• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solvent Extraction of Yttrium by Task-specific Ionic Liquids Bearing Carboxylic Group*

    2012-03-22 10:09:50WANGWei王威LIUYu劉郁XUAimei徐愛梅YANGHualing楊華玲CUIHongmin崔紅敏andCHENJi陳繼
    關(guān)鍵詞:王威

    WANG Wei (王威), LIU Yu (劉郁), XU Aimei (徐愛梅), YANG Hualing (楊華玲), CUI Hongmin (崔紅敏) and CHEN Ji (陳繼),**

    1 State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

    2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

    1 INTRODUCTION

    Ionic liquids (IL) have been widely investigated in liquid-liquid extraction since the first report by Rogers and co-workers [1]. IL attract attention continually not only because of their unique properties but also a promising possibility of tuning their properties by modification of IL’s cation or anion [2-7]. The tuned properties makes it feasibility to find IL not only with desirable physicochemical properties but also adjusted for particular applications. It has been reported that IL could be used in metal ions extraction[2, 4, 8]. There exist two different types of IL in this field. The first one is using IL as diluents for extraction, in which the IL themselves have no extraction ability for metal ions and an organic coordinating compounds should be added to enhance the extraction efficiency. The second type lies in the concept of task-specific ionic liquds (TSIL), in which the ILs themselves contain functional groups on their cation or anion. Thus, the TSIL could extract metal ions from aqueous phase by the functional groups. Many TSIL incorporating functional groups has been reported for metal ions extraction and separation, especially in the filed of extraction and separation of actinides and lanthanides from nuclear waste because of the high stability of IL under α- and γ-irradiation [3, 9].

    Rare earths are abundant in China. They are wildly applied in many fields and gained considerable recognition with the increasing demand for them [10].Liquid-liquids extraction is a most important way for the rare earths separation and purification. Although the rare earth elements are not radioactive, they always coexist with radioactive elements, such as thorium [8, 11]. So introducing the functional groups which could combine with rare earths ions into the IL to be TSIL and applying them in the rare earths extraction would be an improvement for the industrial safety. Our group has investigated several extraction system using TSIL as extractant for the rare earths extraction and separation, and good results were obtained [5, 12, 13].

    In this paper, a new kind of TSIL containing carboxylic group are synthesized and characterized. And the extraction properties of Y(III) into this kind of task-specific ionic liquids were investigated.

    2 EXPERIMENTAL

    2.1 Reagents

    1-Chlorobutyl, 1-bromohexane, 1-chlorooctane and hexafluorophosphoric acid were purchased from Sigma-Aldrich (Milwaukee, USA). Ethyl acetate,imidazole and dichloromethane were obtained from Beijing Beihua Fine Chemicals Co. (China). Arsenazo III (Beijing Shiying Chemical Works). [C8mim][PF6]was synthesized as previously reported [7]. Stock solution of Y(III) was prepared by dissolving its oxide(99.9%) in HNO3, and the concentration of Y(III) was standardized by EDTA (ethylenediamine tetraacetic acid) titration using xylenol orange as indicator. The other chemicals were all analytical grade reagents.

    2.2 Apparatus and measurements

    The pH values of the aqueous phase were measured by model PHS-3C pH meter (Leici, Shanghai,China). The concentration of Y(III) in aqueous phase was determined by UVmini-1240 UV-visible spectrophotometer (Shimadzu, Japan), and the concentration of Y(III) in organic phase was calculated by mass balance. The FTIR measurements were performed with a Bruker Vertex 70 FTIR spectrometer (Bruker,Switzerland). NMR spectra were measured on an AV-400 NMR spectrometer (Bruker, Switzerland) at 25 °C. Thermal stability was detected by thermogravimetry analysis (TGA) at 10 °C·min-1from 40 °C to 600°C on a Perkin-Elmer TGA 7 system (TA instrument, USA). Elemental analysis was carried out at the VarioEL(Elementar, Germany).

    2.3 Procedure

    The TSIL containing carboxylic group investigated in this paper were viscous, hence, the organic phase was produced by adding TSIL containing carboxylic group into [C8mim][PF6]. [C8mim][PF6] is always used as diluent in the liquid-liquid extraction[3, 14, 15]. Extraction experiments were performed by adding 1 ml of organic phase and 4 ml of aqueous phase in equilibrium tubes. The two-phase systems were shaken at room temperature [(298±2) K] with the help of mechanical shaker for 50 min, which was sufficiently long for complete equilibration as confirmed in our preliminary experiments. In the stripping experiments, 1 ml of Y(III) loaded organic phase was taken and contacted with 4 ml HNO3solution, followed by vigorous shaking about 60 min to reach equilibrium. In the salts concentration experiments,the salts was added in the aqueous phase to be definite concentration, and then mixed with organic phase. The extraction efficiency (E), distribution ratio (D) and stripping percentage (S) were defined as follows:

    whereCtandCarepresent initial and final concentrations of Y(III) in the aqueous phase;Caqis the equilibrium concentration of Y(III) in stripping acid andCorgis the initial concentration of Y(III) in organic phase.All the determinations were performed in duplicate to get the average and the relative error is below 5%.

    2.4 Preparation of task-specific ionic liquids

    1-Butylimidazole: The synthesis of 1-butylimidazole was according to a previous reference [16]. IR:υ(cm-1)=3108, 2960, 2934, 2874, 1465.1H NMR(400 MHz; DMSO; 25 °C ):δ(ppm)=7.451 (s, 1H),7.042 (s, 1H), 6.900 (s, 1H), 3.925 (t, 2H,J=7.2Hz),1.717-1.791 (m, 2H), 1.277-1.371 (m, 2H), 0.938 (t,3H, J = 7.2Hz).

