• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrophobic TixOy-CmHnNanoparticle Film Prepared by Plasma Enhanced Chemical Vapor Deposition

    2012-02-07 07:46:56WANGDexin王德信XUJinzhou徐金洲LIUWeiGUOYingYANGQinyu楊沁玉DINGKeSHIJianjun石建軍ZHANGJing
    關(guān)鍵詞:建軍

    WANG De-xin(王德信),XU Jin-zhou(徐金洲),LIU Wei(劉 偉),GUO Ying(郭 穎),YANG Qinyu(楊沁玉),DING Ke(丁 可),SHI Jian-jun(石建軍),ZHANG Jing(張 菁)*

    1 College of Material Science and Engineering,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,Shanghai 201620,China

    2 College of Science,Donghua University,Shanghai 201620,China

    Introduction

    The control of surface wettability is important for many biological processes and industrial applications[1-8].In recent years,hydrophobic surfaces,with a water contact angle(WCA)greater than 90°,have attracted considerable interests in their fundamental research and practical applications[9-14].Generally,there are two hydrophobic surfacesin nature corresponding with Wenzel's state and Cassie's state.The former is the wet-contact mode of water and rough surface,where water droplets sit suspended on the surface and can not roll off even with a 180°tilt while the later represents a nonwetcontact mode and water droplets can roll off easily owing to the low contact angle hysteresis[15].

    TiO2,which exhibits high chemical stability,avirulence,and strong photo induced oxidation,has been studied intensively due to their applications in optical coatings,gas sensors,smart windows and photocatalysts[16],biomedical materials,and dyesensitized solar cells[17,18].Many efforts have been done to fabricate hydrophobic TiO2films.They are especially useful as hydrophobic ultraviolet absorbing coating on protection cover,electrochromic glass or as photocatalyst for diluted hydrophobic organic compounds in water[19,20].It is expected that the TiO2film could be unique self-cleaning so that the surface coated with such film can be maintained clean under circumstance of sunlight,rainfall,and other stains[21-23].Various methods have been developed so far for the fabrication of TiO2films with selfcleaning performance,such as so-gel[22,24],electrochemical anodization[25],hydrothermal treatment[26],and ion assisted deposition[27].In most of the cases,however,the surface of the film is hydrophilic.Here,we report the preparation of hydrophobic TixOy-CmHnnanoparticle film via RF plasma enhanced chemical vapor deposition(PECVD)from the mixture of the titanium isopropoxide(TTIP)and oxygen through one deposition cycle for short time.This hydrophobic TixOy-CmHnfilm is composed of micropapillae with average size 1-3 μm which are aggregated by inorganic and organic phases of nanoparticles with size of 50-200 nm.The organic CmHnis incorporated in the film in the deposition process.This makes the film present hydrophobicity with WCA exceeding 160°,and ultraviolet absorption and X-Ray diffraction(XRD)spectrum are similar with TiO2nanoparticle film.

    1 Experimental

    The apparatus used for the film deposition is shown in Fig.1.The deposition was carried out in a glass cylindrical reactor with a diameter of 8 cm.Two arc copper sheets with the size of 6 cm2×8 cm2were used as electrode and located oppositely outside glass reactor.The substrates were placed on a glass platform in the discharge zone apart from the electrodes.The RF power with frequency of 13.56 MHz(American Advance Energy Inc(PF-10S System))was delivered to the system through an automatic matching network.The monomer was TTIP with a purity of 98%.The substrates of glass slides(2 cm2× 2 cm2)were ultrasonically cleaned in acetone,ethyl,ethanol,and deionized water for 20 min,respectively,to remove the surface containment before being put into the reactor.

    The system was pumped to a base pressure of 8.5 ×10-1Pa before igniting the discharge.The substrate was exposed to argon discharge plasma for about 10 min to provide an additional surface cleaning.Then the precursor heated at 60℃constant temperature by a water bath was introduced to the discharge zone through oxygen carrier gas.The flow rate of the oxygen was 10 sccm controlled by a mass flow controller.The system pressure was stabilized by continuous flow of the monomer vapor and kept at(35±2)Pa.The RF discharge powers were varied in the deposition process from 40 W to 150 W.The deposition time was about 30 min.

    Fig.1 Schematic of the set-up used for film deposition

    The chemical content of film was analyzed by elemental analyzer(EA,VarioEL,Elementar,Germany). The morphology and crystallization structure analysis of the film were done using scanning electron microscope(SEM,JSM-5600 LV,JEOL,Japan),transmission electron microscope(TEM,JEM-2100 F,JEOL,Japan),and XRD(D/Max-2550 PC,RIGAKU,Japan),respectively.Further investigations about the chemical structure were carried out by Fourier transform infrared spectrometer(FTIR,NEXUS-670,Nicolet,America).The double-beam UV-Vis spectrometer(Lambda 35,Perkin Elmer,America)was used to study the optical properties of the deposited films.The WCA measurement was carried out in a computer-video-processed goniometer(JC2000A,Powereach,Shanghai,China).

    2 Results and Discussion

    2.1 Surface hydrophobicity

    The changes ofWCA with the discharge power are displayed in Fig.2.It's obvious that all deposited film surfaces are hydrophobic with WCA varying from 130°to 160°when the discharge power changes from 40 W to 180 W.The WCA increases with increasing the RF discharge power and reaches the maximum value when the RF discharge power is 150 W.Then the WCA decreases if the RF discharge power increases continuously.

