optimal growth at 80 °C [12]) and from the moderate thermophile Acidithiobacillus sp. strain SM-1 (optimal growth at 45 °C [8]).

    2 MATERIALS AND METHODS

    2.1 Materials

    Low melting point agarose and Tris-base were products of Promega (USA). A protein molecular mass marker kit (range of 14.4 to 97.4 kDa) was bought from Sigma-Aldrich (USA). The Superdex 200,XL10/70 column, and fast protein liquid chromatography system (?kta FPLC) were from Amersham Biosciences (USA). All reagents used in this study were analytical grade.

    2.2 Bacterial strains, media, and cultural conditions

    A. tengchongensis and Acidithiobacillus sp. strain SM-1 were described previously [4, 8] and were obtained from the China General Microbiological Culture Collection center (CGMCC, Beijing, China). S. tokodaii(DSM 16993) and A. brierleyi (DSM 1651) were obtained from the Japan Collection of Microorganisms(JCM, Riken, Japan). Cultivations of the A. tengchongensis was carried out at 70 °C in modified Allen medium with 2% of So[13, 14]. Acidithiobacillus sp. strain SM-1 was cultured at 45 °C in media described by Duquesne et al [15]. S. tokodaii was cultured at 70 °C in DSMZ 182a medium (http://www.dsmz.de/microorganisms/medium/pdf/DSMZ _Medium182a.pdf).

    Escherichia coli strains HB101 and BL21 (DE3),which were used as the host for expressing the SORAT,SORST, and SORSB, were cultivated in Luria-Bertani(LB) broth at 30 °C and 37 °C, and supplemented with 100 μg·ml-1of ampicillin. Plasmids pBV220/sorSTand pET21a/sorSBwere constructed in this study.

    2.3 Protein expression and purification of SORs

    The expression of sor genes and purification of SOR protein were performed as described previously[11]. The amplified sorAT, sorSTand sorSBwere inserted between the EcoRI and BamHI sites of pBV220.Thus the plasmids (pBV220SORs) harboring the respective sor gene were obtained. pBV220SORs were transformed into E. coli HB101, and cells were grown at 30 °C in LB broth with ampicillin (100 μg·ml-1)until OD600reached to 0.6, the cultures were shifted from 30 to 42 °C to induce SOR protein synthesis.The cells were harvested by centrifugation after 8 h of induction, and the cell pellets obtained were stored at-70 °C until used.

    For SOR protein purification, a 140-ml Superdex 200 gel filtration column was pre-equilibrated with buffer B (10 mmol·L-1KH2PO4-K2HPO4buffer, pH 7.4). Crude cellular extract was prepared from the stored E. coli cells by sonication for 5 min and debris was removed by centrifugation, and 1.4 ml of the crude cellular extract was incubated at 70 °C for 10 min to denature E. coli heat-labile proteins, which were subsequently removed by centrifugation. The resulting supernatant was applied onto the Superdex 200 gel filtration column and fractionated using buffer B at a flow rate of 0.6 ml·min-1. Fractions were collected at 0.6 ml per tube and assayed for SOR activity. Those that possessed SOR activity were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) analysis for homogeneity.

    2.4 Enzymatic activity assay

    2.5 Protein concentration assay

    Protein concentration was determined using a bicinchoninic-acid protein assay kit, by following the instructions of the manufacturer (BCA1, Sigma, USA).

    2.6 SOR structure modeling

    The SORAT, SORSTand SORSBstructure models were generated as follows:

    (1) Protein sequence similarity search. The discovery studio (DS) protein similarity search module in DS modeling 1.1 [17] was adopted to determine a template for homology modeling.

    (2) Sequence and structure alignment. The sequence and structure of SORAAwere obtained from the RSCB protein data bank (PDB ID is 2CB2). The sequences of SORAT, SORSTand SORSBwere obtained from NCBI protein database, of which Gen-Bank accession Nos. are AAK58572, NP_377053 and ABF20540, respectively. Sequence alignment was done by using Align123, the multiple sequence alignment method based on the CLUSTAL W program [18],and the default parameters were adopted. Structure alignment was performed and analyzed by using Align3D, with default parameters in DS.

    (3) Rough model. Sequence alignment between template (SORAA) and targets (SORAT, SORSTand SORSB) was used to construct a rough 3D model by using DS MODELER module with the optimization level and the other parameters were at default condition. The qualities of the models were analyzed by PROCHECK3.5 [19]. Secondary structure was predicted by the SeqFold program [20]. The analysis and evaluation were perform accompany with the optimization of each model. The best model was chosen for the further refinement.

    (4) Refinement and molecular dynamics (MD)simulation. For further refining models, the rough one was first refined by adding all hydrogen atoms and CHARMM [21] force field type had been used to type molecules. An MD simulation process was further applied for testing the stability of models at room temperature and normal pressure.

    (5) Evaluation of refined model. The qualities of the models were analyzed with DS Biopolymer, DS Protein Health, DS DelPhi and DS CHARMM modules. Every model was also analyzed by other protein analysis programs including PROCHECK3.5 for the evaluation of Ramachandran plot quality, stereochemistry of main-chain, stereochemistry of side-chain and G-factors, PROSA2003 [22] for the test of interaction energies and WHATIF2.0 [23] for the calculation of packing quality.

    2.7 Structure analysis

    (1) Secondary structure content. The α-helix content of a protein is the percentage of residues that show α-helical conformations. The β-sheet content is the percentage of residues that show β-sheet conformations.

    (2) Surface areas and cavities. The total and hydrophobic solvent accessible surface area (ASA) [24]was calculated with an enhanced grid-based numerical method in MD with a probe radius of 0.14 nm and 20 points per atom. An output file containing summed atomic over each residue was used. The number and volume of cavities were calculated with the program VOIDOO [25] with 0.14 nm probe radius.

    (3) Hydrogen bonds. The WHATIF program was used to identify all hydrogen bonds in the structures.

