史曉陽,魯 芳,劉艷萍
(1.海軍航空工程學(xué)院 山東 煙臺 264001;2.海軍實(shí)驗(yàn)基地三區(qū) 河北 秦皇島 066000)
近年來,非線性控制理論的迅速發(fā)展使得其在系統(tǒng)建模和系統(tǒng)控制中的應(yīng)用成為可能。其中,反饋線性化的方法引起了學(xué)者的廣泛關(guān)注,它的核心思想是把一個(gè)非線性系統(tǒng)代數(shù)的轉(zhuǎn)化為一個(gè)(全部或者部分)線性系統(tǒng),以便可以應(yīng)用線性系統(tǒng)的技巧[1-2]對系統(tǒng)進(jìn)行設(shè)計(jì)。這種方法已經(jīng)廣泛的應(yīng)用到了開關(guān)變換器控制[3],電動(dòng)機(jī)控制[4-5],水利系統(tǒng)[6]等領(lǐng)域。目前,反饋線性化在控制領(lǐng)域的研究,大多是采用狀態(tài)反饋線性化的方法以實(shí)現(xiàn)非線性系統(tǒng)的完全線性化。但是狀態(tài)反饋線性化需要滿足嚴(yán)格的能控性條件和對合條件,而且存在控制器結(jié)構(gòu)復(fù)雜,不利于工程實(shí)現(xiàn)等缺點(diǎn)。從實(shí)用角度來看,實(shí)現(xiàn)非線性系統(tǒng)完全精確線性化并不比部分精確線性化更為理想[6]。
文中基于他勵(lì)直流電動(dòng)機(jī)非線性模型,通過選擇不同的輸出函數(shù),設(shè)計(jì)了輸出反饋線性化轉(zhuǎn)速控制器和狀態(tài)反饋線性化轉(zhuǎn)速控制器。并通過數(shù)學(xué)推導(dǎo)和系統(tǒng)仿真,比較兩者的控制器結(jié)構(gòu),穩(wěn)定運(yùn)行區(qū)域,動(dòng)態(tài)性能,抗干擾能力。結(jié)果表明,輸出反饋線性化控制器相比于狀態(tài)反饋控制器,控制性能優(yōu)良,且更具有實(shí)用價(jià)值。
電動(dòng)機(jī)控制的目標(biāo)是控制電動(dòng)機(jī)轉(zhuǎn)速按照期望的指標(biāo)運(yùn)行。對于他勵(lì)直流電動(dòng)機(jī)非線性系統(tǒng),選取電機(jī)轉(zhuǎn)動(dòng)角速度,電樞電流,勵(lì)磁電流作為狀態(tài)變量,即x=(ω iair)T。 選勵(lì)磁電壓為控制量,即u=ur,系統(tǒng)狀態(tài)方程[7]可寫為:
式中,
設(shè)電動(dòng)機(jī)穩(wěn)態(tài)轉(zhuǎn)速時(shí)x1m=wm,解方程組
得
由計(jì)算結(jié)果可知,對于給定的穩(wěn)態(tài)轉(zhuǎn)速wm,有兩組穩(wěn)態(tài)勵(lì)磁電壓、電樞電流、勵(lì)磁電流。容易看出,b組數(shù)據(jù)對應(yīng)的穩(wěn)態(tài)平衡點(diǎn)是物理上無法實(shí)現(xiàn)的,a組數(shù)據(jù)對應(yīng)的平衡點(diǎn)是我們期望的電動(dòng)機(jī)運(yùn)行平衡點(diǎn)。所以當(dāng)系統(tǒng)控制達(dá)到穩(wěn)態(tài)轉(zhuǎn)速wm時(shí),期望的穩(wěn)態(tài)電樞電流為x2ma,穩(wěn)態(tài)勵(lì)磁電流為x3ma。
1)狀態(tài)反饋反饋線性化條件
①矩陣[g(x0),adfg(x0),…,ag(x0)]的秩為 n;
②分布 D=span[g,adfg,…,ag]在的一個(gè)鄰域是對合的。
由電動(dòng)機(jī)非線性模型計(jì)算得
根據(jù)定理充分必要條件②,由于[g(x),adfg(x)]=0,可得D=span{g(x),adfg(x)}在集合 U={x∈R3:x1≠0 或 x2≠0}上為 2維,非奇異,對合。
當(dāng)時(shí),det([g(x0),adfg(x0),ag(x0)])≠0 時(shí),rank{[g(x0)adfg(x0)ag(x0)]}=3。
計(jì)算得:
電動(dòng)機(jī)模型滿足狀態(tài)反饋反饋線性化的條件。
2)控制器設(shè)計(jì)
由于相對階 r=3,非線性系統(tǒng)(1)存在輸出函數(shù) λ(x)使得系統(tǒng)可進(jìn)行狀態(tài)反饋線性化。輸出函數(shù)λ(x)應(yīng)滿足[g(x),adfg(x)]=0,解得 λ(x)=J+La-Z3,其中 Z3=Jw+Lax為常數(shù)。則有微分同胚坐標(biāo)變換z=φ(x):
則在此坐標(biāo)下得非線性狀態(tài)反饋:
其中,v為線性化虛擬輸入,zm為中不包含控制信號u的項(xiàng)。經(jīng)坐標(biāo)變化和狀態(tài)反饋?zhàn)儞Q后,原非線性系統(tǒng)轉(zhuǎn)化為線性化系統(tǒng)。
顯然,線性化后的系統(tǒng)是能控的線性系統(tǒng),應(yīng)用線性系統(tǒng)極點(diǎn)配置法設(shè)計(jì)閉環(huán),即 v=-k1z1-kz2-k2z3(其中 k1,k2,k3>0)
則加入閉環(huán)控制的控制規(guī)律為
從控制規(guī)律(6)可知,基于狀態(tài)反饋線性化設(shè)計(jì)的控制律不是全局范圍成立的。當(dāng)}時(shí),控制規(guī)律沒有定義好,控制規(guī)律使?fàn)顟B(tài)運(yùn)行到這些奇點(diǎn)時(shí),控制器不能使系統(tǒng)達(dá)到平衡點(diǎn)。所以設(shè)計(jì)控制器時(shí)反饋系數(shù)k1,k2,k3不但要滿足線性系統(tǒng)穩(wěn)定性判據(jù)的要求,而且必須保證控制過程中的狀態(tài)軌跡與沒有交點(diǎn),否則交點(diǎn)位置控制器失效。
選擇輸出函數(shù) λ(x)=x3-Z1,顯然相對階 r=1,其中 Z1=x3m為常數(shù)。設(shè) z1=λ(x),則=-x3+u。在此坐標(biāo)下得輸出反饋線性化
應(yīng)用極點(diǎn)配置法設(shè)計(jì)非線性控制器的閉環(huán),即v=-kz1(k>0)。
將 u=Lr(-kz1+x3)代入原系統(tǒng)的方程得
假設(shè) x30=x3-Z1,有 x30=-kx30。 選擇利亞普諾夫[8]函數(shù) V(x)=+1,則 V(x)=-2k,顯然對 x3∈R,V(x)正定,V(x)半負(fù)定。由李亞普諾夫穩(wěn)定性理論可知,控制規(guī)律u=Lr(-kz1+x3)使得系統(tǒng)全局漸進(jìn)穩(wěn)定。
為了比較2種控制器的控制效果,文中是用Matlab中的Simulink對所建系統(tǒng)的模型進(jìn)行仿真。他勵(lì)直流電動(dòng)機(jī)的負(fù)載額定轉(zhuǎn)矩為29.2 N·m,電樞電感為0.012 H,勵(lì)磁回路電阻為240Ω,勵(lì)磁回路電感為0.12 H,電樞與勵(lì)磁回路互感為1.8 H,轉(zhuǎn)動(dòng)慣量為1.0 kg/m2,電勢常數(shù)取經(jīng)驗(yàn)值k=15,電樞電壓為240 V,電樞電阻為0.6Ω,額定轉(zhuǎn)速為100 rad/s。
圖1為在電動(dòng)機(jī)額定狀態(tài)下,本文設(shè)計(jì)的狀態(tài)反饋控制器和輸出反饋控制器啟動(dòng)和調(diào)速的狀態(tài)響應(yīng)曲線。為了考察系統(tǒng)的動(dòng)態(tài)性能,在5秒的時(shí)調(diào)節(jié)控制規(guī)律,使電動(dòng)機(jī)轉(zhuǎn)速從100 rad/s穩(wěn)定到127 rad/s。為了考察系統(tǒng)的抗干擾能力,首先控制電動(dòng)機(jī)轉(zhuǎn)速達(dá)到額定穩(wěn)態(tài)轉(zhuǎn)速100 rad/s,5 s時(shí)在電動(dòng)機(jī)模型負(fù)載力矩控制端加入寬度為1 s幅值為15 N·m的干擾力矩,系統(tǒng)的響應(yīng)曲線如圖3所示。
圖1 轉(zhuǎn)速調(diào)節(jié)狀態(tài)響應(yīng)曲線Fig.1 State response curve of speed regulation
圖2 加干擾力矩情況下轉(zhuǎn)速響應(yīng)曲線Fig.2 State response curve under disturbance torque
圖3 加干擾力矩情況下轉(zhuǎn)速響應(yīng)曲線放大圖Fig.3 State response zoom curve under disturbance torque
從圖中可以看出,基于反饋線性化設(shè)計(jì)的他勵(lì)直流電動(dòng)機(jī)閉環(huán)轉(zhuǎn)速控制器具有很好的動(dòng)態(tài)性能和抗干擾能力。其中,輸出反饋控制器相比于狀態(tài)反饋控制器具有啟動(dòng)快,調(diào)速迅速,超調(diào)小,抗干擾能力強(qiáng)等優(yōu)點(diǎn)。
