• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrophobic TixOy-CmHnNanoparticle Film Prepared by Plasma Enhanced Chemical Vapor Deposition

    2012-02-07 07:46:56WANGDexin王德信XUJinzhou徐金洲LIUWeiGUOYingYANGQinyu楊沁玉DINGKeSHIJianjun石建軍ZHANGJing
    關(guān)鍵詞:建軍

    WANG De-xin(王德信),XU Jin-zhou(徐金洲),LIU Wei(劉 偉),GUO Ying(郭 穎),YANG Qinyu(楊沁玉),DING Ke(丁 可),SHI Jian-jun(石建軍),ZHANG Jing(張 菁)*

    1 College of Material Science and Engineering,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,Shanghai 201620,China

    2 College of Science,Donghua University,Shanghai 201620,China

    Introduction

    The control of surface wettability is important for many biological processes and industrial applications[1-8].In recent years,hydrophobic surfaces,with a water contact angle(WCA)greater than 90°,have attracted considerable interests in their fundamental research and practical applications[9-14].Generally,there are two hydrophobic surfacesin nature corresponding with Wenzel's state and Cassie's state.The former is the wet-contact mode of water and rough surface,where water droplets sit suspended on the surface and can not roll off even with a 180°tilt while the later represents a nonwetcontact mode and water droplets can roll off easily owing to the low contact angle hysteresis[15].

    TiO2,which exhibits high chemical stability,avirulence,and strong photo induced oxidation,has been studied intensively due to their applications in optical coatings,gas sensors,smart windows and photocatalysts[16],biomedical materials,and dyesensitized solar cells[17,18].Many efforts have been done to fabricate hydrophobic TiO2films.They are especially useful as hydrophobic ultraviolet absorbing coating on protection cover,electrochromic glass or as photocatalyst for diluted hydrophobic organic compounds in water[19,20].It is expected that the TiO2film could be unique self-cleaning so that the surface coated with such film can be maintained clean under circumstance of sunlight,rainfall,and other stains[21-23].Various methods have been developed so far for the fabrication of TiO2films with selfcleaning performance,such as so-gel[22,24],electrochemical anodization[25],hydrothermal treatment[26],and ion assisted deposition[27].In most of the cases,however,the surface of the film is hydrophilic.Here,we report the preparation of hydrophobic TixOy-CmHnnanoparticle film via RF plasma enhanced chemical vapor deposition(PECVD)from the mixture of the titanium isopropoxide(TTIP)and oxygen through one deposition cycle for short time.This hydrophobic TixOy-CmHnfilm is composed of micropapillae with average size 1-3 μm which are aggregated by inorganic and organic phases of nanoparticles with size of 50-200 nm.The organic CmHnis incorporated in the film in the deposition process.This makes the film present hydrophobicity with WCA exceeding 160°,and ultraviolet absorption and X-Ray diffraction(XRD)spectrum are similar with TiO2nanoparticle film.

    1 Experimental

    The apparatus used for the film deposition is shown in Fig.1.The deposition was carried out in a glass cylindrical reactor with a diameter of 8 cm.Two arc copper sheets with the size of 6 cm2×8 cm2were used as electrode and located oppositely outside glass reactor.The substrates were placed on a glass platform in the discharge zone apart from the electrodes.The RF power with frequency of 13.56 MHz(American Advance Energy Inc(PF-10S System))was delivered to the system through an automatic matching network.The monomer was TTIP with a purity of 98%.The substrates of glass slides(2 cm2× 2 cm2)were ultrasonically cleaned in acetone,ethyl,ethanol,and deionized water for 20 min,respectively,to remove the surface containment before being put into the reactor.

    The system was pumped to a base pressure of 8.5 ×10-1Pa before igniting the discharge.The substrate was exposed to argon discharge plasma for about 10 min to provide an additional surface cleaning.Then the precursor heated at 60℃constant temperature by a water bath was introduced to the discharge zone through oxygen carrier gas.The flow rate of the oxygen was 10 sccm controlled by a mass flow controller.The system pressure was stabilized by continuous flow of the monomer vapor and kept at(35±2)Pa.The RF discharge powers were varied in the deposition process from 40 W to 150 W.The deposition time was about 30 min.

    Fig.1 Schematic of the set-up used for film deposition

    The chemical content of film was analyzed by elemental analyzer(EA,VarioEL,Elementar,Germany). The morphology and crystallization structure analysis of the film were done using scanning electron microscope(SEM,JSM-5600 LV,JEOL,Japan),transmission electron microscope(TEM,JEM-2100 F,JEOL,Japan),and XRD(D/Max-2550 PC,RIGAKU,Japan),respectively.Further investigations about the chemical structure were carried out by Fourier transform infrared spectrometer(FTIR,NEXUS-670,Nicolet,America).The double-beam UV-Vis spectrometer(Lambda 35,Perkin Elmer,America)was used to study the optical properties of the deposited films.The WCA measurement was carried out in a computer-video-processed goniometer(JC2000A,Powereach,Shanghai,China).

    2 Results and Discussion

    2.1 Surface hydrophobicity

    The changes ofWCA with the discharge power are displayed in Fig.2.It's obvious that all deposited film surfaces are hydrophobic with WCA varying from 130°to 160°when the discharge power changes from 40 W to 180 W.The WCA increases with increasing the RF discharge power and reaches the maximum value when the RF discharge power is 150 W.Then the WCA decreases if the RF discharge power increases continuously.