    (4) Ion pairs. Ion contacts were evaluated with the program CONTACT in the Collaborative Computational Project Number 4 (CCP4) suite [26]. Residues Ala, Ile, Leu, Met, Phe, Pro, Trp, and Val were assigned as hydrophobic; residues Ser, Thr, Gln, Asn, Gly, Cys,and Tyr as polar; and residues Asp, Glu, Lys, His and Arg as charged. The ion pair was inferred when Asp or Glu side chain carbonyl oxygen atoms were found to be within 0.4 nm from the nitrogen atoms in Arg, Lys,and His side chains.

    Figure 1 Optimal catalytic pH (a) and optimal catalytic temperature (b) of the SORSB, SORAT, and SORST. Data are averages from three parallel measurements. Conditions for SOR activity measurements are described in Section 2

    3 RESULTS AND DISCUSSION

    3.1 The optimal temperature, pH, and thermostability of SORs

    The optimal pH for SORAT, SORST, and SORSBcatalysis was 7.5, and the optimal temperatures of the three SORs were 80 °C, 85 °C, and 70 °C, respectively (Fig. 1). SORSBfrom the moderately thermophilic strain SM-1 (that grew optimally at 45 °C) had a high optimal catalytic temperature of 70 °C.

    The thermostabilities of each SOR at their optimal catalytic conditions are shown in Fig. 2. The half-lives of SORSTand SORATwere 58 min and 100 min, respectively. In contrast, the half-life for SORSBwas only 35 min at 70 °C, indicating that SORSBwas not as thermostable as the other two SORs.

    Figure 2 Thermostability curves of the SORAT, SORST and SORSB. Data are averages from three parallel measurements (Conditions for SOR activity measurements are described in M&M)▼ SORAT; ▲ SORSB; ● SORST

    3.2 Homology modeling of SORAT, SORST, and SORSB

    Proteins greater than 80 amino acids in length and sharing sequence identities of greater than 30%are normally attributed to be from the same protein family and have similar structures and functions [27, 28].The high sequence similarities of SORAA, SORAT,SORST, and SORSB(87.7% for SORAAand SORAT,68.2% for SORAAand SORST, and 49.7% for SORAAand SORSB) identified these SORs as functionally similar proteins, and we therefore modeled the structures of SORAT, SORST, and SORSBusing the crystal structure of SORAAas a template (Aa/SOR_ACIAM,PDB ID: 2CB2 A subunit). The models displayed relatively low percentage of residues in disallowed regions (SORAA, SORAT, and SORSBwere 0, and SORSTwas 0.4%); all goodness factors were above -0.5 (Tables A1, A2-1, A2-2, and A2-3).

    The residue energies of the modeled SORs were negative and were similar to that of the template SORAA(Fig. A1). AllZ-scores were lower than -5,indicating that the models had reasonable packing structures.

    The root mean square deviations (rmsd) of the final refined models were 0.019 nm (SORAT), 0.027 nm (SORST), and 0.031 nm (SORSB), which are lower than the 0.17 nm resolution of template SORAA. Their collective findings on backbone conformation, the residue interaction, the residue contact, and the structural stability indicated that the models were well within the limits established for reliable structures.

    3.3 Structures of SORAT, SORST, and SORSB

    The modeled structures of SORAT, SORSB, and SORSTwere similar to the structure of SORAA. Each modeled protein consisted of 24 identical monomers that were assembled into a hollow sphere with point group symmetry after superimposition. The core structure of each monomer consisted of a α/β-barrel with eight β-strands that were surrounded by nine α-helices. The α/β-barrel was formed by eight antiparallel β-strands with pseudosymmetry of two sets of four strand [10]. Additional secondary structural units were inserted into the connections between the β-strand and α-helix in the (β/α) repeat (Fig. 3).Cys31, Cys101, Cys104, His86, His90, and Glu114 in SORAAwere conserved in SORSB, SORST, and SORAT.The recently resolved crystal structure of SORAT[9]validated the generated models.

    3.4 Structural basis for thermostability

    Previous studies have suggested several factors could influence protein thermostability including ion pairs, hydrogen bonding, secondary structure, cavities,surface areas, amino acid composition, and molecular flexibility [1, 32-39]. Here we investigated if each of them contributed to the stability of SORAA, SORAT,SORSB, and SORST.

    3.4.1Amino acid composition

    Figure 3 Amino acids sequence alignments of SORAA, SORAT, SORST, and SORSB with known structure SORAA (The figure was produced with ESPript [31])

    Table 1 Amino acids composition, thermolabile and charged amino acids composition and secondary structures of SORAT, SORST and SORSB

    The total, thermolabile, and charged amino acids of SORAT, SORST, and SORSBare outlined in Table 1.The number of amino acids for SORAT, SORST, and SORSBwere 308, 311, and 306, respectively. The SORs from hyperthermophilic archaea did not show significant differences in amino acid composition,except that SORSThad a higher relative content of leucine and asparagine, and a lower relative content of serine than did SORAT. In contrast, SORSBfrom a moderate thermophilic bacterium contained (a) a higher number of alanine residues, (b) a low number of charged amino acid (glutamic acid) and flexible amino acids (proline), and (c) a higher number of thermolabile residues (glutamine). Asparagine, glutamine,cystine, and methionine are thermolabile due to their tendency to undergo deamidation or oxidation at high temperature and therefore may be discriminated against in thermostable proteins [40]. The sum of these thermolabile amino acids in SORSBapproximated 17%, a value higher than those of SORATand SORST.It is noteworthy that the number of glutamine residues in SORSB, (approximately 6%) exceeded that of SORATand SORST. The high glutamine content might be one factor contributing to the thermolability of SORSB. Moreover, the total percentage of charged amino acids (lysine, arginine, histidine, asparagine and glutamic acid) in SORSB(approximately 22%)was lower than that in SORAT(approximately 25%)and SORST(approximately 23%), especially for glutamic acid, whose content is much lower than that of SORATand SORST, which decrease the total percentage of charged amino acids in SORSB. Lower percentage of charged amino acids might impair the thermostability of SORSB. Similar results were found for other thermostable and thermolabile proteins [41]. In contrast, the high number of charged amino acids (Lys,Arg, His, Asp and Glu) might contribute to the thermostability of SORATand SORST.

