• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of high performance Zn4Sb3bulk thermoelectric materials

    2011-12-28 06:17:56CHENZhongchunJunichiTsujimuraRyoKuramoto
    材料與冶金學(xué)報(bào) 2011年1期
    關(guān)鍵詞:大學(xué)教授湖北日本

    CHEN Zhong-chun,Junichi Tsujimura,Ryo Kuramoto

    (1.Department of Mechanical and Aerospace Engineering,Graduate School of Engineering,Tottori University,Koyama-minami 4-101,Tottori 680-8552,Japan;2.Department of Metallurgy,Graduate School of Engineering,Tohoku University,Aoba-yama 6-6-02,Sendai 980-8579,Japan)

    Preparation of high performance Zn4Sb3bulk thermoelectric materials

    CHEN Zhong-chun1,Junichi Tsujimura2,Ryo Kuramoto2

    (1.Department of Mechanical and Aerospace Engineering,Graduate School of Engineering,Tottori University,Koyama-minami 4-101,Tottori 680-8552,Japan;2.Department of Metallurgy,Graduate School of Engineering,Tohoku University,Aoba-yama 6-6-02,Sendai 980-8579,Japan)

    A“reaction-extrusion process”has been developed to prepare Zn4Sb3bulk materials with high thermoelectric performance.The synthesis,densification,and shape-forming of Zn4Sb3bulk materials were realized simultaneously in one hot-extrusion process,and the resulting extrudates had high density with single β-Zn4Sb3phase.A large extrusion ratio and a small punch speed are advantageous to enhance thermoelectric performance.The extruded Zn4Sb3materials exhibited excellentthermoelectric performance,forexample,the dimensionless thermoelectric figure of merit is 1.77 at 623 K,which is 36%higher compared to conventional hot-pressed materials.On the other hand,the incorporation of 1%SiC nanosized particles into Zn4Sb3matrix leads to improvements in both thermoelectric and mechanical properties.

    thermoelectric materials;thermoelectric power generation;extrusion;reactive synthesis

    As energy and global warming issues have been growing problems,thermoelectric power generation,which directly converts waste heat from automobiles,garbage incinerators,geothermal heat,and various industrial processes into electrical energy,has attracted much attention as an energy-saving technique.Even though different kinds of thermoelectric materials are necessary depending on the temperature of a waste-h(huán)eat source,the present work focuses on Zn4Sb3thermoelectric compound,which is one of the promising thermoelectric materials applicable to an intermediate temperature range of 473~773 K.

    It has been found that β-Zn4Sb3semiconducting compound has excellent thermoelectric performance in the intermediate temperature range,for example,the dimensionless thermoelectric figure of merit(ZT)is 1.3 at 673 K[1].The thermoelectric figure of merit is defined as

    where α is the Seebeck coefficient,ρ the electrical resistivity,κ the thermal conductivity,and T the thermodynamic temperature.

    So far,several melting methods[2,3]and hotpressing techniques[1,4~7]have been developed to prepare Zn4Sb3bulk materials.However,there exist some problems,for example,in cast ingots,a large number of cracks are formed due to mismatch in coefficients of thermal expansion and volume change during phase transformation at 765 K[8],while in the case of hot pressing,compositional change occurs easily due to decomposition of Zn4Sb3phase at high temperatures.

    In the present work,we tried to prepare Zn4Sb3bulk materials through a“reaction-extrusion process”using two kinds of metal powders,Zn and Sb,as the starting materials.The synthesis,densification,and shape-forming of Zn4Sb3bulk materials were realized simultaneously in one hot-extrusion process.Furthermore,to improve the mechanical properties of Zn4Sb3compound,nanosized SiC parti-cles have been incorporated into Zn4Sb3matrix as a reinforcement.The objective of the present work was to clarify the effects of some processing parameters and SiC reinforcing phase on extrusion behavior,thermoelectric,and mechanical properties of the extruded Zn4Sb3bulk materials.