    Fig.2 The WCA of the films varied with discharge powers According to Wenzel equation

    where θris the contact angle on the rough surface,θsis the contact angle on the smooth surface,and r is the roughness correction factor.r equals the ratio of the surface actual area to the apparent project area.When θsis less than π/2,cos θsis greater than 0 and less than 1,and θrdecreases as r increases.When θsis greater than π/2,cos θsis less than 0,and θrincreases as r increases.Because all WCAs for the deposited films were greater than π /2 and increased with power,it's estimated that r increased along with the discharge power and the roughnessofthe deposited filmscontributed to the hydrophobicity of the films.

    2.2 Surface morphology

    Figure 3 shows the SEM images of as-deposited films with different RF powers,and Figs.3(d),(e),and(f)are the magnified SEM images corresponding to Figs.3(a),(b),and(c).The surface of the films is covered with average size 1-3 μm micropapillae aggregated by small nanoparticles. The relativelymagnified SEM imagesclearly revealthatthe nanoparticle size ranges from 50 nm to 200 nm.From Figs.3(d),(e),and(f),the size of the nanoparticles increases with the increase of RF discharge power.The surface of the film exhibits loose and rough structure rather than dense aggregating.There are also many pores among the micropapillae.These pores are believed to do favor to the surface hydrophobicity:the air is trapped within the pores so that the droplet can not penetrate into the pores and sits suspended on the peaks of the micropapillae while the surface remains dry below[28].According to the Wenzel equation,this kind of loose and rough structure contributes to the hydrophobicity of the film.

    2.3 Chemical composition and structure

    The infrared spectra of the films deposited from the mixture gases of TTIP and O2are shown in Fig.4.

    Fig.4 Infrared spectra of the films deposited with different RF powers:(a)40 W,(b)100 W,and(c)150 W

    The main vibration peaks and its vibration modes are listed in Table 1.As shown in Fig.4,all IR spectra of the deposited films with different RF discharge powers exhibit a strong absorption band at 3 150 cm-1attributed to the stretching vibration of—OH,indicating the combination of O and H from the precursor molecules or the unassociated—OH groups strongly absorbed in the deposited films[29,30].Absorption peaks at 2 930 and 2 840 cm-1are thought to be the C—H stretching vibration bands[31].The C=O stretching vibration is found at 1 660 cm-1.The bending vibration of C—H is shown at 1 388 cm-1.The C—H bending and stretching vibration bands mentioned above strongly confirm the existence of the C—H bonds[32].Furthermore,the peak at 1 080 cm-1has been identified to be Ti—O—C stretching vibration in the deposited film[33].The observation of Ti—O—C,C =O,—OH,and C—H bonds in the FTIR spectra of the deposited film indicates the introduction of the organic groups in the film deposition process[34].The broad absorption band from 800 cm-1to 400 cm-1obviously belongs to the Ti—O—Ti groups similar to the bulk TiO2frequency region,while the FTIR of the TTIP precursor only showsa narrow absorption band at616 cm-1[35,36].

    Table 1 Main vibration peaks and vibration modes in FTIR spectra of the deposited films

    The film is scraped from the glass substrate to be further investigated by TEM and XRD.The results are displayed in Figs.5 and 6.From Fig.5,it can be seen that the average particle diameter of the film deposited at 100 W is about 80 nm.When the RF power is increased to 150 W,the average diameter of the film particles increases to be about 200 nm.The average size of the particles deposited at 150 W is more uniform than at 100 W.According to our deposition experiment,the plasma discharge can fill the whole reactor tube but is not as uniform at low power as that at high power.Therefore the size of the particles we get at low power is not as uniform as that we get at high power.Because the substrates were put just close to the electrodes,the larger diameter of some particles deposited at 150 W could be caused by the not so uniform discharge and deposition close to the electrodes.

    Figure 6 shows the XRD spectra of the films deposited at glass substrates.The crystallinity is different when the discharge power changes.The film is entirely amorphous when the RF power is 40 W.When the RF power is increased to 100 W,two weak peaks at 38.1°and 44.5°which belong to anatase phase A(004)and rutile phase R(210)of TiO2begin to appear(PCPDF Card,No.78-2486,No.82-0514),while keeping the broad diffraction peak of amorphous TiO2in the low angle range.This illustrates that the structure of the deposited film changes from amorphous TiO2to the structure with anatase and rutile TiO2.Combining with TEM observation,it is indicated that there is crystal particles embedded in the film matrix.It is also found that the two peaks become stronger when the RF power is 150 W,indicating that the crystallization become stronger with increasing the discharge power.It is believed that the substrate temperature and the dissociation of the monomer affected by the discharge power should be responsible for the structure transition of the film.The substrate temperature increases when the RF power increases because of the selfheating effect of the plasma,and the dissociation of the monomer becomes intense,making the deposited film changes from amorphism to crystallization with anatase and rutile phase.

    In order to make further comparison analyses,we carefully studied the XRD patterns of the film deposited at 150 W and then annealed at 500℃ at atmosphere.We found that more diffraction peaks appear.These peaks can be well indexed to TiO2anatase structures with(h,k,l)miller indices of(101),(004),(200),(105),(211),(204),and(215),except for the peak at 2θ=44.5°which belongs to the rutile structure with(h,k,l)miller indices of(210).This illustrates that the crystallization ofthe annealed film is morecompleteas compared with that of deposited film at 150 W.We have a further investigation of the film composition deposited at 150 W by elemental analyzer(EA).The result reveals that the deposited films from plasma enhanced chemical vapor deposition are mainly composed of Ti,C,and O as shown in Table 2.