    3.4.2The contribution of helical structure to SOR thermostability

    Helices of thermostable proteins are more stable than those of mesophilic homologues and are attributed to intrinsic helical propensities of certain amino acids (such as alanine and glutamic acid) [42]. Thus,the introduction of such amino acids residues or the reduction of β-branched residues can affect the formation of helical structures and thermostabilization. The relative amount of alanine was high in the α-helices of thermolabile SORSB(approximately 10.5%); however,the relative amount of glutamic acid was low in the α-helices of SORSB(approximately 9.6%) (Table 2).The contrasting amino acid contents might slightly counteract their effects on the stability of SORSB. The helices of thermostable proteins contain a lower percentage of β-branched residues (isoleucine, valine,and threonine) than their thermolabile counterparts,suggesting that β-branched residues destabilize α-helices[42]. Conformational entropy loss upon transfer from the extended conformation to the α-helix might contribute to thermolability. Nevertheless, the percentages of valine, isoleucine, and threonine in the helices of three SORs were similar (Table 2), indicating that these amino acids were not primary factors affecting SOR thermostability.

    3.4.3Surfaces and cavities

    The reduction of ratio of hydrophobic solvent accessible surface area (ASA) to charged ASA can contribute to the thermostability of proteins [43-45].The calculation of the hydrophobic ASA was used to simplify the complex analytical solution for the hydrophobic interactions, because hydrophobic ASA is directly related to hydrophobic free energies (a decrease of one square ?ngstr?m of ASA yields a free energy gain of 105 J·mol-1[46]). The charged and hydrophobic ASA of the three SORs were calculated and are listed in Table 3. The hydrophobic ASA of SORAT(5346.22) and SORST(5217.22) were less than that SORSB(5850.11), while the charged ASA of SORAT(5584.49) and SORST(5491.93) were lager than that of SORSB(5034.04) (Table 3). This result was coincidentwith Knapp’s conclusion that thermostable proteins contain more charged ASA than their mesophilic counterparts [47]. Thus, the ratio of hydrophobic to charged ASAs likely contribute to SOR thermostability.

    Table 2 Amino acids composition in α-helices of SORAT, SORST and SORSB

    Table 3 Surfaces and cavities, hydrogen bonds and ion pairs of SORAT, SORST and SORSB

    There are contrasting reports on the importance of internal cavities on protein thermostability [48-50].SORs cavity numbers did not vary significantly (Table 3). However, the SOR cavity volumes increased as the thermal stability increased, suggesting that cavity volume may contribute to the thermostability of SORS.

    3.4.4Hydrogen bonds

    Hydrogen bonds (H-bonds) were divided into three classes,i.e., main-chain to main-chain (MM)H-bonds, main-chain to side-chain (MS) H-bonds, and side-chain to side-chain (SS) H-bonds. Significant difference were not detected in the hydrogen bonds of the SORs (Table 3), suggesting that hydrogen bonds are not responsible for the observed differences in SOR thermostability. Similar observations have been reported for other mesophilic and thermophilic proteins [36].

    3.4.5Ion pairs

    Although a few reports indicate that electrostatic interactions are less important to protein thermostability [51, 52], other studies suggest that electrostatic interactions represented a significant stabilizing factor in protein folding [40, 53-55]. The number of charged pairs and ion pair networks appears to be the only parameters with a consistent and significant contribution to thermostability [36]. The number of all ion pairs per residue was less for SORSB(0.06) than it was for SORST(0.07) or SORAT(0.08) (Table 3). Glutamic acid was responsible for the largest percentage of ion pairs for all three SORs, approximating 91%, 85%,and 75% for SORAT, SORST, and SORSB, respectively.The low percentage of ion pairs with glutamic acid in SORSBwas coincident with a relatively low amount of glutamic acid in this SOR. The ion pairs formed by lysine were high in SORATand possibly conferred additional thermostability to SORAT.

    4 CONCLUSIONS

    SORSTand SORATwere more thermostable than SORSB. Factors contributing to their enhanced thermostability were: (a) high number of the charged amino acid (glutamic acid) and the flexibile amino acid (proline), (b) low number of the thermolabile amino acid (glutamine), (c) an increased number of ion pairs, and (d) an decreased ratio of hydrophobic accessible solvent surface (ASA) to charged ASA.The number of cavities and the number of hydrogen bonds did not significantly affect the thermostability of SORs, whereas the cavity volumes increased as the thermal stability increased.

    ACKNOWLEDGEMENTS

    We thank Professor Harold L.Drake (Universityof Bayreuth) for his good advice and embellishment on the manuscript.

    1 Britton, K.L., Baker, P.J., Borges, K.M., Engel, P.C., Pasquo, A.,Rice, D.W., Robb, F.T., Scandurra, R., Stillman, T.J., Yip, K.S., “Insights into thermal stability from a comparison of the glutamate dehydrogenases fromPyrococcus furiosusandThermococcus litoralis”,Eur.J.Biochem., 229, 688-695 (1995).

    2 Flam, F., “The chemistry of life at the margins”,Science,265,471-472 (1994).

    3 Kletzin, A., “Molecular characterization of thesorgene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic archaeumDesulfurolobusambivalens”,J.Bacteriol., 174, 5854-5859(1992).

    4 He, Z.G., Zhong, H., Li, Y., “Acidianustengchongensissp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring”,Curr.Microbiol., 48, 159-163 (2004).

    5 Liu, S.J., “Archaeal and bacterial sulfur oxygenase-reductases: Genetic diversity and physiological function”, In: Microbial Sulfur Metabolism, Springer-Verlag, Berlin (2008).

    6 Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L.,Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M.,“The complete genome of the hyperthermophilic bacteriumAquifex aeolicus”,Nature, 392, 353-358 (1998).

    7 Pelletier, N., Leroy, G., Guiral, M., Giudici-Orticoni, M.T., Aubert,C., “First characterisation of the active oligomer form of sulfur oxygenase reductase from the bacteriumAquifex aeolicus”,Extremophiles, 12, 205-215 (2008).

    8 Chen, Z.W., Liu, Y.Y., Wu, J.F., She, Q., Jiang, C.Y., Liu, S.J.,“Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates”,Appl.Microbiol.Biotechnol., 74,688-698 (2007).