    [1-butyl-3(1-carboxymethylpropyl)im][Br]: Under an atmosphere of nitrogen, 2-bromobutanoic acid methyl ester 109 g (0.60 mol) was dropped in a mixture of 1-buthylimidazole 70 g (0.57 mol) and 65 ml ethanol. Then the system was stirred at 60 °C for 24 h,the viscous liquid obtained was washed with diethyl ether (3×100 ml) and dried in vacuum for 24 h to give 140 g product. Yield: 99%. IR:υ(cm-1)=3130, 3064,2962, 2876, 1747, 1558, 1462, 1171.1H NMR: ( 400 MHz; DMSO; 25 °C ) :δ(ppm)=9.409 (s, 1H), 7.910(s, 2H), 5.377-5.414 (m, 1H), 4.237 (t, 2H,J=7.2 Hz),3.743 (S, 3H), 2.137-2.221 (m, 2H), 1.781-1.836 (m,2H), 1.198-1.272 (m, 2H), 0.901 (t, 3H,J=7.6 Hz),0.828 (t, 3H,J=3.6 Hz). Elemental analysis calad (%)for C12H21BrN2O2: N 9.210, C 47.356, H 6.960.Found: N 8.987, C 47.385, H 7.174. Decomposition temperature 205 °C.

    Figure 1 Synthetic routes to the task-specific ionic liquids

    [1-butyl-3(1-carboxylpropyl)im][Br]: In 500 ml round-bottomed flask, 70 ml (0.48 mol) HBr was dropped in 120 g [1-butyl-3(1-carboxymethylpropyl)im][Br] (0.40 mol). The mixture was stirred for 4 h at 82 °C, then the water and remaining HBr was removed by the vacuum distillation. Yield: 113 g, 99%.IR:υ(cm-1)=3131, 3075, 2963, 2936, 2876, 1739,1558, 1463, 1168.1H NMR: (400 MHz; DMSO; 25°C):δ(ppm)=9.369 (s, 1H), 7.895 (S, 1H), 7.879 (S,1H), 5.223-5.260 (m, 1H), 4.227 (t, 2H,J=7.2 Hz),2.127-2.225 (m, 2H), 1.761-1.817 (m, 2H),1.216-1.272 (m, 2H), 0.901 (t, 3H,J=7.6 Hz), 0.828(t, 3H,J=7.6Hz). Elemental analysis calad (%) for C11H19BrN2O2: N 9.655, C 45.507, H 6.602. Found: N 8.479, C 42.330, H 6.538. Decomposition temperature 215 °C.

    [1-butyl-3(1-carboxylpropyl)im][PF6]: 100 g [1-butyl-3(1-carboxylpropyl)im][Br] (0.34mol) was dissolved in distilled water, 50 ml 60% HPF6was drop in under ice bath, then the system was stirred 2 h under ice bath. A hydrophobic phase was obtained, which was washed with deioniced water more than ten times and dried in vacuum for 24 h to give 20 g production.Yield: 76%. IR:υ(cm-1)=3154, 3110, 2967, 2940,2879, 1737, 1558, 1465, 1169, 844.1H NMR (400 MHz; CDCl3; 25 °C):δ(ppm)=8.91 (s, 1H), 7.52 (d,1H,J=1.6 Hz), 7. 46 (d, 1H,J=1.6 Hz), 5.05-5.09(m, 1H), 4.18-4.22 (t, 2H,J=7.2 Hz), 2.08-2.32 (m,2H), 1.86-1.93 (m, 2H), 1.25-1.26 (m, 2H), 0.96-1.01(t, 6H,J=7.6 Hz).13C NMR (400 MHz; DMSO; 25°C):δ(ppm)=169.9, 136.6, 122.5, 122.1, 63.4, 48.8,31.3, 24.9, 18.8, 13.2, 10.2. Elemental analysis calad(%) for C11H19PF6N2O2: N 7.864, C 37.067, H 5.377.Found: N 7.704, C 37.386, H 5.456. Decomposition temperature 260 °C.

    [1-hexyl-3(1-carboxylpropyl)im][PF6]: The same procedure was used as for [1-butyl-3(1-carboxylpropyl)im][PF6]. Yield: 68%. IR:υ(cm-1)=3164, 3116,2960, 2936, 2864, 1740, 1559, 1465, 1168, 842.1H NMR: (400 MHz; CDCl3; 25 °C) :δ( ppm )=8.788 (s,1H), 7.534 (S, 2H), 5.014-5.024 (m, 1H), 4.168-4.202(t, 2H,J=7.2 Hz), 2.049-2.301 (m, 2H), 1.878 (m,2H), 1.255-1.322 (m, 6H), 0.855-0.920 (m, 6H).13C NMR (400 MHz; DMSO; 25 °C):δ(ppm)=169.64,136.34, 122.53, 122.95, 63.61, 48.97, 30.38, 29.11,25.00, 24.84, 21.82, 13.72, 10.19. Elemental analysis calad (%) for C13H23PF6N2O2: N 7.289, C 40.630, H 6.032. Found: N 8.365, C 41.51, H 6.658. Decomposition temperature 270 °C.

    [1-octyl-3(1-carboxylpropyl)im][PF6]: The same procedure was used as for [1-butyl-3(1-carboxylpropyl)im][PF6]. Yield: 85%. IR:υ(cm-1)=3162, 3114,2957, 2930, 2859, 1739, 1559, 1466, 841.1H NMR:(400 MHz; CDCl3; 25 °C) :δ(ppm)=8.77 (s, 1H),7.54 (S, 2H), 4.97-5.01 (m, 2H), 4.16-4.20 (t, 3H,J=7.2 Hz), 2.27-2.30 (m, 2H), 1.03-2.06 (m, 2H),1.26-1.32 (m, 10H), 0.85-0.92 (m, 6H).13C NMR(400 MHz; DMSO; 25 °C):δ(ppm)=169.50, 136.28,122.53, 121.86, 63.89, 48.93, 31.06, 29.17, 28.42,28.17, 25.36, 24.97, 21.99, 13.89, 10.23. Elemental analysis calad (%) for C15H27PF6N2O2: N 6.793, C 43.69, H 6.548. Found: N 7.304, C 43.56, H 7.046.Decomposition temperature 273 °C.