    1 Experimental procedure

    In this work,high-purity Zn and Sb powders,with average particle sizes of 36 μm and 11 μm respectively,were used as the starting materials.Besides,SiC powder with an average particle size of 100 nm was used as a reinforcement for the purpose of improving mechanical properties of Zn4Sb3compound.Zn and Sb powders with a stoichiometric composition of Zn4Sb3were mixed by ball milling.In the case of SiC addition,before the ball milling,Zn,Sb,and nanosized SiC powders were treated in ethanol by an ultrasonic dispersion method.The obtained powder mixtures were compacted by uniaxial pressing up to ~80% of theoretical density.The prepared green compact was vacuum-encapsulated into an Al alloy can(sheath),followed by consolidation using a hot-extrusion technique.Prior to the extrusion operations,the vacuum-encapsulated billet was heated to a given temperature and held for 20 min in the extrusion container.Subsequently,the billet was extruded at a temperature ranging from 673 K to 723 K with different extrusion ratios of 5~25.The extrusion was conducted under a punch speed of 1 or 10 mm/min.

    The bulk density of the extruded samples was determined by the Archimedes method.The phase identifications were performed by X-ray diffraction (XRD)with CuKα radiation.The microstructure was characterized using optical microscopy(OM) and scanning electron microscopy(SEM).The Seebeck coefficient and electrical resistivity were measured using a Seebeck coefficient/electrical resistivity measuring system from room temperature to 673 K under He atmosphere.The thermal conductivity was calculated from specific heat,density,and thermal diffusivity measured by a laser-flash method.The dimensionless thermoelectric figure of merit(ZT) was calculated using Eq.(1).In addition,the Vickers hardness was measured under a load of 200 g,and flexural strength was measured by fourpoint bending tests.

    2 Results and discussion

    2.1 Synthesis,densification,and extrusion behavior ofβ-Zn4Sb3compound

    Fig.1 shows the appearance of an extrusion billet on the longitudinal section after heating in the container at 723 K.The area marked by a dotted frame shown in Fig.1 corresponds to the initial position of the green compact,which has a density value of 80%of the theoretical density.After heating,the green compact expanded largely along the longitudinal direction,and its relative density decreased from 80%to 60%.This indicates that the chemical reactions between Zn and Sb occur during the heating period immediately before extrusion operations(see Fig.2).The volume change is attributed to density differences between Zn(Sb)and Zn4Sb3before and after reactions.

    Fig.1 A picture showing the longitudinal section of a billet after heating in the container at 723 K for 20 min.The dotted frame indicates the position of initial green compact.

    The X-ray diffraction patterns of hot-extruded Zn4Sb3samples are illustrated in Fig.2.As a reference,the XRD pattern of the green compact of Zn and Sb powder mixture was also included in Fig.2.The compact showed well-defined peaks (Fig.2(a))of Zn and Sb as expected.The extruded samples with different extrusion temperatures showed almost the same patterns(Fig.2(b)and (c)),which consisted of peaks of β-Zn4Sb3single phase,and no other unexpected phase could be detected.These results reveal that the reactions between Zn and Sb powders,which are encapsulated within the Al alloy can,do occur during the hotextrusion process.It is reasonable to consider that the chemical reactions between Zn and Sb take place during the heating period prior to extrusion operations.The reactions between Zn and Sb can be expressed as

    The resultant reaction product(Zn4Sb3) is subsequently densified through hydrostatic pressure and large shear deformation generated during the extrusion.In addition,as shown in Fig.2(d),the extruded sample containing in volume fraction 1% SiC particles exhibited the XRD pattern almost the same as those without SiC addition.Clear peaks of SiC phase cannot be confirmed,presumably due to its small average size(100 nm)and low amount added.

    Fig.2 XRD patterns of(a)Zn-Sb green compact and hot-extruded Zn4Sb3bulk samples at(b)673 K and(c)723 K.(d)1%SiC nanosizd particles were added(T=723 K).