    Table 2 Mass percentage of the elements in the deposited film at 150 W

    There is also H incorporated into the films.The all four elements found in EA are well corresponding with results observed in the FTIR spectrum.According to the analysis results,we can give the film structure formula as Ti0.3O2-C1.5H3.Because of the obvious TiO2crystal phase in XRD and inorganic nanoparticle as shown in TEM,the structure formula of the film deposited at 150 W could also be expressed as TiO2-C5H10O4.7.

    2.4 UV-Vis absorption

    The UV-Vis absorption spectra of the films are shown in Fig.7.The thickness of the nanoparticle films is 750,850,and 900 nm corresponding to the RF power 40,100,and 150 W,respectively.All films deposited at different RF discharge powers have strong absorption in the ultraviolet band below 320 nm,which is similar to that of TiO2film[37,38].Because the absorption in the UV area of the deposited film is so strong and exceeds the upper integrating limit of the UV-Vis instrument,all the absorbing signals above 6 are leveled to 6.But it displays that all the absorption in the UV area of the deposited film is very strong.With the film thickness decreases and the RF discharge power decreases,the absorption edge shows obvious blue shiftofabout 10 nm to 20 nm respectively.As corresponding with SEM and TEM results above,the size of the nanoparticles decreases from about 200 nm to 50 nm with the decrease of RF discharge power from 150 W to 40 W.Through the estimation of XRD spectrum by Debye-Scherrer equation,the size of anatase TiO2particle is about 25.9 nm at 100 W and 43.7 nm at 150 W.Therefore,it is believed that the quantum size effect caused by particle size is attributed to the blue shift of the UV-Vis absorption spectrum during decreasing the RF discharge power[39].

    Fig.7 UV-Vis absorption spectra of the nanoparticle films deposited with different RF powers:(a)40 W,(b)100 W,and(c)150 W

    3 Conclusions

    A kind of TixOy-CmHnnanoparticle films with WCA as high as(160±1)°were successfully fabricated from the mixture of TTIP and oxygen via the PECVD through one deposition cycle for 30 min.Surface morphology,hydrophobicity,chemicalstructure,chemicalcomposition,crystallity,and UV-Vis absorption were studied in dependence on discharge power to investigate the influence of discharge power on the structure and property of the deposited films through SEM,contact angle measurement,F(xiàn)TIR,EA TEM,XRD,and UV-Vis SEM and TEM.Results show that the surface of the film is characterized with 1-3 μm microsized papillae aggregated by nanoparticles with size from 50 nm to 200 nm,leading to the roughness of the surface.FTIR analysis indicated the existence of the Ti—O—Ti,Ti—O—C,C =O,—OH,and C—H bonds in all deposited films through their characteristic absorption bands from 800 cm-1to 400 cm-1,1 660 cm-1,3 000 cm-1to 3 500 cm-1and 1 388 cm-1,2 840 cm-1and 2 930 cm-1respectively.The XRD results confirmed the existence of anatase and rutile phase of TiO2with crystal size of about 25.9 nm in the film when the discharge power increased to 100 W.UV-Vis absorption spectrum displayed that all the deposited films showed similar strong absorption in the ultraviolet band below 320 nm to that of TiO2film.According to EA analysis,the chemical formula of the deposited film at 150 W could be expressed as Ti0.3O2-C1.5H3.Therefore it is believed that the film structure is piled together by rough micropapillae aggregated by complex inorganic and organic phase of nanoparticles with TiO2nanocrystals size of 43.7 nm.It is believed that the combination of the loose and rough micro/nano structure of the film and the introduction of organic residues lead to the film superhydrophobicity.And the TiO2nanocrystals in the complex film lead to the strong absorption in the ultraviolet band below 320 nm.

    [1]Schmidt-Stein F,Gnichwitz J F, Salonen J, et al.Electrochemical Wettability Control on Conductive TiO2Nanotube Surfaces Modified with a Ferrocene Redox System [J].Electrochemistry Communications,2009,11(10):2000-2003.

    [2]Nakata K,Udagawa K,Ochiai T,et al.Rapid Erasing of Wettability Patterns Based on TiO2-PDMS Composite Films[J].Materials Chemistry and Physics,2011,126(3):484-487.

    [3]Shirtcliffe N J,McHaleG,Newton M I,etal. Plastron Properties of a Superhydrophobic Surface[J].Applied Physics Letters,2006,89(10):104106-104107.

    [4]Song Y Y,Roy P,Paramasivam I,et al. Voltage-Induced Payload Release and Wettability Control on TiO2and TiO2Nanotubes[J].Angewandte Chemie,2010,122(2):361-364.

    [5]Shin D H,Shokuhfar T,Choi C K,et al.Wettability Changes of TiO2Nanotube Surfaces[J].Nanotechnology,2011,22(31):315704-315709.

    [6]Feng X J,Jiang L.Design and Creation of Super-Wetting/Dewetting Surfaces[J].Advanced Materials,2006,18(23):3063-3078.

    [7]Niu F,Zhang L S,Chen C Q,et al.Hydrophilic TiO2Porous Spheres Anchored on Hydrophobic Polypropylene Membrane for Wettability Induced High Photodegrading Activities [J].Nanoscale,2010,2(8):1480-1484.

    [8]Tang X H,Li D Y.Evaluation of Asphaltene Degradation on Highly Ordered TiO2NanotubularArraysviaVariationsin Wettability[J].Langmuir,2011,27(3):1218-1223.

    [9]Liu B,Aydil E S.Growth of Oriented Single-Crystalline Rutile TiO2Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells[J].Journal of the American Chemical Society,2009,131(11):3985-3990.