    9 Li, M., Chen, Z.W., Zhang, P., Pan, X., Jiang, C.Y., An, X., Liu, S.J.,Chang, W.R., “Crystal structure studies on sulfur oxygenase reductase fromAcidianustengchongensis”,Biochem.Biophys.Res.Commun., 369, 919-923 (2008).

    10 Urich, T., Gomes, C.M., Kletzin, A., Frazao, C., “X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme”,Science,311, 996-1000 (2006).

    11 Chen, Z.W., Jiang, C.Y., She, Q., Liu, S.J., Zhou, P.J., “Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase ofAcidianustengchongensis”,Appl.Environ.Microbiol., 71, 621-628 (2005).

    12 Suzuki, T., Iwasaki, T., Uzawa, T., Hara, K., Nemoto, N., Kon, T.,Ueki, T., Yamagishi, A., Oshima, T., “Sulfolobustokodaiisp. nov. (f.Sulfolobussp. strain 7), a new member of the genusSulfolobusisolated from Beppu Hot Springs, Japan”,Extremophiles, 6, 39-44(2002).

    13 Brock, T.D., Brock, K.M., Belly, R.T., Weiss, R.L., “Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature”,Arch.Microbiol., 84, 54-68 (1972).

    14 Allen, M.B., “Studies with cyanidium caldarium, an anomalously pigmented chlorophyte”,Arch.Microbiol., 32, 270-277 (1959).

    15 Duquesne, K., Lebrun, S., Casiot, C., Bruneel, O., Personne, J.C.,Leblanc, M., Elbaz-Poulichet, F., Morin, G., Bonnefoy, V., “Immobilization of arsenite and ferric iron byAcidithiobacillusferrooxidansand its relevance to acid mine drainage”,Appl.Environ.Microbiol.,69, 6165-6173, (2003).

    16 Kletzin. A, “Coupled enzymatic production of sulfite, thiosulfate,and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacteriumDesulfurolobusambivalens”,J.Bacteriol., 171,1638-1643 (1989).

    17 DS Modeling 1.1, Accelrys Inc., San Diego,CA, USA (2002).

    18 Thompson, J.D., Higgins, D.G., Gibson, T.J., “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice”,Nucleic AcidsRes., 22, 4673-4680 (1994).

    19 Laskowski, R.A., Moss, D.S., Thornton, J.M., “PROCHECK: a program to check the stereo chemical quality of protein structures”,J.Appl.Cryst., 26, 283-291 (1993).

    20 Olszewski, K.A., Yan, L., Edwards, D.J., “SeqFold—fully automated fold recognition and modeling software—evaluation and application”,Theoretical Chemistry Accounts:Theory,Computation and Modeling(Theoretica Chimica Acta), 101, 57-61 (1999).

    21 Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S.,Karplus, M.,”CHARMM: A program for macromolecular energy,minimization, and dynamics calculations”,J.Comput.Chem., 4,187-217 (1983).

    22 Sippl, M.J., “Recognition of errors in three-dimensional structures of proteins”,Proteins, 17, 355-362 (1993).

    23 Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., “Errors in protein structures”,Nature, 381, 272 (1996).

    24 Connolly, M.L., “Solvent-accessible surfaces of proteins and nucleic acids”,Science, 221, 709-713 (1983).

    25 Kleywegt, G.J., Jones, T.A., “Detection, delineation, measurement and display of cavities in macromolecular structures”,Acta Crystallogr.D Biol.Crystallogr., 50, 178-185 (1994).

    26 Collaborative Computational Project Number 4, “The CCP4 suite:Programs for protein crystallography”,Acta Cryst.D Biol.Cryst., 50,760-763 (1994).

    27 Chothia, C., Lesk, A.M., “The relation between the divergence of sequence and structure in proteins”,Embo.J., 5, 823-826 (1986).

    28 Lesk, A.M., Chothia, C., “How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins”,J.Mol.Biol., 136, 225-270 (1980).

    29 Sali, A., “Comparative protein modeling by satisfaction of spatial restraints”,Mol.Med.Today, 1, 270-277 (1995).

    30 Wiederstein, M., Sippl, M.J., “ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins”,Nucleic Acids Res., 35, 407-410 (2007).

    31 Gouet, P., Courcelle, E., Stuart, D.I., Métoz, F., “ESPript: analysis of multiple sequence alignments in PostScript”,Bioinformatics, 15,305-308 (1999).

    32 Argos, P., Rossman, M.G., Grau, U.M., Zuber, H., Frank, G.,Tratschin, J.D., “Thermal stability and protein structure”,Biochemistry, 18, 5698-5703 (1979).

    33 Bougault, C.M., Eidsness, M.K., Prestegard, J.H., “Hydrogen bonds in rubredoxins from mesophilic and hyperthermophilic organisms”,Biochemistry, 42, 4357-4372 (2003).

    34 Criswell, A.R., Bae, E., Stec, B., Konisky, J., Phillips, G.N.Jr.,“Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus”,J.Mol.Biol., 330, 1087-1099 (2003).

    35 Perl, D., Mueller, U., Heinemann, U., Schmid, F.X., “Two exposed amino acid residues confer thermostability on a cold shock protein”,Nat.Struct.Biol., 7, 380-383 (2000).

    36 Szilagyi, A., Zavodszky, P., “Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey”,Structure, 8, 493-504(2000).

    37 Tanner, J.J., Hecht, R.M., Krause, K.L., Determinants of enzyme thermostability observed in the molecular structure of thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 angstroms resolution”,Biochemistry, 35, 2597-2609 (1996).

    38 Vieille, C., Burdette, D.S., Zeikus, J.G., “Thermozymes”,Biotechnol.Annu.Rev., 2, 1-83 (1996).

    39 Vieille, C., Zeikus, G.J., “Hyperthermophilic enzymes: sources, uses,and molecular mechanisms for thermostability”,Microbiol.Mol.Biol.Rev., 65, 1-43 (2001).

    40 Russell, R.J., Ferguson, J.M., Hough, D.W., Danson, M.J., Taylor,G.L., “The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution”,Biochemistry, 36, 9983-9994 (1997).

    41 Zhou, X.X., Wang, Y.B., Pan, Y.J., Li, W.F., “Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins”,Amino Acids, 34, 25-33(2008).