    3 RESULTS AND DISCUSSION

    3.1 Effects of 1-alkyl group of TSIL on Y(III) extraction efficiency

    The comparison of Y(III) extraction with three[1-alkyl-3-(1-carboxylpropyl)im][PF6] was shown in Table 1. The data showed that the extraction efficiency for Y(III) increased with the length of the alkyl carbon chain under the same conditions. It also indicated that the extraction ability of [1-alkyl-3-(1-carboxylpropyl)im][PF6] could be improve by saponification obviously. However, the extraction system would be emulsification when [1-octyl-3-(1-carboxylpropyl)im][PF6] was used as extractant. So the [1-hexyl-3-(1-carboxylpropyl)im][PF6] was chosen as extractant for the extraction mechanism investigation.

    Table 1 The effect of the length of alkyl on the extraction([TSIL]=0.2 mol·L-1, [Y(NO3)3]=7.2×10-4 mol·L-1)

    3.2 The effect of the saponification degree on Y(III)extraction

    Table 2 showed the results of the effect of the saponification degree on the Y(III) extraction while[1-hexyl-3-(1-carboxylpropyl)im][PF6] was used as extractant. The data showed that the extraction efficiency increased with saponification degree increasing,this trend was accord with the carboxylic extractant such as sec-octylphenoxy acetic acid, naphthenic acid.

    Table 2 The effect of saponification- degree of [1-hexyl-3(1-carboxyl propyl)im][PF6] in [C8mim][PF6] ([Y(NO3)3]=7.2×10-4 mol·L-1, [1-hexyl-3(1-carboxylpropyl)im][[PF6]=0.2 mol·L-1])

    It has been reported that the carboxylic extractant would form dimer by strong hydrogen bonds O H- - -X interactions, and the saponification could destroy the dimer as reaction [17].

    The TSIL investigated in this paper was a carboxylic extractant, too. So, the added NH3water would also destroy the dimer of TSIL in the organic phase.

    3.3 The effect of aqueous phase acidity on Y(III)extraction

    Figure 2 showed the effect of initial aqueous pH on the Y(III) extraction. The increase of lgDwith aqueous phase pH indicated that the coordinating and complexing abilities of [1-hexyl-3-(1-carboxylpropyl)im][PF6] with Y(III) are dependent on aqueous phase pH,just like the conventional carboxylic extractant [10, 18].At low pH values, the saponification of [1-hexyl-3-(1-carboxylpropyl)im][PF6] would be weakened,leading to lower extraction efficiency for Y(III). From Fig. 2, we could also see that lgDincreased slowly when the initial aqueous pH was higher than 2.5. And,in our works, the equilibrium pH of aqueous phase would be higher than 5.0 when the initial aqueous pH was higher than 2.5, which would result in the Y(III)hydrolysis. So, the effect of equilibrium pH of aqueous phase was discussed when the initial aqueous pH was lower than 2.5, and the results were shown in Fig. 3.The slope of LgDversusequilibrium pH was about 3 indicated that three moles of H+were released when one molar of Y(III) was extracted into the organic phase.

    Figure 2 The effect of initial aqueous pH on the Y(III)extraction ([Y(NO3)3]=7.2×10-4 mol·L-1, [1-hexyl-3(1-carboxylpropyl)im][[PF6]=0.2 mol·L-1)

    3.4 The effect of [1-hexyl-3-(1-carboxyl propyl)im][PF6] concentration on Y(III) extraction

    Figure 3 The effect of equilibrium pH of aqueous phase on the Y(III) extraction ([Y(NO3)3]=7.2×10-4 mol·L-1,[1-hexyl-3(1-carboxylpropyl)im][[PF6]=0.2 mol·L-1)

    The results of the effect of [1-hexyl-3-(1-carboxylpropyl)im][PF6] concentration were shown in the Fig. 4. We could see that the Y(III) extraction efficiency increased with the [1-hexyl-3-(1-carboxylpropyl)im][PF6] concentration, and there was a linear correlation between lgC0and lgD. The slope of lgC0versuslgD-3pH was about 3 indicated that the stoichiometry of [1-hexyl-3-(1-carboxyl propyl)im][PF6] to Y(III) in the organic phase was 3.

    Figure 4 The effect of [1-hexyl-3(1-carboxylpropyl)im][[PF6] concentration on Y(III) extraction ([Y(NO3)3]=7.2×10-4 mol·L-1, the initial pH=2.01)

    3.5 The effect of the salts concentration on Y(III)extraction

    Figure 5 The effect of salts concentration ([1-hexyl-3(1-carboxylpropyl)im][[PF6]=0.2 mol·L-1, [Y(NO3)3]=7.2×10-4 mol·L-1, the initial pH=2.01)● NaNO3; ○ KPF6; ▼ [C8mim][Cl]

    The effect of salts concentration were experimented to investigate the effect of different anion and cation on the extraction, the results were shown in Fig. 5. It showed that NaNO3had little effect on the Y(III) extraction while KPF6had positive effect on the extraction. It has been reported that [C8mim]+would participate in the extraction process, and the added[C8mim]+had the negative effect on the extraction [14,15]. So the effect of the concentration of [C8mim][Cl]on the extraction was also investigated in our work.The results showed that the Y(III) extraction efficiency decreased with the [C8mim][Cl] concentration obviously just in previous reports [17,18]. The reason that KPF6could improve the extraction efficiency for Y(III) might be the [PF6]-ions combining with[C8mim]+in the extraction system, which could weaken the effect of [C8mim]+.

    3.6 The extraction mechanism

    It has been reported that the TSIL bearing 2-hydroxybenzylamine groups could be used as extractant for the Am extraction, and the extraction reaction was given as Eq. (5) [3]:

    In this paper, the extraction mechanism of a acidic TSIL as extractant in [C8mim][PF6] was investigated. The results of equilibrium aqueous pH experiments, extractant concentration and salt effect experiments indicated that the extraction mechanism was also a cation-exchange mechanism, and the extraction reaction could be summarized as Eq. (6).