    Fig.3 showstypicalextrusion pressure vs.stroke curves,when vacuum-encapsulated billets were extruded with an extrusion ratio of R=7 at 723 K.Both curves with and without SiC addition are similar to each other,although the addition of 1%SiC particles caused a slightly higher extrusion pressure relative to the sample without SiC addition.It appears that there are different behaviors around points B,C,D,and E in the extrusion pressure vs.stroke curves.In the initial extrusion period up to point B shown in Fig.3,the pressure gradually rose with extrusion stroke.This corresponds to the compaction of Zn4Sb3and plastic deformation of the Al alloy.During the heating stage prior to extrusion operations,as mentioned above,Zn and Sb react with each other and,hence,Zn4Sb3is generated.Accordingly,the compact inside the Al alloy can is gradually consolidated during the initial period of extrusion,thus resulting in pressure increase.At point B where the slope of the pressure vs.stroke curve becomes small,the Al alloy in the front end of the billet starts to be extruded out of the die.When the pressure reaches point C,Zn4Sb3compound starts to be formed with Al alloy sheath on its surface layer.As the extrusion proceeds,the extrusion pressure is reduced,because of the decrease in friction areas between the billet and extrusion container.The extrusion of Zn4Sb3continues up to point D which corresponds to the completion of extrusion of Zn4Sb3compound.After point D,the extrusion is only associated with the Al alloy remaining in the billet.As a result,the extrusion pressure abruptly falls to a lower level(E).

    Fig.3 Extrusion pressure vs.stroke curves under the conditions of R=7 at 723 K.The solid and dotted lines correspond to the curves without and with 1%SiC addition,respectively.

    It has been confirmed that the extrusion pressure rises with increasing extrusion ratio or decreasing extrusion temperature.Moreover,defect-free and sound extrudates with greater than 99%of theoretical density were obtained under the conditions of T=723 K and R≥7,regardless of the presence of SiC particles.

    With regard to microstructures of hot-extruded Zn4Sb3samples,our previous investigation[9]has showed that the extruded sample with an extrusion ratio of R=7 has a microstructural feature of fine equiaxed grains with an average grain size of 5 μm.No evident elongated grains are observed in the extrusion direction,although heavy plastic deformation is introduced during hot-extrusion process.It is believed that the finely grained microstructure is likely to be due to dynamic recrystallization during hot extrusion and static recrystallization after extru-sion.Fig.4 shows the SEM images of fracture surfaces of the extruded samples after 4-point bending tests.The fracture surface of 0%SiC sample(without SiC addition)was relatively smooth,while the sample containing 1% SiC particles exhibited a rougher surface.It was seen from the magnified images(Fig.4(c)and(d))that the grain sizes in 1%SiC sample were smaller than those in 0%SiC sample.Furthermore,nanosized SiC particles were dispersed inside grains and at grain boundaries.The presence of these SiC particles and grain refinement contribute to the improvement of mechanical properties of extruded Zn4Sb3bulk materials,which will be described later.

    Fig.4 SEM images of the fracture surfaces of extruded Zn4Sb3samples after 4-point bending tests.(a)0%SiC and(b)1%SiC.(c)and (d)are magnified images for the areas of the white frames shown in(a)and(b),respectively.

    Fig.5 Temperature dependence of the Seebeck coefficient and electrical resistivity of the Zn4Sb3 samples extruded under different conditions.The filled and unfilled symbols indicate electrical resistivity and Seebeck coefficient,respectively.

    Fig.6 Temperature dependence of dimensionless thermoelectric figure of merit of extruded Zn4Sb3 samples.The inserted curve indicates the results reported in Ref.[1].

    2.2 Effect of extrusion parameters on thermoelectric properties

    The temperature dependence of the Seebeck coefficient and electrical resistivity of extruded Zn4Sb3samples is shown in Fig.5.Both the Seebeck coefficient and electrical resistivity increased with increasing temperature.Although different extrusion conditions,such as extrusion ratio(R)and punch speed (V),were used in the experiments,almost no difference in the Seebeck coefficient was observed.With regard to the electrical resistivity,however,it seems sensitive to extrusion conditions.Under the condition of the same extrusion ratio,a smaller punch speed gave rise to a lower level of electrical resistivity.This is probably related to the dynamic recrystallization during hot extrusion,and static recrystallization and recovery after extrusion,as described previously.A low punch speed causes decrease in lattice defects,as a consequence,the electrical resistivity is reduced.