    Fig.2 The WCA of the films varied with discharge powers According to Wenzel equation

    where θris the contact angle on the rough surface,θsis the contact angle on the smooth surface,and r is the roughness correction factor.r equals the ratio of the surface actual area to the apparent project area.When θsis less than π/2,cos θsis greater than 0 and less than 1,and θrdecreases as r increases.When θsis greater than π/2,cos θsis less than 0,and θrincreases as r increases.Because all WCAs for the deposited films were greater than π /2 and increased with power,it's estimated that r increased along with the discharge power and the roughnessofthe deposited filmscontributed to the hydrophobicity of the films.

    2.2 Surface morphology

    Figure 3 shows the SEM images of as-deposited films with different RF powers,and Figs.3(d),(e),and(f)are the magnified SEM images corresponding to Figs.3(a),(b),and(c).The surface of the films is covered with average size 1-3 μm micropapillae aggregated by small nanoparticles. The relativelymagnified SEM imagesclearly revealthatthe nanoparticle size ranges from 50 nm to 200 nm.From Figs.3(d),(e),and(f),the size of the nanoparticles increases with the increase of RF discharge power.The surface of the film exhibits loose and rough structure rather than dense aggregating.There are also many pores among the micropapillae.These pores are believed to do favor to the surface hydrophobicity:the air is trapped within the pores so that the droplet can not penetrate into the pores and sits suspended on the peaks of the micropapillae while the surface remains dry below[28].According to the Wenzel equation,this kind of loose and rough structure contributes to the hydrophobicity of the film.

    2.3 Chemical composition and structure

    The infrared spectra of the films deposited from the mixture gases of TTIP and O2are shown in Fig.4.

    Fig.4 Infrared spectra of the films deposited with different RF powers:(a)40 W,(b)100 W,and(c)150 W

    The main vibration peaks and its vibration modes are listed in Table 1.As shown in Fig.4,all IR spectra of the deposited films with different RF discharge powers exhibit a strong absorption band at 3 150 cm-1attributed to the stretching vibration of—OH,indicating the combination of O and H from the precursor molecules or the unassociated—OH groups strongly absorbed in the deposited films[29,30].Absorption peaks at 2 930 and 2 840 cm-1are thought to be the C—H stretching vibration bands[31].The C=O stretching vibration is found at 1 660 cm-1.The bending vibration of C—H is shown at 1 388 cm-1.The C—H bending and stretching vibration bands mentioned above strongly confirm the existence of the C—H bonds[32].Furthermore,the peak at 1 080 cm-1has been identified to be Ti—O—C stretching vibration in the deposited film[33].The observation of Ti—O—C,C =O,—OH,and C—H bonds in the FTIR spectra of the deposited film indicates the introduction of the organic groups in the film deposition process[34].The broad absorption band from 800 cm-1to 400 cm-1obviously belongs to the Ti—O—Ti groups similar to the bulk TiO2frequency region,while the FTIR of the TTIP precursor only showsa narrow absorption band at616 cm-1[35,36].

    Table 1 Main vibration peaks and vibration modes in FTIR spectra of the deposited films

    The film is scraped from the glass substrate to be further investigated by TEM and XRD.The results are displayed in Figs.5 and 6.From Fig.5,it can be seen that the average particle diameter of the film deposited at 100 W is about 80 nm.When the RF power is increased to 150 W,the average diameter of the film particles increases to be about 200 nm.The average size of the particles deposited at 150 W is more uniform than at 100 W.According to our deposition experiment,the plasma discharge can fill the whole reactor tube but is not as uniform at low power as that at high power.Therefore the size of the particles we get at low power is not as uniform as that we get at high power.Because the substrates were put just close to the electrodes,the larger diameter of some particles deposited at 150 W could be caused by the not so uniform discharge and deposition close to the electrodes.

    Figure 6 shows the XRD spectra of the films deposited at glass substrates.The crystallinity is different when the discharge power changes.The film is entirely amorphous when the RF power is 40 W.When the RF power is increased to 100 W,two weak peaks at 38.1°and 44.5°which belong to anatase phase A(004)and rutile phase R(210)of TiO2begin to appear(PCPDF Card,No.78-2486,No.82-0514),while keeping the broad diffraction peak of amorphous TiO2in the low angle range.This illustrates that the structure of the deposited film changes from amorphous TiO2to the structure with anatase and rutile TiO2.Combining with TEM observation,it is indicated that there is crystal particles embedded in the film matrix.It is also found that the two peaks become stronger when the RF power is 150 W,indicating that the crystallization become stronger with increasing the discharge power.It is believed that the substrate temperature and the dissociation of the monomer affected by the discharge power should be responsible for the structure transition of the film.The substrate temperature increases when the RF power increases because of the selfheating effect of the plasma,and the dissociation of the monomer becomes intense,making the deposited film changes from amorphism to crystallization with anatase and rutile phase.

    In order to make further comparison analyses,we carefully studied the XRD patterns of the film deposited at 150 W and then annealed at 500℃ at atmosphere.We found that more diffraction peaks appear.These peaks can be well indexed to TiO2anatase structures with(h,k,l)miller indices of(101),(004),(200),(105),(211),(204),and(215),except for the peak at 2θ=44.5°which belongs to the rutile structure with(h,k,l)miller indices of(210).This illustrates that the crystallization ofthe annealed film is morecompleteas compared with that of deposited film at 150 W.We have a further investigation of the film composition deposited at 150 W by elemental analyzer(EA).The result reveals that the deposited films from plasma enhanced chemical vapor deposition are mainly composed of Ti,C,and O as shown in Table 2.