    Figure 6 IR transmittance spectra of different systems1—[1-hexyl-3-(1-carboxylpropyl)im][PF6]; 2—[1-hexyl-3-(1-carboxylpropyl)im] [PF6] after saponification; 3—[1-hexyl-3-(1-carboxylpropyl)im][PF6] loaded with Y(III))

    To further elucidate the extraction mechanism,the infra-red spectra of [1-hexyl-3-(1-carboxylpropyl)im][PF6], [1-hexyl-3-(1-carboxylpropyl)im][PF6] after saponification and [1-hexyl-3-(1-carboxylpropyl)im][PF6] loaded with Y(III) are contrasted in Fig. 6. A comparison of (1) and (2) shows that the peak of C O stretching vibration at 1742 cm-1decreases obviously when the [1-hexyl-3-(1-carboxylpropyl)im][PF6] was saponified, which indicated that the saponification has effect on the C O of [1-hexyl-3-(1-carboxylpropyl)im][PF6]. And the C O stretching vibration at 1742 cm-1was almost disappeared when [1-hexyl-3-(1-carboxylpropyl)im][PF6] loaded with Y(III). These reveal a strong interaction of C O with Y(III).

    3.7 The effect of the temperature on Y(III) extraction

    The effect of temperature on the Y(III) extraction was studied in the rang 288 K-313 K, and the results were shown in Fig. 7. The Y(III) extraction efficiency increased as the temperature decreased, which indicated that the extraction system was more feasible at the room temperature. Then the enthalpy change of the reaction, ?H, could be calculated by the van’t Hoff equation. The corresponding free energy ?Gand entropy ?Swere gotten using Eqs. (8) and (9) respectively, and their values were shown in the Table 3.

    Figure 7 The effect of temperature on the Y(III) extraction([1-hexyl-3(1-carboxylpropyl)im][[PF6]=0.2 mol·L-1, [Y(NO3)3]=7.2×10-4 mol·L-1, the initial pH=2.01)

    Table 3 Thermodynamic parameters of Y(III) extraction([1-hexyl-3(1-carboxylpropyl)im][[PF6]=0.2 mol·L-1, [Y(NO3)3]=7.2×10-4 mol·L-1, the initial pH=2.01)

    WhereRis the universal gas constant,Cis an integral constant for the system. For estimating ?G, the values ofDare used in place ofKas a common practice[15, 19]. In the liquid-liquid extraction, and in our work,the extractant concentration is much larger than Y(III)concentration. Hence,KandDfollow the same trend of variation, making this substitution reasonable.Table 3 lists the thermodynamic parameters, and it is clear that the extraction is an exothermic process.

    3.8 Stripping experiments

    Figure 8 showed the effect of HNO3concentration on the stripping ratio of Y(III) in [1-hexyl-3-(1-carboxylpropyl)im][PF6] system. As shown, the stripping ratio increased with the increasing of the aqueous phase acidity till Y(III) was almost wholly stripped from the loaded organic phase. It also showed that more than 95% of Y(III) could be stripped when the concentration of HNO3is higher than 0.07 mol·L-1,and the acid consumption for stripping was lower than both di-2-ethylhexylphosphoric acid (P204) and 2-ethylhexylphosphoric acid mono-2-ethylhexyl ester(P507) extraction system [20, 21]. This indicated that[1-hexyl-3-(1-carboxylpropyl)im][PF6] system investigated in our work had well stripping characters.

    Figure 8 The stripping of Y(III) with HNO3 from the loaded organic phase ([Y(NO3)3](o)=2.5×10-3 mol·L-1, [1-hexyl-3(1-carboxylpropyl)im][[PF6]=0.2 mol·L-1])

    4 CONCLUSIONS

    A new kind of TSIL bearing carboxylic acidic groups were synthesized, and their extraction properties for Y(III) were investigated in this paper. The represent work shows that this kind of TSIL needs to be saponified before being used for the Y(III) extraction just like the conventional carboxylic acid extractants. The extraction is acid dependent in the [1-hexyl-3-(1-carboxylpropyl)im][PF6] system, and the extraction efficiency increases as the aqueous phase acidity decrease. The loaded organic phase is easy to be stripped, more than 95% Y(III) could be stripped from the loaded organic phase when the stripping acid is higher than 0.07 mol·L-1. A possible extraction mechanism is proposed, in which the extraction system is driven by a cation-exchange mechanism.

    1 Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E.,Rogers, R.D., “Room temperature ionic liquids as novel media for‘clean’ liquid-liquid extraction”,Chem.Commun., 16, 1765-1766 (1998).

    2 Visser, A.E., Swatloski, R.P., Reichert, W.M., Davis Jr, J.H., Rogers,R.D., Mayton, R., Sheff, S., Wierzbicki, A., “Task-specific ionic liquids for the extraction of metal ions from aqueous solutions ”,Chem.Commun., 1, 135-136 (2001).

    3 Ouadi, A., Gadenne, B., Hesemann, P., Moreau, J.J.E., Billard, I.,Gaillard, C., Mekki, S., Moutiers, G., “Task-specific ionic liquids bearing 2-hydroxybenzylamine units: Synthesis and americium-extraction studies”,Chem.Eur.J., 12 (11), 3074-3081 (2006).

    4 Han, X., Armstrong, D.W., “Ionic liquids in separations”,Acc.Chem.Res., 40 (11), 1079-1086 (2007).

    5 Sun, X., Ji, Y., Hu, F., He, B., Chen, J., Li, D., “The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction”,Talanta, 81 (4-5), 1877-1883 (2010).

    6 Davis, J. J., “Task-specific ionic liquids”,Chem.Lett., 33 (9),1072-1077 (2004).

    7 Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D., “Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation”,GreenChem., 3 (4), 156-164 (2001).

    8 Luo, H.M., Dai, S., Bonnesen, P.V., “Solvent extraction of Sr2+and Cs+based on room-temperature ionic liquids containing monoazasubstituted crown ethers”, Anal. Chem., 76 (10), 2773-2779 (2004).