    It is interesting to note that the extruded Zn4Sb3sample with a larger extrusion ratio(R=25)showed smaller electrical resistivity than that with a smaller extrusion ratio(R=7).As mentioned above,as a result of dynamic and static recrystallization,fine equiaxed grains are formed,and the grain size becomes small with increasing the extrusion ratio.It is well known that electrical resistivity increases with the decrease in grain size in polycrystalline materials,according to the grain-boundary scattering mechanism.In the case of the Zn4Sb3materials prepared by hot pressing,however,Ueno et al.[7]found that the contribution of grain boundaries to electrical resistance is negligibly small.It is considered that the reduction of electrical resistivity in hot-extruded samples with a larger extrusion ratio may be associated with various lattice defects generated during extrusion,such as point defects including vacancies and anti-site defects[10,11],dislocations,and deformation-induced structural defects[12].

    Fig.7 Temperature dependence of the Seebeck oefficient and electrical resistivity of extruded Zn4Sb3 samples with different amounts of SiC particles.The filled and unfilled symbols indicate electrical resistivity and Seebeck coefficient,respectively.

    Concerning the thermal conductivity,the extruded Zn4Sb3bulk sample prepared at a punch speed of 1 mm/min showed thermal conductivity values of around 0.75 W/(m·K)(see Fig.8).When punch speed increased,for example,10 mm/min,the thermal conductivity became larger at temperatures of>473 K.These results indicate that a small punch speed during extrusion is beneficial to the improvement in thermoelectric performance.

    Fig.8 Temperature dependence of thermal conductivity of Zn4Sb3samples with different amounts of SiC particles.

    The dimensionless thermoelectric figure of merit of the extruded Zn4Sb3samples with an extrusion ratio of R=7 is shown in Fig.6 as a function of temperature.In comparison with the reference data reported by Caillat et al.[1],the hot-extruded Zn4Sb3samples showed much higher ZT values in the whole temperature range of measurements.In particular,the sample prepared at a lower punch speed(V=1 mm/min)showed larger ZT values above 423 K.A largest ZT value,ZT=1.77,was achieved at 623 K.To our knowledge,this value is the largest so far in reported data for pure Zn4Sb3compound,which is 36%higher than that of hotpressed sample with ZT=1.3 at 673 K[1].The large ZT values of the extruded materials are attributed to their larger Seebeck coefficient and much lower electrical resistivity,which are believed to result from higher density.Another reason for larger ZT values is presumably concerned with lower oxygen concentration in extruded Zn4Sb3samples.In the“reaction-extrusion process”proposed in the current work,the oxidation of both Zn and Sb during preparation of the materials can be largely reduced due to vacuum-encapsulation and protection by the Al alloy sheath.This may be advantageous to improve transport properties such as electrical resistance.

    2.3 Effect of SiC addition on thermoelectric and mechanical properties

    From the above results,it can be found that the hot-extruded Zn4Sb3bulk materials have excellent thermoelectric performance.However,Zn4Sb3compound is extremely brittle,and its strength is not high.To improve the mechanical properties of Zn4Sb3bulk materials,nanosized SiC particles were incorporated into Zn4Sb3matrix as a reinforcement.Of course,it is necessary to understand the effect of SiC addition on thermoelectric properties.