    Table 2 Mass percentage of the elements in the deposited film at 150 W

    There is also H incorporated into the films.The all four elements found in EA are well corresponding with results observed in the FTIR spectrum.According to the analysis results,we can give the film structure formula as Ti0.3O2-C1.5H3.Because of the obvious TiO2crystal phase in XRD and inorganic nanoparticle as shown in TEM,the structure formula of the film deposited at 150 W could also be expressed as TiO2-C5H10O4.7.

    2.4 UV-Vis absorption

    The UV-Vis absorption spectra of the films are shown in Fig.7.The thickness of the nanoparticle films is 750,850,and 900 nm corresponding to the RF power 40,100,and 150 W,respectively.All films deposited at different RF discharge powers have strong absorption in the ultraviolet band below 320 nm,which is similar to that of TiO2film[37,38].Because the absorption in the UV area of the deposited film is so strong and exceeds the upper integrating limit of the UV-Vis instrument,all the absorbing signals above 6 are leveled to 6.But it displays that all the absorption in the UV area of the deposited film is very strong.With the film thickness decreases and the RF discharge power decreases,the absorption edge shows obvious blue shiftofabout 10 nm to 20 nm respectively.As corresponding with SEM and TEM results above,the size of the nanoparticles decreases from about 200 nm to 50 nm with the decrease of RF discharge power from 150 W to 40 W.Through the estimation of XRD spectrum by Debye-Scherrer equation,the size of anatase TiO2particle is about 25.9 nm at 100 W and 43.7 nm at 150 W.Therefore,it is believed that the quantum size effect caused by particle size is attributed to the blue shift of the UV-Vis absorption spectrum during decreasing the RF discharge power[39].

    Fig.7 UV-Vis absorption spectra of the nanoparticle films deposited with different RF powers:(a)40 W,(b)100 W,and(c)150 W

    3 Conclusions

    A kind of TixOy-CmHnnanoparticle films with WCA as high as(160±1)°were successfully fabricated from the mixture of TTIP and oxygen via the PECVD through one deposition cycle for 30 min.Surface morphology,hydrophobicity,chemicalstructure,chemicalcomposition,crystallity,and UV-Vis absorption were studied in dependence on discharge power to investigate the influence of discharge power on the structure and property of the deposited films through SEM,contact angle measurement,F(xiàn)TIR,EA TEM,XRD,and UV-Vis SEM and TEM.Results show that the surface of the film is characterized with 1-3 μm microsized papillae aggregated by nanoparticles with size from 50 nm to 200 nm,leading to the roughness of the surface.FTIR analysis indicated the existence of the Ti—O—Ti,Ti—O—C,C =O,—OH,and C—H bonds in all deposited films through their characteristic absorption bands from 800 cm-1to 400 cm-1,1 660 cm-1,3 000 cm-1to 3 500 cm-1and 1 388 cm-1,2 840 cm-1and 2 930 cm-1respectively.The XRD results confirmed the existence of anatase and rutile phase of TiO2with crystal size of about 25.9 nm in the film when the discharge power increased to 100 W.UV-Vis absorption spectrum displayed that all the deposited films showed similar strong absorption in the ultraviolet band below 320 nm to that of TiO2film.According to EA analysis,the chemical formula of the deposited film at 150 W could be expressed as Ti0.3O2-C1.5H3.Therefore it is believed that the film structure is piled together by rough micropapillae aggregated by complex inorganic and organic phase of nanoparticles with TiO2nanocrystals size of 43.7 nm.It is believed that the combination of the loose and rough micro/nano structure of the film and the introduction of organic residues lead to the film superhydrophobicity.And the TiO2nanocrystals in the complex film lead to the strong absorption in the ultraviolet band below 320 nm.

    [1]Schmidt-Stein F,Gnichwitz J F, Salonen J, et al.Electrochemical Wettability Control on Conductive TiO2Nanotube Surfaces Modified with a Ferrocene Redox System [J].Electrochemistry Communications,2009,11(10):2000-2003.

    [2]Nakata K,Udagawa K,Ochiai T,et al.Rapid Erasing of Wettability Patterns Based on TiO2-PDMS Composite Films[J].Materials Chemistry and Physics,2011,126(3):484-487.

    [3]Shirtcliffe N J,McHaleG,Newton M I,etal. Plastron Properties of a Superhydrophobic Surface[J].Applied Physics Letters,2006,89(10):104106-104107.

    [4]Song Y Y,Roy P,Paramasivam I,et al. Voltage-Induced Payload Release and Wettability Control on TiO2and TiO2Nanotubes[J].Angewandte Chemie,2010,122(2):361-364.

    [5]Shin D H,Shokuhfar T,Choi C K,et al.Wettability Changes of TiO2Nanotube Surfaces[J].Nanotechnology,2011,22(31):315704-315709.

    [6]Feng X J,Jiang L.Design and Creation of Super-Wetting/Dewetting Surfaces[J].Advanced Materials,2006,18(23):3063-3078.

    [7]Niu F,Zhang L S,Chen C Q,et al.Hydrophilic TiO2Porous Spheres Anchored on Hydrophobic Polypropylene Membrane for Wettability Induced High Photodegrading Activities [J].Nanoscale,2010,2(8):1480-1484.

    [8]Tang X H,Li D Y.Evaluation of Asphaltene Degradation on Highly Ordered TiO2NanotubularArraysviaVariationsin Wettability[J].Langmuir,2011,27(3):1218-1223.