    [10]Wang S T,Song Y L,Jiang L.Photoresponsive Surfaces with Controllable Wettability[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2007,8(1):18-29.

    [11]Lee C Y,Hupp JT. Dye Sensitized SolarCells:TiO2Sensitization with a Bodipy-Porphyrin Antenna System [J].Langmuir,2010,26(5):3760-3765.

    [12]Satyaprasad A,Jain V, Nema S K.Deposition of Superhydrophobic Nanostructured Teflon-Like Coating Using Expanding Plasma Arc[J].Applied Surface Science,2007,253(12):5462-5466.

    [13]Wolcott A,Smith W A,Kuykendall T R,et al.Photoelectrochemical Water Splitting Using Dense and Aligned TiO2Nanorod Arrays[J].Small,2009,5(1):104-111.

    [14]Chen D H,Huang F Z,Cheng Y B,et al.Mesoporous Anatase TiO2Beads with High Surface Areas and Controllable Pore Sizes:a Superior Candidate for High-Performance Dye-Sensitized Solar Cells[J].Advanced Materials,2009,21(21):2206-2210.

    [15]Feng L,ZhangY N,XiJM,etal. PetalEffect:a Superhydrophobic State with High Adhesive Force [J].Langmuir,2008,24(8):4114-4119.

    [16]Gilma G O,Carlos A P M,F(xiàn)ernando M O,et al.Photocatalytic Degradation of Phenol on TiO2and TiO2/Pt Sensitized with Metallophthalocyanines[J].Catalysis Today,2005,107/108:589-594.

    [17]Yerokhin A L,Nie X,Leyland A,et al.Review:Plasma Electrolysis for Surface Engineering[J].Surface and Coatings Technology,1999,122(2/3):73-93.

    [18]O'Regan B,Gratzel M.A Low-Cost,High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2Films [J].Nature,1991,353(6346):737-740.

    [19]Parkin I P,Palgrave R G.Self-cleaning Coatings[J].Journal of Materials Chemistry,2005,15(17):1689-1695.

    [20]Wang C M,Lin S Y.Electrochromic Properties of Sputtered TiO2Thin Films[J].Journal of Solid State Electrochemistry,2006,10(4):255-259.

    [21]Ohko Y,Saitoh S,Tatsuma T,et al.Photoelectrochemical Anticorrosion and Self-cleaning Effects of a TiO2Coating for Type 304 Stainless Steel[J].Journal of the Electrochemical Society,2001,148(1):B24-B28.

    [22]Silva C G,F(xiàn)aria J L.Effect of Key Operational Parameters on the Photocatalytic Oxidation of Phenol by Nanocrystalline Sol-Gel TiO2under UV Irradiation[J].Journal of Molecular Catalysis A,2009,305(1/2):147-154.

    [23]Guan K S. Relationship between Photocatalytic Activity,Hydrophilicity and Self-cleaning Effect of TiO2/SiO2Films[J].Surface and Coatings Technology,2005,191(2/3):155-160.

    [24]Shi P,Ng W F,Wong M H,et al.Improvement of Corrosion Resistance of Pure Magnesium in Hanks'Solution by Microarc Oxidation with Sol-Gel TiO2Sealing[J].Journal of Alloys and Compounds,2009,469(1/2):286-292.

    [25]Balaur E,Macak J M,Taveira L,et al.Tailoring the Wettability of TiO2Nanotube Layers[J].Electrochemistry Communications,2005,7(10):1066-1070.

    [26]Feng X J,Zhai J,Jiang L.The Fabrication and Switchable Superhydrophobicity of TiO2Nanorod Films[J].Angewandte Chemie International Edition,2005,44(32):5115-5118.

    [27]Yamashita H,Nakao H,Takeuchi M,et al.Coating of TiO2Photocatalysts on Super-hydrophobic Porous Teflon Membrane by an Ion Assisted Deposition Method and Their Self-cleaning Performance[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,206:898-901.

    [28]Cassie A B D,Baxter S.Wettability of Porous Surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    [29]Kumar P M,Badrinarayanan S,Sastry M.Nanocrystalline TiO2Studied by Optical,F(xiàn)TIR and X-Ray Photoelectron Spectroscopy:Correlation to Presence of Surface States[J].Thin Solid Films,2000,358(1/2):122-130.

    [30]Socrates G.Infrared Characteristic Group Frequencies[M].2nd ed.USA:John Willey and Sons,1994:62.

    [31]Ivanova T,Harizanova A,Surtchev M. Formation and Investigation of Sol-Gel TiO2-V2O5System [J].Materials Letters,2002,55(5):327-333.

    [32]López T,Moreno J A,Gómez R,et al.Characterization of Iron-Doped Titania Sol-Gel Materials[J].Journal of Materials Chemistry,2002,12(3):714-718.

    [33]Harris M T,Singhal A,Look J L,et al.FTIR Spectroscopy,SAXS and Electrical Conductivity Studies of the Hydrolysis and Condensation of Zirconium and Titanium Alkoxides[J].Journal of Sol-Gel Science and Technology,1997,8(1/2/3):41-47.

    [34]Jensen H,Soloviev A,LiZ S,etal. XPS and FTIR Investigation of the Surface Properties of Different Prepared Titania Nano-powders[J].Applied Surface Science,2005,246(1/2/3):39-249.

    [35]Kalache B,Kosarev A I,Vanderhaghen R,etal. Ion Bombardment Effects on Microcrystalline Silicon Growth Mechanisms and on the Film Properties[J].Journal of Applied Physics,2003,93(2):1262-1274.