    42 Facchiano, A.M., Colonna, G., Ragone, R., “Helix stabilizing factors and stabilization of thermophilic proteins: an X-ray based study”,Protein Eng., 11, 753-760 (1998).

    43 Auerbach, G., Ostendorp, R., Prade, L., Korndorfer, I., Dams, T.,Huber, R., Jaenicke, R., “Lactate dehydrogenase from the hyperthermophilic bacteriumThermotoga maritima: the crystal structure at 2.1 A resolution reveals strategies for intrinsic protein stabilization”,Structure, 6, 769-781 (1998).

    44 Hashimoto, H., Inoue, T., Nishioka, M., Fujiwara, S., Takagi, M.,Imanaka, T., Kai, Y., “Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase”,J.Mol.Biol., 292,707-716 (1999).

    45 Knapp, S., Kardinahl, S., Hellgren, N., Tibbelin, G., Schafer, G.,Ladenstein, R., “Refined crystal structure of a superoxide dismutase from the hyperthermophilic archaeonSulfolobusacidocaldariusat 2.2 A resolution”,J.Mol.Biol., 285, 689-702 (1999).

    46 Chothia, C., “Hydrophobic bonding and accessible surface area in proteins”,Nature, 248, 338-339 (1974).

    47 Knapp, S., de Vos, W.M., Rice, D., Ladenstein, R., “Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacteriumThermotoga maritimaat 3.0 A resolution”,J.Mol.Biol., 267,916-932 (1997).

    48 Karshikoff, A., Ladenstein, R., “Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads”,Trends Biochem.Sci., 26, 550-556 (2001).

    49 Szilagyi, A., Zavodszky, P., “Structural basis for the extreme thermostability of D-glyceraldehyde-3-phosphate dehydrogenase fromThermotoga maritima: analysis based on homology modelling”,Protein Eng., 8, 779-789 (1995).

    50 Wang, X., He, X., Yang, S., An, X., Chang, W., Liang, D., “Structural basis for thermostability of beta-glycosidase from the thermophilic eubacteriumThermus nonproteolyticusHG102”,J.Bacteriol.,185, 4248-4255 (2003).

    51 Sharp, K.A., Honig, B., “Electrostatic interactions in macromolecules: theory and applications”,Annu.Rev.Biophys.Biophys.Chem.,19, 301-332 (1990).

    52 Stigter, D., Dill, K.A., “Charge effects on folded and unfolded proteins”,Biochemistry, 29, 1262-1271 (1990).

    53 He, X.Y., Jin, C., Zhang, S.Z., Yang, S.J., “Cloning and expression of a thermostable beta-glycosidase gene fromThermus nonproteolyticusHG102”,Chinese Journal of Biotechnology, 18, 63-68(2002). (in Chinese)

    54 Hennig, M., Darimont, B., Sterner, R., Kirschner, K., Jansonius, J.N.,“2.0 A structure of indole-3-glycerol phosphate synthase from the hyperthermophileSulfolobussolfataricus: possible determinants of protein stability”,Structure, 3, 1295-1306 (1995).

    55 Henrissat, B., Davies, G., “Structural and sequence-based classification of glycoside hydrolases”,Curr.Opin.Struct.Biol., 7, 637-644(1997).

    APPENDIX

    Table A1 The evaluation data of the models from DS protein health

    Table A2-1 Ramachandran plot quality & goodness factor

    Figure A1 Prosa energy profiles calculated for SORs (The plot shows local model quality by plotting energies as a function of amino acid sequence position. In general, positive values correspond to problematic or erroneous parts of the input structure. The windows size 40: thick line; The windows size 10: thin line. The Z-scores of SORAA, SORAT, SORST and SORSB are -8.63, -8.49,-7.56 and -8.00. The scores indicate all the structures in the range of X-ray structure [22, 30])windows size 10; windows size 40