    9 Ouadi, A., Klimchuk, O., Gaillard, C., Billard, I., “Solvent extraction of U(vi) by task specific ionic liquids bearing phosphoryl groups”,Green Chem., 9 (11), 1160-1162 (2007).

    10 Li, W., Wang, X., Meng, S., Li, D., Xiong, Y., “Extraction and separation of yttrium from the rare earths with sec-octylphenoxy acetic acid in chloride media”, Sep. Purif. Technol., 54 (2), 164-169 (2007).

    11 Zuo, Y., Chen, J., Li, D., “Reversed micellar solubilization extraction and separation of thorium(IV) from rare earth(III) by primary amine N1923 in ionic liquid”, Sep. Purif. Technol., 63 (3), 684-690 (2008).

    12 Liu, Y.H., Zhu, L.L., Sun, X.Q., Chen, J., “Toward greener separations of rare earths: Bifunctional ionic liquid extractants in biodiesel”, AlChE J., 56 (9), 2338-2346 (2010).

    13 Sun, X., Ji, Y., Zhang, L., Chen, J., Li, D., “Separation of cobalt and nickel using inner synergistic extraction from bifunctional ionic liquid extractant (Bif-ILE)”, J. Hazard. Mater., 182 (1-3), 447-452(2010).

    14 Dietz, M.L., Dzielawa, J.A., “Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers:implications for the ‘greenness’ of ionic liquids as diluents in liquid-liquid extraction”, Chem. Commun., 20, 2124-2125 (2001).

    15 Sun, X., Wu, D., Chen, J., Li, D., “Separation of scandium(III) from lanthanides(III) with room temperature ionic liquid based extraction containing Cyanex 925”, J. Chem. Technol. Biotechnol, 82 (3),267-272 (2007).

    16 Bonhote, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K.,Gratzel, M., “Hydrophobic, highly conductive ambient-temperature molten salts”, Inorg. Chem., 35 (5), 1168-1178 (1996).

    17 Xu, G.X., Yuan, C.Y., Solvent Extraction of Rare Earth, Science Press, Beijing, 153-153 (1987). (in Chinese)

    18 Zhang, X., Yin, G., Hu, Z., “Extraction and separation of gallium,indium and thallium with several carboxylic acids from chloride media”, Talanta, 59 (5), 905-912 (2003).

    19 Yang, H.L., Wang, W., Zhang, D.L., Deng, Y.F., Cui, H.M., Chen, J.,Li, D.Q., “Recovery of trace rare earths from high-level Fe3+and Al3+waste of oil shale ash (Fe-Al-OSA) ”, Ind. Eng. Chem. Res., 49,11645-11651 (2010).

    20 Wu, D.B., Zhang, Q., Bao, B.R., “Solvent extraction of Pr and Nd(III) from chloride-acetate mediumby 8-hydroquinoline with and without 2-ethylhexyl phosphoric acidmono-2- ethylhexyl ester as an added synergist in heptane diluent”, Hydrometallurgy, 88, 210-215(2007).

    21 Moraisa, C.A., Ciminelli, V.S.T., “Process development for the recovery of high-grade lanthanum by solvent extraction”, Hydrometallurgy, 73, 237-244 (2004).