    [9]Liu B,Aydil E S.Growth of Oriented Single-Crystalline Rutile TiO2Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells[J].Journal of the American Chemical Society,2009,131(11):3985-3990.

    [10]Wang S T,Song Y L,Jiang L.Photoresponsive Surfaces with Controllable Wettability[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2007,8(1):18-29.

    [11]Lee C Y,Hupp JT. Dye Sensitized SolarCells:TiO2Sensitization with a Bodipy-Porphyrin Antenna System [J].Langmuir,2010,26(5):3760-3765.

    [12]Satyaprasad A,Jain V, Nema S K.Deposition of Superhydrophobic Nanostructured Teflon-Like Coating Using Expanding Plasma Arc[J].Applied Surface Science,2007,253(12):5462-5466.

    [13]Wolcott A,Smith W A,Kuykendall T R,et al.Photoelectrochemical Water Splitting Using Dense and Aligned TiO2Nanorod Arrays[J].Small,2009,5(1):104-111.

    [14]Chen D H,Huang F Z,Cheng Y B,et al.Mesoporous Anatase TiO2Beads with High Surface Areas and Controllable Pore Sizes:a Superior Candidate for High-Performance Dye-Sensitized Solar Cells[J].Advanced Materials,2009,21(21):2206-2210.

    [15]Feng L,ZhangY N,XiJM,etal. PetalEffect:a Superhydrophobic State with High Adhesive Force [J].Langmuir,2008,24(8):4114-4119.

    [16]Gilma G O,Carlos A P M,F(xiàn)ernando M O,et al.Photocatalytic Degradation of Phenol on TiO2and TiO2/Pt Sensitized with Metallophthalocyanines[J].Catalysis Today,2005,107/108:589-594.

    [17]Yerokhin A L,Nie X,Leyland A,et al.Review:Plasma Electrolysis for Surface Engineering[J].Surface and Coatings Technology,1999,122(2/3):73-93.

    [18]O'Regan B,Gratzel M.A Low-Cost,High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2Films [J].Nature,1991,353(6346):737-740.

    [19]Parkin I P,Palgrave R G.Self-cleaning Coatings[J].Journal of Materials Chemistry,2005,15(17):1689-1695.

    [20]Wang C M,Lin S Y.Electrochromic Properties of Sputtered TiO2Thin Films[J].Journal of Solid State Electrochemistry,2006,10(4):255-259.

    [21]Ohko Y,Saitoh S,Tatsuma T,et al.Photoelectrochemical Anticorrosion and Self-cleaning Effects of a TiO2Coating for Type 304 Stainless Steel[J].Journal of the Electrochemical Society,2001,148(1):B24-B28.

    [22]Silva C G,F(xiàn)aria J L.Effect of Key Operational Parameters on the Photocatalytic Oxidation of Phenol by Nanocrystalline Sol-Gel TiO2under UV Irradiation[J].Journal of Molecular Catalysis A,2009,305(1/2):147-154.

    [23]Guan K S. Relationship between Photocatalytic Activity,Hydrophilicity and Self-cleaning Effect of TiO2/SiO2Films[J].Surface and Coatings Technology,2005,191(2/3):155-160.

    [24]Shi P,Ng W F,Wong M H,et al.Improvement of Corrosion Resistance of Pure Magnesium in Hanks'Solution by Microarc Oxidation with Sol-Gel TiO2Sealing[J].Journal of Alloys and Compounds,2009,469(1/2):286-292.

    [25]Balaur E,Macak J M,Taveira L,et al.Tailoring the Wettability of TiO2Nanotube Layers[J].Electrochemistry Communications,2005,7(10):1066-1070.

    [26]Feng X J,Zhai J,Jiang L.The Fabrication and Switchable Superhydrophobicity of TiO2Nanorod Films[J].Angewandte Chemie International Edition,2005,44(32):5115-5118.

    [27]Yamashita H,Nakao H,Takeuchi M,et al.Coating of TiO2Photocatalysts on Super-hydrophobic Porous Teflon Membrane by an Ion Assisted Deposition Method and Their Self-cleaning Performance[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,206:898-901.

    [28]Cassie A B D,Baxter S.Wettability of Porous Surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    [29]Kumar P M,Badrinarayanan S,Sastry M.Nanocrystalline TiO2Studied by Optical,F(xiàn)TIR and X-Ray Photoelectron Spectroscopy:Correlation to Presence of Surface States[J].Thin Solid Films,2000,358(1/2):122-130.

    [30]Socrates G.Infrared Characteristic Group Frequencies[M].2nd ed.USA:John Willey and Sons,1994:62.

    [31]Ivanova T,Harizanova A,Surtchev M. Formation and Investigation of Sol-Gel TiO2-V2O5System [J].Materials Letters,2002,55(5):327-333.

    [32]López T,Moreno J A,Gómez R,et al.Characterization of Iron-Doped Titania Sol-Gel Materials[J].Journal of Materials Chemistry,2002,12(3):714-718.

    [33]Harris M T,Singhal A,Look J L,et al.FTIR Spectroscopy,SAXS and Electrical Conductivity Studies of the Hydrolysis and Condensation of Zirconium and Titanium Alkoxides[J].Journal of Sol-Gel Science and Technology,1997,8(1/2/3):41-47.