    Table A2-2 Stereochemistry of main-chain & stereochemistry of side-chain

    Table A2-3 Morris et al. classification

    猜你喜歡
    雙江
    舞迷奶奶
    TDICCD時(shí)序改進(jìn)方法探討
    雙江縣總工會(huì):開(kāi)展六一慰問(wèn)活動(dòng)
    雙江縣總工會(huì):開(kāi)展農(nóng)民工法律知識(shí)培訓(xùn)
    鄧小剛油畫作品選
    冊(cè)亨雙江鎮(zhèn):打造精品水果帶
    戒懼于不睹不聞
    ——從《括言》探聶雙江“歸寂說(shuō)”之雛形
    聶雙江思想的政治之維
    別把教育反思變成一場(chǎng)仇恨宣泄
    博客天下(2013年6期)2013-07-24 09:56:02
    李雙江歌唱藝術(shù)50年系列活動(dòng)拉開(kāi)序幕
    三级毛片av免费| 国产精品久久久久久亚洲av鲁大| 国产麻豆成人av免费视频| 1024手机看黄色片| av视频在线观看入口| 听说在线观看完整版免费高清| 成人特级av手机在线观看| 亚洲精品国产成人久久av| 美女大奶头视频| av在线观看视频网站免费| 日产精品乱码卡一卡2卡三| 亚洲精品日韩在线中文字幕 | 看非洲黑人一级黄片| 蜜臀久久99精品久久宅男| 欧美一区二区精品小视频在线| 99视频精品全部免费 在线| 亚洲国产日韩欧美精品在线观看| 免费av观看视频| 欧美日本视频| 成人午夜精彩视频在线观看| 国产色婷婷99| 一级毛片aaaaaa免费看小| 精品久久久久久久人妻蜜臀av| 日韩欧美在线乱码| 一个人看的www免费观看视频| 边亲边吃奶的免费视频| 日韩中字成人| 久久久久久久午夜电影| 亚洲av第一区精品v没综合| 性插视频无遮挡在线免费观看| 国产片特级美女逼逼视频| 久久久国产成人精品二区| 亚洲第一电影网av| 在线国产一区二区在线| 亚洲,欧美,日韩| 成年版毛片免费区| 三级经典国产精品| 精品熟女少妇av免费看| 欧美精品一区二区大全| 2022亚洲国产成人精品| 26uuu在线亚洲综合色| 少妇人妻一区二区三区视频| eeuss影院久久| 精品国产三级普通话版| 国产一区二区三区av在线 | 夜夜爽天天搞| 午夜精品在线福利| 成人鲁丝片一二三区免费| 99热这里只有是精品50| 国产成人午夜福利电影在线观看| www.av在线官网国产| 久久久久久久久久久免费av| 亚洲av中文av极速乱| 黄片无遮挡物在线观看| 欧美bdsm另类| 亚州av有码| 色综合站精品国产| 国产精品久久久久久av不卡| 久久九九热精品免费| 秋霞在线观看毛片| 内地一区二区视频在线| 久久这里有精品视频免费| 国产午夜精品一二区理论片| 亚洲成av人片在线播放无| 丝袜喷水一区| 乱系列少妇在线播放| 久久久久网色| 青春草国产在线视频 | 免费av观看视频| 成年版毛片免费区| 国产高潮美女av| av在线观看视频网站免费| 26uuu在线亚洲综合色| 97在线视频观看| av在线播放精品| 性色avwww在线观看| 99热全是精品| 亚洲精品乱码久久久v下载方式| 国产综合懂色| 久久久久久久久中文| 久久鲁丝午夜福利片| 九九在线视频观看精品| 一区二区三区高清视频在线| 神马国产精品三级电影在线观看| 又粗又爽又猛毛片免费看| 久久精品国产自在天天线| 亚洲国产欧美在线一区| 青青草视频在线视频观看| 免费人成视频x8x8入口观看| 青春草国产在线视频 | 在线天堂最新版资源| 亚洲激情五月婷婷啪啪| 丰满人妻一区二区三区视频av| 中文亚洲av片在线观看爽| 欧美最新免费一区二区三区| 久久久久国产网址| 亚洲人成网站在线观看播放| 亚洲性久久影院| 九九在线视频观看精品| 日韩精品青青久久久久久| 亚洲乱码一区二区免费版| 久久精品国产亚洲av香蕉五月| 色综合站精品国产| 亚洲婷婷狠狠爱综合网| 成人无遮挡网站| 国产视频内射| 亚洲天堂国产精品一区在线| 小蜜桃在线观看免费完整版高清| 九草在线视频观看| 两个人的视频大全免费| 看非洲黑人一级黄片| 又粗又硬又长又爽又黄的视频 | 免费在线观看成人毛片| 亚洲av电影不卡..在线观看| 天堂网av新在线| 特级一级黄色大片| 国产一级毛片七仙女欲春2| 国产av在哪里看| 亚洲欧美成人综合另类久久久 | 亚洲精品粉嫩美女一区| av在线播放精品| 日韩一区二区三区影片| 精品人妻一区二区三区麻豆| 中文字幕久久专区| 婷婷精品国产亚洲av| 永久网站在线| av免费观看日本| 国产精品人妻久久久影院| 日本免费a在线| 国产亚洲av嫩草精品影院| 干丝袜人妻中文字幕| 99精品在免费线老司机午夜| 国产亚洲精品av在线| 中文字幕av在线有码专区| 免费av不卡在线播放| 只有这里有精品99| 亚州av有码| av卡一久久| 在线免费观看不下载黄p国产| 乱码一卡2卡4卡精品| 亚洲欧美成人精品一区二区| av福利片在线观看| 日韩精品青青久久久久久| 亚洲一级一片aⅴ在线观看| 最近中文字幕高清免费大全6| 久久久国产成人免费| 一进一出抽搐动态| 精品人妻一区二区三区麻豆| 欧美激情久久久久久爽电影| 身体一侧抽搐| 男人舔女人下体高潮全视频| 成人特级av手机在线观看| 国产亚洲精品久久久com| 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲av涩爱 | 亚洲精品久久国产高清桃花| 国产精品一二三区在线看| 国产成人精品一,二区 | 亚洲国产精品成人综合色| 51国产日韩欧美| 啦啦啦观看免费观看视频高清| 少妇高潮的动态图| 日本与韩国留学比较| 丰满人妻一区二区三区视频av| 欧美在线一区亚洲| 人妻久久中文字幕网| 一个人看视频在线观看www免费| 在线观看av片永久免费下载| 婷婷六月久久综合丁香| 成人午夜高清在线视频| 欧美3d第一页| 麻豆成人av视频| 亚洲成av人片在线播放无| 高清午夜精品一区二区三区 | 亚洲欧美日韩高清在线视频| 久久久久久久久久久免费av| 91麻豆精品激情在线观看国产| 亚洲欧美日韩卡通动漫| 99热6这里只有精品| 国产av麻豆久久久久久久| 天堂中文最新版在线下载 | 精品国产三级普通话版| 一夜夜www| 麻豆乱淫一区二区| 国产欧美日韩精品一区二区| 国产熟女欧美一区二区| 国产一区二区三区av在线 | 十八禁国产超污无遮挡网站| 国产探花极品一区二区| 国产乱人视频| 