    猜你喜歡
    王威
    《無題》
    《蜉蝣》
    Stability and optoelectronic property of lead-free halide double perovskite Cs2B′BiI6(B′=Li,Na and K)?
    王威的無人機(jī)隨我姓
    小說界(2020年4期)2020-08-11 14:28:30
    漫畫輕兵器之二十四
    輕兵器(2020年2期)2020-02-25 03:15:18
    特種部隊(duì)小貼士(一)
    輕兵器(2016年15期)2016-08-11 17:22:08
    步兵班前進(jìn)第二季
    輕兵器(2016年1期)2016-01-08 11:20:55
    步兵班前進(jìn)第二季
    輕兵器(2015年17期)2015-09-10 07:22:44
    特種部隊(duì)的秘密技能——腳印追蹤(Ⅵ)
    輕兵器(2015年9期)2015-05-15 04:34:40
    Numerical Simulation of Viscoelastic Extrudate Swell ThroughElliptical Ring Die*
    精品一区二区三区四区五区乱码 | 超色免费av| 另类亚洲欧美激情| 亚洲欧美一区二区三区国产| 日韩一卡2卡3卡4卡2021年| 国产黄频视频在线观看| 欧美日韩视频精品一区| 26uuu在线亚洲综合色| 国产麻豆69| 香蕉国产在线看| 五月伊人婷婷丁香| 欧美xxⅹ黑人| 亚洲欧美一区二区三区国产| 亚洲精品在线美女| 狂野欧美激情性bbbbbb| 黑人巨大精品欧美一区二区蜜桃| 久久精品夜色国产| 天堂俺去俺来也www色官网| 青春草国产在线视频| 午夜福利视频精品| av天堂久久9| 亚洲av福利一区| 亚洲综合色网址| 国产精品三级大全| 国产男女内射视频| 久久ye,这里只有精品| 一个人免费看片子| 建设人人有责人人尽责人人享有的| 美女视频免费永久观看网站| 亚洲国产欧美网| 午夜日韩欧美国产| 晚上一个人看的免费电影| 欧美变态另类bdsm刘玥| 大话2 男鬼变身卡| 免费不卡的大黄色大毛片视频在线观看| 91午夜精品亚洲一区二区三区| 亚洲精品乱久久久久久| 久久国产亚洲av麻豆专区| 成人二区视频| 国产白丝娇喘喷水9色精品| 两性夫妻黄色片| 欧美国产精品一级二级三级| 人妻少妇偷人精品九色| av视频免费观看在线观看| 男女下面插进去视频免费观看| 亚洲一级一片aⅴ在线观看| 久久韩国三级中文字幕| 97在线人人人人妻| 男女免费视频国产| 日韩av免费高清视频| 亚洲av免费高清在线观看| av在线app专区| 亚洲中文av在线| 亚洲熟女精品中文字幕| 日本爱情动作片www.在线观看| 韩国av在线不卡| 午夜免费观看性视频| 在线看a的网站| 中文字幕色久视频| a 毛片基地| 一级爰片在线观看| 亚洲av欧美aⅴ国产| av又黄又爽大尺度在线免费看| 一级毛片我不卡| 黑人巨大精品欧美一区二区蜜桃| 国产精品av久久久久免费| 亚洲国产av影院在线观看| 黄色毛片三级朝国网站| 女人高潮潮喷娇喘18禁视频| 久久久久久久久久久免费av| 又大又黄又爽视频免费| 久久97久久精品| 久久久久久久大尺度免费视频| 老汉色av国产亚洲站长工具| 亚洲美女视频黄频| 国产精品熟女久久久久浪| 亚洲少妇的诱惑av| 熟女电影av网| 免费久久久久久久精品成人欧美视频| 99热全是精品| 欧美日本中文国产一区发布| 少妇人妻久久综合中文| 国产老妇伦熟女老妇高清| 一级爰片在线观看| 2022亚洲国产成人精品| av天堂久久9| 日韩一区二区三区影片| av有码第一页| av免费在线看不卡| 国产精品久久久久久精品电影小说| 日韩视频在线欧美| 伊人亚洲综合成人网| 亚洲精品国产一区二区精华液| 亚洲精品国产av成人精品| av在线app专区| 免费女性裸体啪啪无遮挡网站| 色吧在线观看| www日本在线高清视频| 国产精品久久久av美女十八| 麻豆av在线久日| 久久ye,这里只有精品| 麻豆乱淫一区二区| 五月开心婷婷网| av免费观看日本| 亚洲,一卡二卡三卡| 久久久久久人人人人人| 免费观看在线日韩| 日韩av免费高清视频| 久久精品夜色国产| 精品酒店卫生间| 日韩伦理黄色片| 久久国产亚洲av麻豆专区| 亚洲av在线观看美女高潮| 午夜福利在线免费观看网站| 啦啦啦在线观看免费高清www| 丝袜脚勾引网站| 久久久精品免费免费高清| 亚洲精品aⅴ在线观看| 一边亲一边摸免费视频| 婷婷色av中文字幕| 欧美日韩综合久久久久久| 18禁裸乳无遮挡动漫免费视频| 99九九在线精品视频| 美女国产高潮福利片在线看| 在线观看免费视频网站a站| 日韩人妻精品一区2区三区| 欧美少妇被猛烈插入视频| xxxhd国产人妻xxx| 国产精品久久久久久精品古装| 一区二区日韩欧美中文字幕| 亚洲国产精品一区二区三区在线| 久久热在线av| 国产乱人偷精品视频| 中文字幕另类日韩欧美亚洲嫩草| 国产高清国产精品国产三级| 韩国精品一区二区三区| 成人毛片60女人毛片免费| 日韩av免费高清视频| 一边摸一边做爽爽视频免费| 夫妻性生交免费视频一级片| 欧美另类一区| 久热久热在线精品观看| 欧美激情高清一区二区三区 | 激情五月婷婷亚洲| 久久久久久人人人人人| 国产福利在线免费观看视频| 国产精品 欧美亚洲| 一边摸一边做爽爽视频免费| 成人亚洲欧美一区二区av| 大码成人一级视频| 国产成人欧美| 高清黄色对白视频在线免费看| 欧美少妇被猛烈插入视频| 性色av一级| 大香蕉久久网| 国产精品免费大片| 99九九在线精品视频| av电影中文网址| 久久精品国产鲁丝片午夜精品| 久久97久久精品| 黑人欧美特级aaaaaa片| 日日爽夜夜爽网站| 免费日韩欧美在线观看| 女人被躁到高潮嗷嗷叫费观| 午夜福利一区二区在线看| 狠狠婷婷综合久久久久久88av| 五月伊人婷婷丁香| 搡老乐熟女国产| 高清欧美精品videossex| 成年av动漫网址| 在线精品无人区一区二区三| 一级片免费观看大全| 日韩大片免费观看网站| 日日爽夜夜爽网站| 热re99久久精品国产66热6| 久久狼人影院| 亚洲一码二码三码区别大吗| 亚洲av.av天堂| 午夜日韩欧美国产| 午夜福利视频在线观看免费| 超色免费av| 91精品伊人久久大香线蕉| 一级爰片在线观看| 日韩中字成人| 狂野欧美激情性bbbbbb| 久久国产精品大桥未久av| 又粗又硬又长又爽又黄的视频| 