    [36]Ahn K H,Park Y B,Park D W.Kinetic and Mechanistic Study on the Chemical Vapor Deposition of Titanium Dioxide Thin Films by in situ FT-IR Using TTIP[J].Surface and Coatings Technology,2003,171(1/2/3):198-204.

    [37]Christy P D,Jothi N S N,Melikechi N,et al.Synthesis,Structural and Optical Properties of Well Dispersed Anatase TiO2Nanoparticles by Non-hydrothermalMethod [J]. Crystal Research and Technology,2009,44(5):484-488.

    [38]Yu J G,WangW G,ChengB,etal. Enhancementof Photocatalytic Activity of Mesoporous TiO2Powders by Hydrothermal Surface Fluorination Treatment[J].Journal of Physical Chemistry C,2009,113(16):6743-6750.

    [39]Ding Z,Hu X J,Lu G Q,et al.Novel Silica Gel Supported TiO2Photocatalyst Synthesised by CVD Method [J].Langmuir,2000,16(15):6216-6222.

    猜你喜歡
    建軍
    慶祝建軍95周年
    Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
    GENERALIZED CES`ARO OPERATORS ON DIRICHLET-TYPE SPACES*
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    古建軍
    無論等多久
    建軍90周年有感
    中華魂(2017年8期)2017-11-22 12:21:09
    建軍90周年
    綠色中國(2017年15期)2017-01-25 08:55:36
    Experimental investigation of velocity fluctuations in a radial diffuser pump*
    Totally laparoscopic Billroth Ⅱ gastrectomy without intracorporeal hand-sewn sutures
    精品少妇黑人巨大在线播放| 国产精品麻豆人妻色哟哟久久| 99国产精品99久久久久| 亚洲伊人色综图| svipshipincom国产片| 人妻 亚洲 视频| 亚洲国产毛片av蜜桃av| 岛国在线观看网站| 日韩大片免费观看网站| 日韩有码中文字幕| 男人舔女人的私密视频| 亚洲自偷自拍图片 自拍| 亚洲五月婷婷丁香| 如日韩欧美国产精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲av日韩精品久久久久久密| 黑人巨大精品欧美一区二区mp4| 午夜激情av网站| 国产1区2区3区精品| 亚洲国产看品久久| 日韩制服丝袜自拍偷拍| 巨乳人妻的诱惑在线观看| a级片在线免费高清观看视频| 日韩 欧美 亚洲 中文字幕| 亚洲自偷自拍图片 自拍| 午夜成年电影在线免费观看| 日韩中文字幕视频在线看片| 久久性视频一级片| 汤姆久久久久久久影院中文字幕| 日本一区二区免费在线视频| 国产激情久久老熟女| 久久 成人 亚洲| 精品一区在线观看国产| 午夜精品久久久久久毛片777| 国产伦人伦偷精品视频| 亚洲av日韩在线播放| 亚洲人成77777在线视频| 亚洲七黄色美女视频| 日韩欧美一区二区三区在线观看 | 丝袜脚勾引网站| 午夜成年电影在线免费观看| 亚洲人成电影免费在线| 亚洲av日韩精品久久久久久密| 久热这里只有精品99| 久久精品国产亚洲av香蕉五月 | 亚洲欧美成人综合另类久久久| 18禁裸乳无遮挡动漫免费视频| 久久精品成人免费网站| 女人久久www免费人成看片| 日韩欧美国产一区二区入口| 99国产精品99久久久久| 国产在视频线精品| 免费在线观看影片大全网站| 精品亚洲成国产av| 久久毛片免费看一区二区三区| 日韩视频一区二区在线观看| 国产真人三级小视频在线观看| 久久久欧美国产精品| 最近最新中文字幕大全免费视频| 一进一出抽搐动态| 国产片内射在线| 岛国在线观看网站| 亚洲精品在线美女| 欧美精品高潮呻吟av久久| 五月开心婷婷网| 黄片大片在线免费观看| 十八禁网站网址无遮挡| 交换朋友夫妻互换小说| 桃红色精品国产亚洲av| 超色免费av| 午夜精品久久久久久毛片777| av网站免费在线观看视频| av网站免费在线观看视频| 国产av又大| 大香蕉久久成人网| 久久这里只有精品19| 热99re8久久精品国产| 国产黄频视频在线观看| 日本黄色日本黄色录像| 国产精品久久久av美女十八| 欧美日本中文国产一区发布| 