国产成人福利小说| 国内精品宾馆在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美+日韩+精品| 日韩一本色道免费dvd| 波多野结衣高清作品| 亚洲国产精品成人综合色| 国产一区二区在线观看日韩| 菩萨蛮人人尽说江南好唐韦庄 | 女同久久另类99精品国产91| 五月伊人婷婷丁香| 久久精品综合一区二区三区| 亚洲av免费高清在线观看| 日韩欧美国产在线观看| 色综合色国产| 国产精品无大码| 18禁在线播放成人免费| 久久精品夜色国产| 国产在线男女| 一进一出抽搐gif免费好疼| 亚洲国产欧美在线一区| 国内精品宾馆在线| 亚洲天堂国产精品一区在线| 波野结衣二区三区在线| 精品国产三级普通话版| 精品久久久久久久末码| 一级黄片播放器| 大又大粗又爽又黄少妇毛片口| 一级黄色大片毛片| 精品国产三级普通话版| 亚洲国产精品成人综合色| 麻豆乱淫一区二区| 国产午夜精品论理片| 亚洲av中文av极速乱| 国产一区二区亚洲精品在线观看| 亚洲最大成人手机在线| 亚洲久久久久久中文字幕| www.av在线官网国产| 日韩一本色道免费dvd| 超碰av人人做人人爽久久| 久久人人爽人人片av| 中文资源天堂在线| 2022亚洲国产成人精品| 丰满乱子伦码专区| 国产淫片久久久久久久久| 久久久久免费精品人妻一区二区| 哪个播放器可以免费观看大片| 偷拍熟女少妇极品色| 欧美色视频一区免费| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 99在线人妻在线中文字幕| 国产精品一区www在线观看| 亚洲人成网站在线观看播放| 日韩欧美 国产精品| 国产一区二区激情短视频| 热99re8久久精品国产| 亚洲成av人片在线播放无| 国产真实伦视频高清在线观看| 女人十人毛片免费观看3o分钟| 国产精品永久免费网站| 日本成人三级电影网站| 精品国产三级普通话版| 成人午夜高清在线视频| 精品久久久久久成人av| 国产高清不卡午夜福利| 国内揄拍国产精品人妻在线| 观看美女的网站| 人妻系列 视频| 亚洲精华国产精华液的使用体验 | 国产一级毛片在线| 欧美+日韩+精品| 少妇人妻一区二区三区视频| 精品免费久久久久久久清纯| 亚洲欧美精品综合久久99| 人妻制服诱惑在线中文字幕| 少妇丰满av| 性插视频无遮挡在线免费观看| 高清在线视频一区二区三区 | 寂寞人妻少妇视频99o| 国产黄色视频一区二区在线观看 | 18禁在线无遮挡免费观看视频| 久久99热这里只有精品18| 亚洲自偷自拍三级| 久久久国产成人免费| 久久久欧美国产精品| 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 麻豆av噜噜一区二区三区| 看免费成人av毛片| 婷婷六月久久综合丁香| 日韩高清综合在线| 国产日韩欧美在线精品| 有码 亚洲区| 好男人在线观看高清免费视频| 99热这里只有是精品50| 不卡一级毛片| 国产精品精品国产色婷婷| 国产一级毛片在线| 色综合色国产| 免费电影在线观看免费观看| 午夜老司机福利剧场| 国内精品久久久久精免费| 亚洲av国产av综合av卡| 久久人人爽av亚洲精品天堂| 晚上一个人看的免费电影| 大陆偷拍与自拍| 日韩av免费高清视频| 狂野欧美白嫩少妇大欣赏| 国产毛片在线视频| 视频区图区小说| 99久久综合免费| 久久婷婷青草| 美女主播在线视频| 性色avwww在线观看| 成年女人在线观看亚洲视频| 日韩人妻高清精品专区| 亚洲国产精品一区三区| 蜜桃久久精品国产亚洲av| 肉色欧美久久久久久久蜜桃| 国产精品免费大片| 美女视频免费永久观看网站| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 水蜜桃什么品种好| 国产成人午夜福利电影在线观看| 又大又黄又爽视频免费| 老司机亚洲免费影院| 精品久久久噜噜| 亚洲av中文av极速乱| 国产av国产精品国产| 又黄又爽又刺激的免费视频.| 成人毛片a级毛片在线播放| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av蜜桃| 肉色欧美久久久久久久蜜桃| 国产国拍精品亚洲av在线观看| 天堂俺去俺来也www色官网| 亚洲av二区三区四区| 97超视频在线观看视频| 亚洲人与动物交配视频| 欧美人与善性xxx| 久久久久久久久大av| 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| 美女国产视频在线观看| 99热全是精品| 日韩熟女老妇一区二区性免费视频| 国产成人91sexporn| 一区二区三区乱码不卡18| 久久久精品免费免费高清| 国产精品一国产av| 亚洲高清免费不卡视频| 美女中出高潮动态图| 黄片无遮挡物在线观看| 午夜免费鲁丝| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 欧美激情极品国产一区二区三区 | 欧美精品国产亚洲| 久久久精品区二区三区| 久久精品人人爽人人爽视色| 国产国拍精品亚洲av在线观看| 亚洲成人一二三区av| 国产高清不卡午夜福利| 国产精品欧美亚洲77777| 在线观看www视频免费| 最近中文字幕2019免费版| 丰满乱子伦码专区| 中文字幕制服av| 日韩人妻高清精品专区| 黄片播放在线免费| 丝袜喷水一区| 婷婷色麻豆天堂久久| 男男h啪啪无遮挡| 精品一区二区三卡| 欧美精品一区二区免费开放| 春色校园在线视频观看| 国产又色又爽无遮挡免| 日韩中字成人| 国产精品99久久99久久久不卡 | 欧美亚洲 丝袜 人妻 在线| 免费观看无遮挡的男女| 青春草视频在线免费观看| 久久精品国产自在天天线| 熟女人妻精品中文字幕| 国产精品一区二区在线观看99| a级毛片免费高清观看在线播放| 久久精品国产亚洲av天美| 美女大奶头黄色视频| 亚洲婷婷狠狠爱综合网| av视频免费观看在线观看| 搡女人真爽免费视频火全软件| 黄色视频在线播放观看不卡| 精品人妻熟女毛片av久久网站| 免费不卡的大黄色大毛片视频在线观看| 美女视频免费永久观看网站| 高清黄色对白视频在线免费看| 最近中文字幕高清免费大全6| videos熟女内射| 婷婷色综合大香蕉| 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 中文字幕最新亚洲高清| 极品少妇高潮喷水抽搐| 久久99精品国语久久久| 日韩亚洲欧美综合| www.av在线官网国产| 午夜久久久在线观看| 亚洲精品一区蜜桃| 