文中基于他勵(lì)直流電動(dòng)機(jī)的數(shù)學(xué)模型,應(yīng)用微分幾何理論設(shè)計(jì)了輸出反饋線性化和狀態(tài)反饋線性化閉環(huán)轉(zhuǎn)速控制器。通過數(shù)學(xué)推導(dǎo)表明,對于他勵(lì)直流電動(dòng)機(jī)非線性模型,輸出反饋線性化與狀態(tài)反饋線性化控制器相比,控制器結(jié)構(gòu)簡單,且具有更大的穩(wěn)定控制區(qū)域。仿真結(jié)果表明,由于狀態(tài)反饋控制器存在奇點(diǎn),不是全局能控的,穩(wěn)態(tài)轉(zhuǎn)速的設(shè)定和極點(diǎn)配置參數(shù)的選擇都會(huì)影響系統(tǒng)控制過程中的狀態(tài)響應(yīng)軌跡,從而可能使系統(tǒng)運(yùn)行到奇點(diǎn)區(qū)域,出現(xiàn)控制器失效現(xiàn)象。在這種情況下閉環(huán)參數(shù)的設(shè)計(jì)既要保證系統(tǒng)具有很好的控制性能,更要保證在控制過程中系統(tǒng)的狀態(tài)響應(yīng)軌跡不經(jīng)過系統(tǒng)奇點(diǎn)。這就使得控制器閉環(huán)設(shè)計(jì)變得復(fù)雜,且大多情況下無法選擇最優(yōu)的閉環(huán)控制參數(shù),從而影響控制器的動(dòng)態(tài)響應(yīng)性能。相比而言,輸出反饋線性化控制器具有動(dòng)態(tài)調(diào)速性能好;抗干擾能力強(qiáng);結(jié)構(gòu)簡單,易于工程實(shí)現(xiàn);有效地避免產(chǎn)生奇點(diǎn),控制器運(yùn)行穩(wěn)定,容易使系統(tǒng)的閉環(huán)設(shè)計(jì)達(dá)到最優(yōu)配置等優(yōu)點(diǎn)。
[1]程代展.應(yīng)用非線性控制[M].北京:機(jī)械工業(yè)出版社,2006.
[2]賀昱曜,閆茂德.非線性控制理論及應(yīng)用[M].西安:西安電子科技大學(xué)出版社,2007.
[3]帥定新,謝運(yùn)祥,王曉剛,等.Boost變換器非線性電流控制方法[J].中國電機(jī)工程學(xué)報(bào),2009,29(15):15-21.SHUAI Ding-xin,XIE Yun-xiang,WANG Xiao-gang,et al.Nonlinear current control method for boost converter[J].Proceedings of the CSEE,2009,29(15):15-21.
[4]孟昭軍,孫昌志,安躍軍,等.狀態(tài)反饋精確線性化永磁同步電動(dòng)機(jī)轉(zhuǎn)速控制[J].中國電機(jī)工程學(xué)報(bào),2007,11(1):21-28.MENG Zhao-jun,SUN Chang-zhi,AN Yue-jun,et al.Speed control of permanentmagnet synchronousmotor based on exact linearization via state variable feedback[J].Proceedings of the CSEE,2007,11(1):21-28.
[5]曹建榮,虞烈,謝友柏.磁懸浮電動(dòng)機(jī)的狀態(tài)反饋線性化控制[J].中國電動(dòng)機(jī)工程學(xué)報(bào),2011,21(9):22-26.CAO Jian-rong,YU Lie,XIE You-bai.Dynamic feedback linearization control fof induction type bearingless motor[J].Proceedings of the CSEE,2001,21(9):22-26.
[6]李嘯驄,程時(shí)杰,韋化,等.輸出函數(shù)在單輸入單輸出非線性控制系統(tǒng)設(shè)計(jì)中的重要作用[J].中國電動(dòng)機(jī)工程學(xué)報(bào),2004,24(10):50-55.LI Xiao-cong,CHENG Shi-jie,WEI Hua,et al.Important effection of the output function in siso nonlinear control system design[J].Proceedings of the CSEE,2004,24(10):50-55.
[7]李殿璞.非線性控制系統(tǒng)理論基礎(chǔ)[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2006.
[8]蔣永新.動(dòng)力系統(tǒng)的穩(wěn)定性與分支理論及其應(yīng)用[D].長沙:湖南師范大學(xué),2003.