    [34]Jensen H,Soloviev A,LiZ S,etal. XPS and FTIR Investigation of the Surface Properties of Different Prepared Titania Nano-powders[J].Applied Surface Science,2005,246(1/2/3):39-249.

    [35]Kalache B,Kosarev A I,Vanderhaghen R,etal. Ion Bombardment Effects on Microcrystalline Silicon Growth Mechanisms and on the Film Properties[J].Journal of Applied Physics,2003,93(2):1262-1274.

    [36]Ahn K H,Park Y B,Park D W.Kinetic and Mechanistic Study on the Chemical Vapor Deposition of Titanium Dioxide Thin Films by in situ FT-IR Using TTIP[J].Surface and Coatings Technology,2003,171(1/2/3):198-204.

    [37]Christy P D,Jothi N S N,Melikechi N,et al.Synthesis,Structural and Optical Properties of Well Dispersed Anatase TiO2Nanoparticles by Non-hydrothermalMethod [J]. Crystal Research and Technology,2009,44(5):484-488.

    [38]Yu J G,WangW G,ChengB,etal. Enhancementof Photocatalytic Activity of Mesoporous TiO2Powders by Hydrothermal Surface Fluorination Treatment[J].Journal of Physical Chemistry C,2009,113(16):6743-6750.

    [39]Ding Z,Hu X J,Lu G Q,et al.Novel Silica Gel Supported TiO2Photocatalyst Synthesised by CVD Method [J].Langmuir,2000,16(15):6216-6222.