91国产中文字幕| 日韩亚洲欧美综合| 麻豆成人av视频| 久久久国产一区二区| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 不卡视频在线观看欧美| 大片电影免费在线观看免费| 丝瓜视频免费看黄片| 国产黄频视频在线观看| 亚洲四区av| 国产成人freesex在线| 九色成人免费人妻av| 国产深夜福利视频在线观看| 日产精品乱码卡一卡2卡三| 丰满少妇做爰视频| 亚洲国产精品999| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕亚洲精品专区| freevideosex欧美| 老司机影院成人| 色94色欧美一区二区| 久久午夜综合久久蜜桃| 青春草视频在线免费观看| 国产国语露脸激情在线看| 人妻系列 视频| 波野结衣二区三区在线| 国产片内射在线| 国产高清三级在线| 26uuu在线亚洲综合色| 免费人成在线观看视频色| 久久久久精品久久久久真实原创| 99热全是精品| 三级国产精品欧美在线观看| 一二三四中文在线观看免费高清| 少妇被粗大的猛进出69影院 | 国产免费福利视频在线观看| 91久久精品国产一区二区成人| 国产成人午夜福利电影在线观看| 爱豆传媒免费全集在线观看| 99热这里只有精品一区| 亚洲av欧美aⅴ国产| 人妻人人澡人人爽人人| 欧美日本中文国产一区发布| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 搡女人真爽免费视频火全软件| a级毛色黄片| 欧美精品一区二区大全| 亚洲国产最新在线播放| 日韩,欧美,国产一区二区三区| 日本猛色少妇xxxxx猛交久久| 黑人巨大精品欧美一区二区蜜桃 | 最新中文字幕久久久久| 韩国av在线不卡| 两个人的视频大全免费| 夜夜骑夜夜射夜夜干| 精品酒店卫生间| 久久精品国产亚洲网站| 在线亚洲精品国产二区图片欧美 | 成年人午夜在线观看视频| 日韩熟女老妇一区二区性免费视频| 视频中文字幕在线观看| 青春草视频在线免费观看| 十分钟在线观看高清视频www| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区 | 日韩制服骚丝袜av| 久久精品久久久久久久性| 欧美精品人与动牲交sv欧美| 男男h啪啪无遮挡| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线不卡| 成人综合一区亚洲| 桃花免费在线播放| 国产爽快片一区二区三区| 国产黄频视频在线观看| 秋霞在线观看毛片| 天天操日日干夜夜撸| 国语对白做爰xxxⅹ性视频网站| 九草在线视频观看| 91在线精品国自产拍蜜月| 高清视频免费观看一区二区| 制服人妻中文乱码| 青春草视频在线免费观看| 有码 亚洲区| 亚洲三级黄色毛片| xxx大片免费视频| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 在线亚洲精品国产二区图片欧美 | 日韩 亚洲 欧美在线| 在线看a的网站| 最后的刺客免费高清国语| 国产成人精品福利久久| 黄色怎么调成土黄色| 国产精品人妻久久久久久| 久久影院123| 免费看不卡的av| 国产亚洲欧美精品永久| 一个人免费看片子| 久久久久久伊人网av| 亚洲av在线观看美女高潮| 26uuu在线亚洲综合色| 嘟嘟电影网在线观看| 国产精品一国产av| 超碰97精品在线观看| 国产黄频视频在线观看| 欧美丝袜亚洲另类| 久久99精品国语久久久| 青春草国产在线视频| 制服诱惑二区| 亚洲成人一二三区av| 国产午夜精品久久久久久一区二区三区| 少妇人妻精品综合一区二区| 欧美精品人与动牲交sv欧美| 一本大道久久a久久精品| 肉色欧美久久久久久久蜜桃| 亚洲四区av| 国产免费一级a男人的天堂| 欧美精品亚洲一区二区| 满18在线观看网站| 免费日韩欧美在线观看| 天堂中文最新版在线下载| 国产老妇伦熟女老妇高清| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 精品熟女少妇av免费看| 国内精品宾馆在线| 亚洲第一区二区三区不卡| 热99国产精品久久久久久7| 成人毛片60女人毛片免费| 亚洲国产色片| 久久热精品热| 久久精品国产亚洲网站| 日本与韩国留学比较| 亚洲av综合色区一区| 日韩中字成人| 午夜精品国产一区二区电影| 日本wwww免费看| 精品亚洲乱码少妇综合久久| 精品久久久久久电影网| 国产亚洲av片在线观看秒播厂| 国产成人91sexporn| 精品人妻一区二区三区麻豆| 美女国产视频在线观看| 精品亚洲乱码少妇综合久久| 日本vs欧美在线观看视频| 涩涩av久久男人的天堂| 亚洲av.av天堂| 乱码一卡2卡4卡精品| 日韩三级伦理在线观看| 男女无遮挡免费网站观看| 有码 亚洲区| 18+在线观看网站| 青青草视频在线视频观看| 十八禁网站网址无遮挡| 久久精品久久精品一区二区三区| 久久久久国产网址| 王馨瑶露胸无遮挡在线观看| 国产熟女欧美一区二区| 免费日韩欧美在线观看| 国产成人精品无人区| 欧美精品亚洲一区二区| 亚洲精品日韩在线中文字幕| 99热全是精品| 一区在线观看完整版| 国产深夜福利视频在线观看| 国产精品国产三级国产av玫瑰| 免费少妇av软件| 黑人猛操日本美女一级片| 亚洲无线观看免费| 亚洲精品av麻豆狂野| 大陆偷拍与自拍| 亚洲av免费高清在线观看| 精品人妻偷拍中文字幕| 人妻系列 视频| 五月伊人婷婷丁香| 久久久久久久久久久丰满| 免费不卡的大黄色大毛片视频在线观看| 国产色婷婷99| 黑人猛操日本美女一级片| 日韩成人伦理影院| 国精品久久久久久国模美| 成年女人在线观看亚洲视频| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 亚洲国产欧美在线一区| 久久毛片免费看一区二区三区| 91精品三级在线观看| 日本爱情动作片www.在线观看| 久久久国产精品麻豆| 成人无遮挡网站| 我的老师免费观看完整版| 免费黄色在线免费观看| 亚洲美女黄色视频免费看| 久久精品国产a三级三级三级| 一本—道久久a久久精品蜜桃钙片| 秋霞伦理黄片| 天美传媒精品一区二区| 国产高清不卡午夜福利| a 毛片基地| 中文欧美无线码| 精品99又大又爽又粗少妇毛片| 99热网站在线观看| 在线观看免费视频网站a站| 免费大片18禁| 欧美最新免费一区二区三区| 一本一本综合久久| 蜜臀久久99精品久久宅男| 特大巨黑吊av在线直播| 99久久中文字幕三级久久日本|