免费黄色在线免费观看| 亚洲成人av在线免费| av网站在线播放免费| 韩国高清视频一区二区三区| 欧美激情高清一区二区三区 | 老司机影院成人| 国产午夜精品一二区理论片| 国产国语露脸激情在线看| 中文字幕精品免费在线观看视频| 尾随美女入室| 亚洲精品乱久久久久久| 蜜桃国产av成人99| 精品福利永久在线观看| av卡一久久| 美女中出高潮动态图| 亚洲精品,欧美精品| 一二三四中文在线观看免费高清| 一个人免费看片子| 99香蕉大伊视频| 亚洲精品国产av成人精品| 国产午夜精品一二区理论片| 一本—道久久a久久精品蜜桃钙片| 久久久久网色| 国产成人精品在线电影| 成人18禁高潮啪啪吃奶动态图| 精品99又大又爽又粗少妇毛片| 国产免费福利视频在线观看| 色视频在线一区二区三区| 涩涩av久久男人的天堂| 国产 一区精品| av不卡在线播放| 人妻一区二区av| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 一级,二级,三级黄色视频| 久久精品久久精品一区二区三区| 精品一品国产午夜福利视频| 桃花免费在线播放| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| 嫩草影院入口| 黄片小视频在线播放| 精品一区二区免费观看| 在线观看www视频免费| 成人亚洲欧美一区二区av| 男女国产视频网站| 在线观看人妻少妇| 美女主播在线视频| 最近2019中文字幕mv第一页| 国产精品av久久久久免费| 久久久久人妻精品一区果冻| 久久国产精品男人的天堂亚洲| 成人黄色视频免费在线看| 热99国产精品久久久久久7| 国产伦理片在线播放av一区| 亚洲综合色网址| 18禁动态无遮挡网站| 亚洲精品aⅴ在线观看| 免费观看无遮挡的男女| 亚洲国产精品999| 亚洲av成人精品一二三区| 日韩 亚洲 欧美在线| 人人妻人人澡人人爽人人夜夜| 国产片内射在线| 乱人伦中国视频| 久久免费观看电影| 婷婷色综合www| 亚洲,欧美精品.| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 国产极品天堂在线| 9热在线视频观看99| 免费大片黄手机在线观看| 色哟哟·www| www.自偷自拍.com| 欧美日韩视频精品一区| 久久人人爽人人片av| 亚洲成人av在线免费| 国产一区二区 视频在线| 丁香六月天网| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 日本-黄色视频高清免费观看| 综合色丁香网| 国产成人午夜福利电影在线观看| 国产亚洲欧美精品永久| 久久久久久久国产电影| 街头女战士在线观看网站| 热99国产精品久久久久久7| 精品酒店卫生间| 亚洲精品国产色婷婷电影| 国产亚洲av片在线观看秒播厂| 国产精品偷伦视频观看了| 在现免费观看毛片| 国产av精品麻豆| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 少妇的丰满在线观看| 亚洲国产成人一精品久久久| 这个男人来自地球电影免费观看 | 老熟女久久久| 看非洲黑人一级黄片| 一级a爱视频在线免费观看| 亚洲经典国产精华液单| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 亚洲欧美成人综合另类久久久| 少妇 在线观看| 免费观看av网站的网址| 午夜老司机福利剧场| 成年人免费黄色播放视频| 免费av中文字幕在线| 久久人人97超碰香蕉20202| 日韩av在线免费看完整版不卡| 午夜91福利影院| 亚洲成av片中文字幕在线观看 | 国产成人aa在线观看| 国产av精品麻豆| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 桃花免费在线播放| 亚洲少妇的诱惑av| 日韩制服骚丝袜av| 丝袜在线中文字幕| 香蕉国产在线看| 国产黄色视频一区二区在线观看| 日本免费在线观看一区| 一级毛片我不卡| 99国产精品免费福利视频| www.精华液| 丁香六月天网| 女人精品久久久久毛片| 亚洲少妇的诱惑av| 亚洲av成人精品一二三区| 成人二区视频| 国产精品成人在线| 建设人人有责人人尽责人人享有的| 永久网站在线| 日本av手机在线免费观看| 亚洲视频免费观看视频| 欧美中文综合在线视频| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 久久久久久人人人人人| 18在线观看网站| 色婷婷久久久亚洲欧美| 亚洲国产精品一区二区三区在线| 最近手机中文字幕大全| 成人免费观看视频高清| 日日爽夜夜爽网站| 国产一区二区激情短视频 | 黄色配什么色好看| 中国国产av一级| 精品人妻在线不人妻| 日韩中文字幕视频在线看片| 久久久国产欧美日韩av| 亚洲成国产人片在线观看| 在线亚洲精品国产二区图片欧美| 99香蕉大伊视频| 妹子高潮喷水视频| 超色免费av| 在线免费观看不下载黄p国产| 国产女主播在线喷水免费视频网站| 日韩欧美精品免费久久| 色94色欧美一区二区| 校园人妻丝袜中文字幕| 99re6热这里在线精品视频| 亚洲精品国产一区二区精华液| 欧美av亚洲av综合av国产av | 丝袜美足系列| 人人妻人人澡人人爽人人夜夜| 亚洲色图综合在线观看| 99国产精品免费福利视频| 成人漫画全彩无遮挡| 成年女人在线观看亚洲视频| 中文字幕色久视频| 丁香六月天网| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 最新中文字幕久久久久| 九九爱精品视频在线观看| av免费观看日本| 老汉色∧v一级毛片| 成人手机av| 三级国产精品片| 91午夜精品亚洲一区二区三区| 欧美日韩av久久| 亚洲精品aⅴ在线观看| 老司机影院成人| 久久精品国产亚洲av高清一级| 欧美人与性动交α欧美软件| 寂寞人妻少妇视频99o| 高清欧美精品videossex| 色网站视频免费| 国产免费一区二区三区四区乱码| 精品国产露脸久久av麻豆| 欧美日韩国产mv在线观看视频| 国产一区二区激情短视频 | videosex国产| 嫩草影院入口| 国产熟女欧美一区二区| 国产精品熟女久久久久浪| 午夜福利在线观看免费完整高清在| 午夜91福利影院| 99国产综合亚洲精品| 午夜老司机福利剧场| 欧美日韩综合久久久久久| 欧美日韩国产mv在线观看视频| 免费高清在线观看日韩| 我要看黄色一级片免费的| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 