    猜你喜歡
    建軍
    慶祝建軍95周年
    Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
    GENERALIZED CES`ARO OPERATORS ON DIRICHLET-TYPE SPACES*
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    古建軍
    無論等多久
    建軍90周年有感
    中華魂(2017年8期)2017-11-22 12:21:09
    建軍90周年
    綠色中國(2017年15期)2017-01-25 08:55:36
    Experimental investigation of velocity fluctuations in a radial diffuser pump*
    Totally laparoscopic Billroth Ⅱ gastrectomy without intracorporeal hand-sewn sutures
    老鸭窝网址在线观看| 国产aⅴ精品一区二区三区波| 香蕉国产在线看| 亚洲欧美日韩高清专用| 国产视频内射| 国产伦一二天堂av在线观看| av免费在线观看网站| 丁香欧美五月| 国内毛片毛片毛片毛片毛片| www国产在线视频色| 国产亚洲精品综合一区在线观看 | 巨乳人妻的诱惑在线观看| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 国产单亲对白刺激| 岛国在线观看网站| 18禁黄网站禁片免费观看直播| 亚洲人成77777在线视频| 99精品久久久久人妻精品| 热99re8久久精品国产| 啦啦啦韩国在线观看视频| 久久精品91蜜桃| 一进一出好大好爽视频| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 国产精品亚洲一级av第二区| 在线免费观看的www视频| 国产三级黄色录像| 国内精品久久久久久久电影| 欧美乱码精品一区二区三区| 午夜福利18| 露出奶头的视频| 国产亚洲精品久久久久5区| 中文字幕精品亚洲无线码一区| 看免费av毛片| 午夜福利高清视频| 俄罗斯特黄特色一大片| 欧美极品一区二区三区四区| 在线观看66精品国产| 亚洲精品久久成人aⅴ小说| 日本a在线网址| 国产单亲对白刺激| 国产精品99久久99久久久不卡| 国产一区在线观看成人免费| 又大又爽又粗| 亚洲天堂国产精品一区在线| 一区二区三区激情视频| 久久精品影院6| 精品欧美国产一区二区三| 制服人妻中文乱码| 不卡一级毛片| 国产成年人精品一区二区| 日韩高清综合在线| 国内久久婷婷六月综合欲色啪| 搞女人的毛片| 精华霜和精华液先用哪个| 久久久久久大精品| 老司机午夜十八禁免费视频| 99久久99久久久精品蜜桃| 人妻夜夜爽99麻豆av| 1024香蕉在线观看| 十八禁人妻一区二区| 老司机福利观看| 久久久久免费精品人妻一区二区| 国产亚洲av高清不卡| 国内精品一区二区在线观看| 九九热线精品视视频播放| 久久天堂一区二区三区四区| 99久久精品热视频| www.自偷自拍.com| 男人舔奶头视频| 少妇人妻一区二区三区视频| 两个人免费观看高清视频| 99热只有精品国产| 宅男免费午夜| 亚洲av成人av| 国产黄a三级三级三级人| 欧美国产日韩亚洲一区| 激情在线观看视频在线高清| 国产91精品成人一区二区三区| 母亲3免费完整高清在线观看| 国产精品久久电影中文字幕| 在线观看免费视频日本深夜| 亚洲精品色激情综合| 久久久久九九精品影院| 波多野结衣巨乳人妻| 日韩欧美国产一区二区入口| 成在线人永久免费视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av五月六月丁香网| 岛国视频午夜一区免费看| 1024手机看黄色片| 亚洲国产日韩欧美精品在线观看 | 国产成+人综合+亚洲专区| 色在线成人网| 久久精品国产亚洲av高清一级| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 在线永久观看黄色视频| 国产成人aa在线观看| 亚洲av片天天在线观看| 18禁黄网站禁片免费观看直播| 一个人观看的视频www高清免费观看 | 搡老妇女老女人老熟妇| 午夜久久久久精精品| 动漫黄色视频在线观看| 久久久久久大精品| 亚洲国产中文字幕在线视频| 精品国产亚洲在线| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 亚洲av五月六月丁香网| 久久中文看片网| 免费人成视频x8x8入口观看| 午夜精品在线福利| 国产精华一区二区三区| 国产97色在线日韩免费| 啦啦啦韩国在线观看视频| 又紧又爽又黄一区二区| 丁香欧美五月| 亚洲人成77777在线视频| 成人手机av| 亚洲男人的天堂狠狠| 亚洲国产日韩欧美精品在线观看 | 欧美成人午夜精品| 大型黄色视频在线免费观看| 国产欧美日韩一区二区三| 国产亚洲精品久久久久5区| 黄色片一级片一级黄色片| 国产精品 欧美亚洲| 国产成+人综合+亚洲专区| 亚洲 国产 在线| 国产高清视频在线观看网站| 亚洲五月天丁香| 又爽又黄无遮挡网站| 久久久久久久久中文| 老汉色∧v一级毛片| 色综合亚洲欧美另类图片| av视频在线观看入口| 非洲黑人性xxxx精品又粗又长| 黑人欧美特级aaaaaa片| 在线观看免费视频日本深夜| 色综合亚洲欧美另类图片| 精品免费久久久久久久清纯| 国产精品美女特级片免费视频播放器 | 国产精品美女特级片免费视频播放器 | 最新在线观看一区二区三区| 麻豆一二三区av精品| 亚洲精品在线美女| 91麻豆精品激情在线观看国产| 久久天躁狠狠躁夜夜2o2o| 嫩草影院精品99| 99精品久久久久人妻精品| 免费观看精品视频网站| 免费无遮挡裸体视频| www.