又大又爽又粗| 久久久久久久久久久久大奶| 国产成人一区二区三区免费视频网站| 91麻豆av在线| 久久国产精品人妻蜜桃| 一本色道久久久久久精品综合| 国产精品一区二区免费欧美 | 亚洲男人天堂网一区| 性高湖久久久久久久久免费观看| 高清黄色对白视频在线免费看| 亚洲精品一二三| 热99久久久久精品小说推荐| 黄频高清免费视频| 大香蕉久久成人网| 久久人妻熟女aⅴ| 久久久久久久久久久久大奶| 爱豆传媒免费全集在线观看| 真人做人爱边吃奶动态| av天堂久久9| 丁香六月欧美| 欧美日韩av久久| 久久精品亚洲熟妇少妇任你| 天天躁日日躁夜夜躁夜夜| 中文字幕精品免费在线观看视频| 我要看黄色一级片免费的| 在线十欧美十亚洲十日本专区| 丰满人妻熟妇乱又伦精品不卡| 亚洲色图 男人天堂 中文字幕| 国产又色又爽无遮挡免| 99精国产麻豆久久婷婷| 一进一出抽搐动态| 精品欧美一区二区三区在线| 亚洲国产精品一区三区| 丰满迷人的少妇在线观看| 久久综合国产亚洲精品| av国产精品久久久久影院| 久久青草综合色| 9191精品国产免费久久| 麻豆乱淫一区二区| 咕卡用的链子| 亚洲精品乱久久久久久| 一级片'在线观看视频| 人人妻人人添人人爽欧美一区卜| 亚洲午夜精品一区,二区,三区| 中国国产av一级| 九色亚洲精品在线播放| 久久久久久久国产电影| 国产精品二区激情视频| 天天添夜夜摸| a级毛片在线看网站| 各种免费的搞黄视频| 久久99热这里只频精品6学生| 黄色视频在线播放观看不卡| 97在线人人人人妻| av有码第一页| 午夜精品久久久久久毛片777| 国产欧美日韩综合在线一区二区| 成人影院久久| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 嫁个100分男人电影在线观看| 久久综合国产亚洲精品| 乱人伦中国视频| 免费观看av网站的网址| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网 | 日本撒尿小便嘘嘘汇集6| 黑人操中国人逼视频| 亚洲少妇的诱惑av| 国产黄色免费在线视频| 热re99久久国产66热| 在线观看人妻少妇| 国产精品成人在线| 又黄又粗又硬又大视频| 黄片小视频在线播放| 大香蕉久久成人网| 一本综合久久免费| 久久久精品免费免费高清| 两性夫妻黄色片| 国产99久久九九免费精品| 免费在线观看影片大全网站| 国产免费福利视频在线观看| 人人妻人人添人人爽欧美一区卜| 久久国产精品男人的天堂亚洲| 久久久久网色| 在线观看免费视频网站a站| 国产精品成人在线| 两性午夜刺激爽爽歪歪视频在线观看 | 嫩草影视91久久| 99re6热这里在线精品视频| av片东京热男人的天堂| 国产亚洲一区二区精品| 国产一区二区三区在线臀色熟女 | 久久久国产欧美日韩av| 黄片大片在线免费观看| 脱女人内裤的视频| 啦啦啦免费观看视频1| 午夜福利在线观看吧| 中文字幕最新亚洲高清| 亚洲成人免费av在线播放| 免费观看人在逋| 2018国产大陆天天弄谢| 亚洲 国产 在线| 天天添夜夜摸| 久久久久精品国产欧美久久久 | 亚洲精品久久久久久婷婷小说| 精品国内亚洲2022精品成人 | 91麻豆av在线| 亚洲熟女毛片儿| 国产精品久久久久久精品古装| 午夜福利视频在线观看免费| 一级,二级,三级黄色视频| av在线播放精品| 欧美在线黄色| 欧美亚洲 丝袜 人妻 在线| 99久久99久久久精品蜜桃| 国产成人系列免费观看| 成人手机av| 又黄又粗又硬又大视频| 女人久久www免费人成看片| 熟女少妇亚洲综合色aaa.| 午夜两性在线视频| 最近中文字幕2019免费版| 欧美另类一区| 亚洲成人免费av在线播放| 最近最新免费中文字幕在线| 男男h啪啪无遮挡| 成年动漫av网址| 精品熟女少妇八av免费久了| 又黄又粗又硬又大视频| 日韩熟女老妇一区二区性免费视频| 人妻久久中文字幕网| 建设人人有责人人尽责人人享有的| 一个人免费在线观看的高清视频 | 免费少妇av软件| 国产精品成人在线| av免费在线观看网站| 国产91精品成人一区二区三区 | 热re99久久国产66热| 少妇被粗大的猛进出69影院| 亚洲伊人久久精品综合| 蜜桃国产av成人99| 亚洲欧美精品自产自拍| 精品高清国产在线一区| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 久久久久国产精品人妻一区二区| 狠狠婷婷综合久久久久久88av| 成人18禁高潮啪啪吃奶动态图| 无遮挡黄片免费观看| 又大又爽又粗| 精品国产国语对白av| 亚洲第一青青草原| 日韩中文字幕视频在线看片| 精品人妻1区二区| 视频在线观看一区二区三区| 一级毛片女人18水好多| 久久精品国产亚洲av香蕉五月 | 99精品久久久久人妻精品| 不卡av一区二区三区| 国产又色又爽无遮挡免| 亚洲精品国产一区二区精华液| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 精品少妇久久久久久888优播| 亚洲欧美色中文字幕在线| 制服诱惑二区| 日韩中文字幕欧美一区二区| 国产主播在线观看一区二区| 国产成人免费观看mmmm| 婷婷色av中文字幕| 桃红色精品国产亚洲av| 日韩免费高清中文字幕av| 一本一本久久a久久精品综合妖精| 亚洲精华国产精华精| 中文字幕av电影在线播放| 精品人妻在线不人妻| 