不卡av一区二区三区| 国产成人精品久久久久久| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 2021少妇久久久久久久久久久| 日本-黄色视频高清免费观看| 热99国产精品久久久久久7| 精品国产一区二区三区久久久樱花| 99久久综合免费| 色网站视频免费| 亚洲综合精品二区| 最近最新中文字幕大全免费视频 | 免费观看无遮挡的男女| 亚洲人成77777在线视频| 大片免费播放器 马上看| 色网站视频免费| 国产在视频线精品| 欧美精品一区二区大全| 日韩一区二区三区影片| 国产熟女午夜一区二区三区| 久久人人97超碰香蕉20202| 精品久久久久久电影网| 在线观看人妻少妇| 在线观看三级黄色| 国产精品国产av在线观看| 亚洲av电影在线观看一区二区三区| 人人妻人人爽人人添夜夜欢视频| 久久97久久精品| 亚洲成色77777| 热re99久久国产66热| 国产一区二区激情短视频 | 亚洲欧美一区二区三区黑人 | 街头女战士在线观看网站| 亚洲精品中文字幕在线视频| 又大又黄又爽视频免费| 波多野结衣av一区二区av| 又粗又硬又长又爽又黄的视频| h视频一区二区三区| 国产视频首页在线观看| 国产一区二区三区综合在线观看| 王馨瑶露胸无遮挡在线观看| 天堂中文最新版在线下载| av女优亚洲男人天堂| 亚洲激情五月婷婷啪啪| 国产一级毛片在线| 日韩不卡一区二区三区视频在线| 久久久国产欧美日韩av| 夫妻午夜视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲美女搞黄在线观看| 一本色道久久久久久精品综合| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 亚洲国产日韩一区二区| 国语对白做爰xxxⅹ性视频网站| 寂寞人妻少妇视频99o| 亚洲国产精品成人久久小说| 2022亚洲国产成人精品| 久久精品久久久久久久性| av在线观看视频网站免费| 欧美成人精品欧美一级黄| 久久这里只有精品19| 国产精品久久久av美女十八| www.熟女人妻精品国产| 久久久久国产网址| 一级毛片我不卡| 晚上一个人看的免费电影| 丝袜美腿诱惑在线| 日本爱情动作片www.在线观看| 80岁老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕| 欧美精品亚洲一区二区| 男女免费视频国产| 亚洲精品国产av成人精品| videosex国产| 久久97久久精品| 高清视频免费观看一区二区| 亚洲精品国产色婷婷电影| 青春草视频在线免费观看| 性少妇av在线| 精品99又大又爽又粗少妇毛片| 国产一区二区三区av在线| 秋霞在线观看毛片| av网站免费在线观看视频| 一本久久精品| 90打野战视频偷拍视频| 国产在线视频一区二区| 色视频在线一区二区三区| 欧美老熟妇乱子伦牲交| 一级毛片电影观看| 91精品三级在线观看| 99九九在线精品视频| 边亲边吃奶的免费视频| 老汉色∧v一级毛片| 99热网站在线观看| 赤兔流量卡办理| 久久97久久精品| 免费观看在线日韩| 亚洲精品第二区| 国产欧美日韩综合在线一区二区| 日韩视频在线欧美| 色视频在线一区二区三区| 欧美日韩综合久久久久久| 欧美精品亚洲一区二区| 久久精品国产自在天天线| av在线app专区| 国产精品 欧美亚洲| 精品少妇黑人巨大在线播放| 美国免费a级毛片| 午夜日本视频在线| 韩国精品一区二区三区| 国产精品欧美亚洲77777| 久久鲁丝午夜福利片| 夜夜骑夜夜射夜夜干| a级毛片在线看网站| 中文字幕亚洲精品专区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品999| 亚洲欧美一区二区三区久久| 国产精品 国内视频| 亚洲国产成人一精品久久久| 777米奇影视久久| 高清视频免费观看一区二区| 婷婷色综合www| 欧美亚洲 丝袜 人妻 在线| 国产在线一区二区三区精| 多毛熟女@视频| 美女高潮到喷水免费观看| 久久久久网色| 99香蕉大伊视频| 国产xxxxx性猛交| 天美传媒精品一区二区| 午夜福利在线观看免费完整高清在| 一区二区三区激情视频| 国产成人免费观看mmmm| 久久亚洲国产成人精品v| 咕卡用的链子| 亚洲av中文av极速乱| 老熟女久久久| 欧美精品av麻豆av| 亚洲成色77777| 国产精品免费视频内射| 久久这里只有精品19| 欧美变态另类bdsm刘玥| 好男人视频免费观看在线| 亚洲一区二区三区欧美精品| 亚洲精品一区蜜桃| 久久午夜综合久久蜜桃| 熟女电影av网| 精品国产超薄肉色丝袜足j| 一本色道久久久久久精品综合| 国产毛片在线视频| 国产精品久久久久成人av| 国产精品成人在线| 欧美精品高潮呻吟av久久| 欧美日韩视频高清一区二区三区二| 国产有黄有色有爽视频| 麻豆精品久久久久久蜜桃| 一级毛片 在线播放| 黄片小视频在线播放| 夜夜骑夜夜射夜夜干| 如日韩欧美国产精品一区二区三区| 波多野结衣av一区二区av| 在线观看美女被高潮喷水网站| 永久网站在线| 久久久久久人人人人人| 国产亚洲午夜精品一区二区久久| 色94色欧美一区二区| 亚洲五月色婷婷综合| 七月丁香在线播放| 国产精品二区激情视频| 久久久久网色| 成人国产麻豆网| 考比视频在线观看| 日韩欧美精品免费久久| 黄片无遮挡物在线观看| 亚洲第一av免费看| 免费观看无遮挡的男女| 91午夜精品亚洲一区二区三区| 十八禁高潮呻吟视频| 亚洲情色 制服丝袜| 久久人妻熟女aⅴ| 欧美 日韩 精品 国产| 国产精品三级大全| 国产男女超爽视频在线观看| 天堂俺去俺来也www色官网| av又黄又爽大尺度在线免费看| 在线天堂中文资源库| 亚洲国产色片| 久久久精品国产亚洲av高清涩受| 另类亚洲欧美激情| 亚洲欧美清纯卡通| 中文欧美无线码| 国产淫语在线视频| 亚洲国产欧美网| 久久99蜜桃精品久久| 精品国产一区二区三区四区第35| 美女福利国产在线| 只有这里有精品99| 国产xxxxx性猛交| 国产精品久久久久久av不卡| 18在线观看网站| 午夜影院在线不卡| 久久97久久精品| 亚洲av国产av综合av卡| 欧美av亚洲av综合av国产av | 成人二区视频| 国产亚洲午夜精品一区二区久久| 大陆偷拍与自拍| 美女视频免费永久观看网站| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区久久久樱花| 蜜桃国产av成人99|