自偷自拍.com| 天堂动漫精品| 精品免费久久久久久久清纯| 热99re8久久精品国产| 黑人欧美特级aaaaaa片| 老司机在亚洲福利影院| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻丝袜一区二区| 老鸭窝网址在线观看| 女人被狂操c到高潮| 日日爽夜夜爽网站| 一级黄色大片毛片| av中文乱码字幕在线| 十八禁网站免费在线| 亚洲精品中文字幕一二三四区| 夜夜夜夜夜久久久久| 激情在线观看视频在线高清| 国产一区在线观看成人免费| 两个人视频免费观看高清| 一级作爱视频免费观看| 午夜久久久久精精品| 白带黄色成豆腐渣| 精品久久久久久,| 亚洲国产欧美人成| 高清毛片免费观看视频网站| 欧美日韩亚洲国产一区二区在线观看| 99久久99久久久精品蜜桃| 身体一侧抽搐| 国产精品av视频在线免费观看| 极品教师在线免费播放| 一本一本综合久久| 欧美国产日韩亚洲一区| 国内精品一区二区在线观看| 欧美+亚洲+日韩+国产| 久久久国产精品麻豆| 无人区码免费观看不卡| 免费在线观看日本一区| 老司机深夜福利视频在线观看| 老汉色∧v一级毛片| 国产精品国产高清国产av| 此物有八面人人有两片| 九色成人免费人妻av| a在线观看视频网站| 欧美另类亚洲清纯唯美| 久久久久免费精品人妻一区二区| 亚洲成人久久性| 国产精品一区二区三区四区久久| 桃红色精品国产亚洲av| 久久人妻av系列| 国产亚洲av高清不卡| 一区福利在线观看| 国产91精品成人一区二区三区| 老熟妇乱子伦视频在线观看| 在线视频色国产色| 久久精品国产亚洲av高清一级| 夜夜夜夜夜久久久久| 啦啦啦韩国在线观看视频| 97碰自拍视频| 午夜福利免费观看在线| a在线观看视频网站| 又爽又黄无遮挡网站| 国产激情欧美一区二区| 精品国产亚洲在线| 丰满人妻一区二区三区视频av | 91大片在线观看| 精品少妇一区二区三区视频日本电影| 五月伊人婷婷丁香| 欧美日韩亚洲综合一区二区三区_| 国内精品久久久久久久电影| 女人爽到高潮嗷嗷叫在线视频| 久久天堂一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 久久人人精品亚洲av| 久久性视频一级片| 国产精品98久久久久久宅男小说| 18禁美女被吸乳视频| 精品国内亚洲2022精品成人| 18禁国产床啪视频网站| 亚洲avbb在线观看| 午夜福利18| 亚洲欧美日韩高清专用| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 一级毛片高清免费大全| 欧美黄色片欧美黄色片| 久久伊人香网站| 波多野结衣高清无吗| 一边摸一边抽搐一进一小说| 亚洲一区中文字幕在线| 琪琪午夜伦伦电影理论片6080| 亚洲第一电影网av| 一a级毛片在线观看| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 久久久久久久精品吃奶| 日韩国内少妇激情av| 88av欧美| 午夜成年电影在线免费观看| 97人妻精品一区二区三区麻豆| 一本一本综合久久| 亚洲成人免费电影在线观看| 精品久久久久久久末码| 国产精品乱码一区二三区的特点| 俄罗斯特黄特色一大片| 日韩欧美在线乱码| 19禁男女啪啪无遮挡网站| 伦理电影免费视频| av欧美777| 午夜老司机福利片| 两个人的视频大全免费| 亚洲五月婷婷丁香| 欧美乱码精品一区二区三区| 精华霜和精华液先用哪个| 精品久久久久久久毛片微露脸| 老熟妇仑乱视频hdxx| 久久久久久久久久黄片| 午夜福利在线观看吧| 亚洲在线自拍视频| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸| 女人被狂操c到高潮| 岛国在线观看网站| 精品国产美女av久久久久小说| 久久午夜亚洲精品久久| 国产成人精品久久二区二区免费| 国产亚洲精品第一综合不卡| 岛国在线免费视频观看| 在线播放国产精品三级| 久久久久久免费高清国产稀缺| 哪里可以看免费的av片| xxxwww97欧美| 国产高清视频在线播放一区| 99在线视频只有这里精品首页| 手机成人av网站| 国产精品av久久久久免费| 日日夜夜操网爽| 欧美午夜高清在线| 国产高清videossex| 97人妻精品一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 国产一区二区三区视频了| 夜夜爽天天搞| 成人国产综合亚洲| 一夜夜www| 色综合婷婷激情| 变态另类丝袜制服| 亚洲精品av麻豆狂野| 91麻豆精品激情在线观看国产| 成人亚洲精品av一区二区| 99国产极品粉嫩在线观看| 麻豆成人午夜福利视频| 成人av一区二区三区在线看| 1024手机看黄色片| 黄色 视频免费看| 免费看十八禁软件| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一小说| 女同久久另类99精品国产91| 国产精品 国内视频| 特级一级黄色大片| 男女之事视频高清在线观看| 日本熟妇午夜| 日本a在线网址| 在线观看舔阴道视频| 麻豆国产97在线/欧美 | 日韩精品青青久久久久久| 成年人黄色毛片网站| 国产精品免费视频内射| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 九九热线精品视视频播放| 久久久国产成人精品二区| 日本成人三级电影网站| 五月玫瑰六月丁香| 欧美日韩福利视频一区二区| 国产亚洲精品一区二区www| av在线播放免费不卡| 制服诱惑二区| 国产免费男女视频| 美女黄网站色视频| 99热6这里只有精品| 黄色成人免费大全| 久久香蕉国产精品| 欧美成人免费av一区二区三区| 精品一区二区三区视频在线观看免费| 国产精品九九99| 欧美黄色淫秽网站| 麻豆成人av在线观看| 九九热线精品视视频播放| 日本三级黄在线观看| 天天躁夜夜躁狠狠躁躁| av欧美777| 给我免费播放毛片高清在线观看| 香蕉久久夜色| 在线观看美女被高潮喷水网站 | 久久精品国产亚洲av香蕉五月| 亚洲精品国产一区二区精华液| 巨乳人妻的诱惑在线观看| 精品久久蜜臀av无| 99re在线观看精品视频| 校园春色视频在线观看| 国产免费av片在线观看野外av| 国产久久久一区二区三区| 男人舔女人下体高潮全视频| 欧洲精品卡2卡3卡4卡5卡区| 两个人免费观看高清视频| 精品久久久久久成人av| 少妇被粗大的猛进出69影院| 久久午夜综合久久蜜桃| 男女床上黄色一级片免费看| 精品国产乱子伦一区二区三区| 亚洲男人天堂网一区| 国产又黄又爽又无遮挡在线| 波多野结衣高清作品| 91老司机精品| 国产精品九九99| 一级毛片精品| 90打野战视频偷拍视频| 国产熟女xx| 成在线人永久免费视频| 亚洲va日本ⅴa欧美va伊人久久| 香蕉丝袜av| 熟妇人妻久久中文字幕3abv| cao死你这个sao货| 国产精品免费视频内射| 久久性视频一级片| ponron亚洲| 热99re8久久精品国产| 国产精品影院久久| 欧美中文日本在线观看视频| 久久精品夜夜夜夜夜久久蜜豆 | 精品久久久久久,| 国产单亲对白刺激| 一区福利在线观看| 最新美女视频免费是黄的| 岛国视频午夜一区免费看| 夜夜躁狠狠躁天天躁| 哪里可以看免费的av片| 亚洲国产欧美网| 淫秽高清视频在线观看| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 欧美激情久久久久久爽电影| 亚洲黑人精品在线| 亚洲欧美精品综合一区二区三区| 啪啪无遮挡十八禁网站| 