99热网站在线观看| 久久久久久久大尺度免费视频| 亚洲激情五月婷婷啪啪| 欧美日韩精品网址| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 在线观看免费视频网站a站| 免费不卡黄色视频| 国产精品久久久久久精品古装| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 亚洲国产精品999| 大片电影免费在线观看免费| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 国产精品99久久99久久久不卡| 在线天堂中文资源库| 中文精品一卡2卡3卡4更新| 黑人巨大精品欧美一区二区蜜桃| 桃红色精品国产亚洲av| 欧美日韩av久久| 久久人妻福利社区极品人妻图片| 国产成人免费无遮挡视频| 另类亚洲欧美激情| 91麻豆av在线| 丁香六月天网| 两人在一起打扑克的视频| 五月天丁香电影| 国产精品九九99| 亚洲国产中文字幕在线视频| 日本五十路高清| 俄罗斯特黄特色一大片| 50天的宝宝边吃奶边哭怎么回事| 欧美97在线视频| 99热网站在线观看| 午夜免费成人在线视频| 成年人黄色毛片网站| 欧美激情久久久久久爽电影 | 成人国产av品久久久| 欧美 亚洲 国产 日韩一| 久久毛片免费看一区二区三区| 久久久久国内视频| 国产国语露脸激情在线看| 久久精品国产亚洲av香蕉五月 | 下体分泌物呈黄色| 亚洲精品美女久久久久99蜜臀| 亚洲精品一二三| 菩萨蛮人人尽说江南好唐韦庄| 欧美激情久久久久久爽电影 | 日韩免费高清中文字幕av| 欧美黑人精品巨大| 亚洲av欧美aⅴ国产| 黄色a级毛片大全视频| 欧美日韩黄片免| 午夜福利免费观看在线| 亚洲精品乱久久久久久| 麻豆乱淫一区二区| 国产成人精品在线电影| 美女扒开内裤让男人捅视频| 国产视频一区二区在线看| 国产精品二区激情视频| 热99re8久久精品国产| 国产精品久久久久久精品电影小说| 十八禁网站网址无遮挡| 亚洲国产欧美在线一区| 亚洲精品国产区一区二| 成人亚洲精品一区在线观看| 国产成人欧美在线观看 | 国产有黄有色有爽视频| 欧美人与性动交α欧美精品济南到| 伦理电影免费视频| 纯流量卡能插随身wifi吗| 男女免费视频国产| 91精品国产国语对白视频| 1024香蕉在线观看| 久久这里只有精品19| 精品国产超薄肉色丝袜足j| 欧美午夜高清在线| 中文字幕人妻熟女乱码| 高清欧美精品videossex| 国产精品麻豆人妻色哟哟久久| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9 | 永久免费av网站大全| 精品国产乱子伦一区二区三区 | 各种免费的搞黄视频| 国产视频一区二区在线看| 亚洲精品粉嫩美女一区| 日韩一卡2卡3卡4卡2021年| 欧美性长视频在线观看| 亚洲成人国产一区在线观看| 精品熟女少妇八av免费久了| 欧美人与性动交α欧美软件| 国产精品香港三级国产av潘金莲| 91国产中文字幕| 精品久久久精品久久久| 久久中文看片网| 久久香蕉激情| 欧美人与性动交α欧美软件| 丝袜美腿诱惑在线| 亚洲国产欧美网| 国产欧美日韩精品亚洲av| 正在播放国产对白刺激| 日韩欧美一区二区三区在线观看 | 大香蕉久久成人网| 黄色 视频免费看| 亚洲色图 男人天堂 中文字幕| 国产视频一区二区在线看| av网站免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 在线天堂中文资源库| 一区二区三区四区激情视频| 美女高潮到喷水免费观看| 国产一区二区 视频在线| 欧美黑人精品巨大| 欧美另类一区| 午夜福利,免费看| 青青草视频在线视频观看| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| h视频一区二区三区| 免费久久久久久久精品成人欧美视频| 国产又爽黄色视频| 免费av中文字幕在线| 午夜福利乱码中文字幕| 99久久国产精品久久久| 久久精品亚洲熟妇少妇任你| 国产一卡二卡三卡精品| 新久久久久国产一级毛片| 亚洲性夜色夜夜综合| √禁漫天堂资源中文www| 不卡一级毛片| 色94色欧美一区二区| 777米奇影视久久| 天天躁夜夜躁狠狠躁躁| 国产精品偷伦视频观看了| 黑人操中国人逼视频| 精品人妻在线不人妻| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 久久久久久亚洲精品国产蜜桃av| 97人妻天天添夜夜摸| 午夜福利免费观看在线| 中国国产av一级| 考比视频在线观看| 少妇的丰满在线观看| 另类精品久久| 国产成人影院久久av| 老司机深夜福利视频在线观看 | 一区在线观看完整版| 国产精品一区二区精品视频观看| 亚洲,欧美精品.| 日本vs欧美在线观看视频| 激情视频va一区二区三区| 国产精品自产拍在线观看55亚洲 | 亚洲黑人精品在线| 亚洲av电影在线观看一区二区三区| 丝瓜视频免费看黄片| 成人手机av| 777久久人妻少妇嫩草av网站| 国产真人三级小视频在线观看| 成人手机av| 亚洲精品成人av观看孕妇| 满18在线观看网站| 精品久久久精品久久久| 久久女婷五月综合色啪小说| 久久国产精品人妻蜜桃| 99久久国产精品久久久| 老鸭窝网址在线观看| 啦啦啦在线免费观看视频4| 美女午夜性视频免费| 69精品国产乱码久久久| 国产亚洲av高清不卡| 免费观看人在逋| 久久青草综合色| 亚洲,欧美精品.| 多毛熟女@视频| 在线观看一区二区三区激情| 黄色片一级片一级黄色片| 久久久久网色| 少妇裸体淫交视频免费看高清 | 久久精品成人免费网站| 在线观看舔阴道视频| 亚洲欧美色中文字幕在线| 人妻久久中文字幕网| 亚洲精品久久成人aⅴ小说| 中国国产av一级| 亚洲精品粉嫩美女一区| 99久久99久久久精品蜜桃| 国产av精品麻豆| a级毛片黄视频| 免费人妻精品一区二区三区视频| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 国产成人系列免费观看| √禁漫天堂资源中文www| 男女床上黄色一级片免费看| 一级毛片精品| 国产精品.久久久| 久久精品国产综合久久久| 免费观看人在逋| 久久久久网色| tocl精华| 乱人伦中国视频| 老司机福利观看| 国产免费av片在线观看野外av| 精品第一国产精品| 午夜福利在线免费观看网站| 精品久久久精品久久久| 1024视频免费在线观看| 18禁观看日本| 久久久国产一区二区| a级片在线免费高清观看视频| 人人澡人人妻人| 国产欧美日韩精品亚洲av| 美女福利国产在线| 亚洲一码二码三码区别大吗| 国产精品一二三区在线看| 一区二区av电影网| 丝袜喷水一区| 久久国产精品人妻蜜桃| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 久久天堂一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| av视频免费观看在线观看| 黄色怎么调成土黄色| videosex国产| 欧美性长视频在线观看| 中亚洲国语对白在线视频| 另类精品久久| 一本色道久久久久久精品综合| 他把我摸到了高潮在线观看 | 亚洲av成人不卡在线观看播放网 | 日韩,欧美,国产一区二区三区| 亚洲精品国产av成人精品| 免费看十八禁软件| 婷婷成人精品国产| 三级毛片av免费| 国产一区有黄有色的免费视频| 制服人妻中文乱码| 成人亚洲精品一区在线观看| 午夜激情av网站| av福利片在线| 精品视频人人做人人爽| 国产av国产精品国产| 性色av乱码一区二区三区2| 狂野欧美激情性bbbbbb| 午夜老司机福利片| 国产又爽黄色视频| 午夜免费鲁丝| 亚洲精品中文字幕一二三四区 | 日韩,欧美,国产一区二区三区| 又黄又粗又硬又大视频| 欧美精品一区二区免费开放| 丝袜喷水一区| 黄色a级毛片大全视频| 免费高清在线观看日韩| 亚洲精品第二区| 亚洲天堂av无毛| 日本欧美视频一区| av国产精品久久久久影院| 亚洲av日韩在线播放| 欧美亚洲日本最大视频资源| 十分钟在线观看高清视频www| 18禁国产床啪视频网站| 搡老熟女国产l中国老女人| 成年美女黄网站色视频大全免费| 久久久精品区二区三区| 中文字幕色久视频| 亚洲国产精品999| 美国免费a级毛片| 桃红色精品国产亚洲av| 精品人妻1区二区| √禁漫天堂资源中文www| 性高湖久久久久久久久免费观看| av免费在线观看网站| 美女主播在线视频| 啦啦啦免费观看视频1| 亚洲情色 制服丝袜| 精品国产一区二区三区久久久樱花| 亚洲精品第二区| 亚洲av男天堂| 美女高潮喷水抽搐中文字幕| 91精品伊人久久大香线蕉| 日韩欧美免费精品| 国产亚洲av高清不卡| 热99re8久久精品国产| 男女无遮挡免费网站观看| 免费一级毛片在线播放高清视频 | 久久午夜综合久久蜜桃| 香蕉丝袜av| 日韩一区二区三区影片| 日韩一卡2卡3卡4卡2021年| 国产精品久久久av美女十八| 国产99久久九九免费精品| 天天添夜夜摸| 曰老女人黄片| 制服诱惑二区| 精品视频人人做人人爽| 国产成人a∨麻豆精品| 亚洲黑人精品在线| 国产成人欧美| 午夜激情久久久久久久| 精品少妇黑人巨大在线播放| 欧美激情久久久久久爽电影 | 黄色毛片三级朝国网站| av超薄肉色丝袜交足视频| 欧美精品啪啪一区二区三区 | 男人爽女人下面视频在线观看| 久久精品久久久久久噜噜老黄| av视频免费观看在线观看| 在线观看舔阴道视频| 国产福利在线免费观看视频| 精品福利观看| 中文字幕人妻熟女乱码| 国产精品久久久人人做人人爽| 热re99久久国产66热| 嫁个100分男人电影在线观看| 国产日韩欧美亚洲二区| 亚洲欧美日韩高清在线视频 | www.熟女人妻精品国产| 国产亚洲欧美在线一区二区| 欧美日韩av久久| 日韩一卡2卡3卡4卡2021年| 久久天堂一区二区三区四区| 黑人操中国人逼视频| 这个男人来自地球电影免费观看| 老熟女久久久| 亚洲国产精品一区三区| 国产成人精品无人区| 日韩欧美国产一区二区入口| 免费久久久久久久精品成人欧美视频| 岛国毛片在线播放| 国产精品一区二区精品视频观看| 国产成人一区二区三区免费视频网站| 国产精品久久久人人做人人爽| 9191精品国产免费久久| 制服诱惑二区| 久久精品国产亚洲av香蕉五月 | 午夜日韩欧美国产| 丝袜人妻中文字幕| 亚洲第一av免费看| 黄色a级毛片大全视频| 日本a在线网址| 飞空精品影院首页| 正在播放国产对白刺激| 美女脱内裤让男人舔精品视频| 老汉色∧v一级毛片| 国产亚洲欧美精品永久| 捣出白浆h1v1| 精品少妇一区二区三区视频日本电影| 最黄视频免费看| 国产精品久久久人人做人人爽| 欧美日韩国产mv在线观看视频| 久9热在线精品视频|