一级黄色大片毛片| 亚洲五月婷婷丁香| 我的老师免费观看完整版| 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站 | 欧美乱码精品一区二区三区| 免费观看人在逋| 国产免费男女视频| 岛国在线免费视频观看| 777久久人妻少妇嫩草av网站| 久久精品成人免费网站| 国产精品亚洲一级av第二区| 亚洲成av人片免费观看| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 亚洲精品一区av在线观看| 国产97色在线日韩免费| 99re在线观看精品视频| 国产精品 欧美亚洲| 国产精品,欧美在线| 黄色a级毛片大全视频| 国产一区二区在线av高清观看| 天堂av国产一区二区熟女人妻 | 可以在线观看毛片的网站| 久久久久久久午夜电影| 一本综合久久免费| 亚洲av熟女| 麻豆成人av在线观看| 欧美乱妇无乱码| 亚洲全国av大片| 国产97色在线日韩免费| 国产不卡一卡二| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线| 国产成人av激情在线播放| 亚洲熟妇熟女久久| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 久久国产精品人妻蜜桃| 亚洲av成人一区二区三| 老司机在亚洲福利影院| 欧美黑人欧美精品刺激| 欧美一级毛片孕妇| 日韩欧美国产一区二区入口| 在线观看免费日韩欧美大片| 亚洲最大成人中文| 天天添夜夜摸| 黄色毛片三级朝国网站| 在线免费观看的www视频| 美女扒开内裤让男人捅视频| 精品久久久久久,| 精品国产美女av久久久久小说| 久久香蕉激情| 精品人妻1区二区| 婷婷丁香在线五月| 99热只有精品国产| 久久久久久久久中文| 51午夜福利影视在线观看| 午夜激情av网站| 日本一二三区视频观看| 日韩欧美国产一区二区入口| 精品久久久久久成人av| 国产欧美日韩精品亚洲av| 人人妻人人看人人澡| 男女之事视频高清在线观看| 亚洲熟女毛片儿| bbb黄色大片| 丁香欧美五月| 亚洲人成网站高清观看| 欧美性猛交╳xxx乱大交人| 色老头精品视频在线观看| 久久久久国内视频| 又粗又爽又猛毛片免费看| 亚洲第一欧美日韩一区二区三区| 宅男免费午夜| 国产亚洲精品综合一区在线观看 | 欧美 亚洲 国产 日韩一| 久久久久国内视频| 亚洲av成人不卡在线观看播放网| 国产激情久久老熟女| 波多野结衣高清作品| 91九色精品人成在线观看| 亚洲aⅴ乱码一区二区在线播放 | 女人被狂操c到高潮| 久久99热这里只有精品18| 国产精品电影一区二区三区| 18禁美女被吸乳视频| 久久香蕉精品热| 热99re8久久精品国产| 一a级毛片在线观看| 午夜精品一区二区三区免费看| 欧美性猛交╳xxx乱大交人| 婷婷精品国产亚洲av| 久久久国产成人免费| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全电影3| 麻豆国产97在线/欧美 | 欧美性猛交╳xxx乱大交人| 欧美精品亚洲一区二区| 欧美日韩一级在线毛片| 国产不卡一卡二| 午夜精品一区二区三区免费看| 久久中文字幕一级| 亚洲自偷自拍图片 自拍| 在线观看美女被高潮喷水网站 | 九色成人免费人妻av| 日韩欧美在线二视频| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| ponron亚洲| 可以在线观看的亚洲视频| ponron亚洲| 国产成人av教育| 国产三级中文精品| 久久这里只有精品19| 伊人久久大香线蕉亚洲五| 欧美色欧美亚洲另类二区| 女人高潮潮喷娇喘18禁视频| 两人在一起打扑克的视频| 久久久国产欧美日韩av| 狂野欧美激情性xxxx| 国产一区在线观看成人免费| 亚洲国产中文字幕在线视频| 在线永久观看黄色视频| 久久久久精品国产欧美久久久| 成人18禁在线播放| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久久久久| 国产精品九九99| 曰老女人黄片| 国产麻豆成人av免费视频| 亚洲片人在线观看| 中文字幕高清在线视频| 一边摸一边抽搐一进一小说| 免费看a级黄色片| 国产片内射在线| 国产精品自产拍在线观看55亚洲| 国产亚洲精品久久久久久毛片| 老司机午夜十八禁免费视频| 欧美午夜高清在线| 国产亚洲精品一区二区www| 在线观看免费日韩欧美大片| 少妇人妻一区二区三区视频| 啦啦啦观看免费观看视频高清| 狠狠狠狠99中文字幕| 老司机靠b影院| 成人亚洲精品av一区二区| 麻豆国产97在线/欧美 | 久久中文字幕人妻熟女| 亚洲国产高清在线一区二区三| 欧美丝袜亚洲另类 | 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 精品国产乱子伦一区二区三区| 最近最新中文字幕大全免费视频| 国产爱豆传媒在线观看 | 哪里可以看免费的av片| 亚洲一区中文字幕在线| 狂野欧美白嫩少妇大欣赏| 久久精品夜夜夜夜夜久久蜜豆 | 波多野结衣高清作品| 岛国在线观看网站| 国产麻豆成人av免费视频| 色综合亚洲欧美另类图片| 欧美乱码精品一区二区三区| 91国产中文字幕| 97人妻精品一区二区三区麻豆| 欧美最黄视频在线播放免费| 老鸭窝网址在线观看| 婷婷精品国产亚洲av在线| 欧美另类亚洲清纯唯美| 丰满人妻一区二区三区视频av | 91大片在线观看| 国产高清激情床上av| 日韩欧美在线二视频| 国产欧美日韩一区二区三| svipshipincom国产片| 欧美午夜高清在线| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲| 国产伦在线观看视频一区| av视频在线观看入口| 又紧又爽又黄一区二区| 好男人在线观看高清免费视频| 又粗又爽又猛毛片免费看| 久久精品国产99精品国产亚洲性色| 男女下面进入的视频免费午夜| 国产aⅴ精品一区二区三区波| 久久久水蜜桃国产精品网| 欧美乱码精品一区二区三区| cao死你这个sao货| 亚洲中文字幕日韩| 青草久久国产| 欧美又色又爽又黄视频| 婷婷丁香在线五月| 美女黄网站色视频| 看黄色毛片网站| av视频在线观看入口| 精品不卡国产一区二区三区| 精品欧美国产一区二区三| 99国产极品粉嫩在线观看| 蜜桃久久精品国产亚洲av| 亚洲性夜色夜夜综合| 老司机靠b影院| 国产片内射在线| 51午夜福利影视在线观看| 欧美+亚洲+日韩+国产| 久久久久久久久免费视频了| 久久亚洲真实| 亚洲精品一区av在线观看| 国产探花在线观看一区二区| 1024视频免费在线观看| 美女免费视频网站| 国产成人精品久久二区二区免费|