    Fig.7 shows the temperature dependence of the Seebeck coefficient and electrical resistance of hotextruded Zn4Sb3samples with different amounts of SiC particles.The Seebeck coefficient of the samples containing SiC particles showed higher values above 450 K,compared to pure Zn4Sb3sample(0% SiC).The increase in the Seebeck coefficient is thought to be due to(i)size reduction of Zn and Sb powders and(ii)grain refinement in the hot-extruded Zn4Sb3samples because of presence of SiC particles.In fact,it has been confirmed that the average particle sizes of Zn and Sb powders were largely reduced(about half of the initial average particle size)through ultrasonic dispersion and subsequent ball milling during the preparation of powder mixtures.With respect to electrical resistance,the sample with 1%SiC addition showed somewhat lower values in comparison with pure Zn4Sb3,whereas the addition of 5%SiC particles gave rise to an increase in electrical resistance.The increase in electrical resistance is the result of scattering from SiC particles and grain refinement(grain-boundary scattering).The reason for decrease in electrical resistance in 1%SiC sample is not clear,perhaps similar to the effect of extrusion ratio as shown in Fig.5,a further investigation is necessary.

    From the results of thermal conductivity shown in Fig.8,it is evident that the incorporation of SiC particles leads to increases in thermal conductivity.SiC compound has a thermal conductivity value of>100 W/(m·K),which is much higher than that of Zn4Sb3(~0.75 W/(m·K)shown in Fig.8).Consequently,it seems that the influence of a high thermal conductivity value of SiC itself is larger than the contribution of grain refinement as a result of the presence of nanosized SiC particles.Fig.9 illustrates the temperature dependence of ZT for samples with different amounts of SiC particles.For 1%SiC sample,ZT was higher than that of pure Zn4Sb3above 500 K,and ZT reached 1.84 at 623 K.This arises mainly from larger Seebeck coefficient and smaller electrical resistance,even though there are higher thermal conductivity values,just as shown in Figs.7 and 8.Nevertheless,the addition of 5%SiC resulted in a decrease in ZT,especially at high temperatures.

    In addition to thermoelectric properties,the effect of SiC nanosized particles on some mechanical properties has also been examined.Fig.10 shows Vickers hardness of the hot-extruded Zn4Sb3bulk materials as a function of volume fraction of SiC particles.The Vickers hardness increased with increasing the volume fraction of SiC particles.This is attributed to dispersion strengthening of SiC particles and grain refinement of Zn4Sb3matrix.The variation of flexural strength of the extruded Zn4Sb3samples with volume fraction of SiC particles is shown in Fig.11.The addition of 1%SiC particles caused a rapid increase in flexural strength.However,a further strength improvement cannot be found when more SiC particles were incorporated into Zn4Sb3matrix.This is primarily related to agglomeration of SiC particles.Since the average size of SiC particles is very small,particle agglomeration occurs easily with the increase in SiC amount.

    Fig.9 Temperature dependence of dimensionless thermoelectric figure of merit of extruded Zn4Sb3 samples with different amounts of SiC particles.

    From the above results,it is concluded that the addition of 1%SiC nanosized particles in Zn4Sb3contributes to the improvements in both mechanical and thermoelectric properties.Under the current experimental conditions,however,when more SiC particles are added in Zn4Sb3matrix,it appears there is a harmful effect on thermoelectric properties.

    Fig.10 Vickers hardness of extruded Zn4Sb3samples as a function of volume fraction of SiC particles.

    Fig.11 Variation of flexural strength of extruded Zn4Sb3samples with volume fraction of SiC particles.

    3 Summary

    In the present study,a“reaction-extrusion process”has been developed to prepare Zn4Sb3thermoelectric materials by using Zn and Sb powders as the starting materials.The effects of some processing parameters,such as extrusion ratio and punch speed,and SiC reinforcement on extrusion behavior,microstructure, thermoelectric, and mechanical properties of extruded Zn4Sb3bulk materials have been investigated.The synthesis,densification,and shape-forming of Zn4Sb3bulk materials were simultaneously achieved through hot extrusion of Zn-Sb powder mixture,which was vacuum-encapsulated into an Al alloy can.The extrudates had high density with single β-Zn4Sb3phase.The results showed that a large extrusion ratio and a small punch speed are advantageous to enhance thermoelectric performance.The extruded Zn4Sb3materials exhibited excellent thermoelectric performance,for example,the dimensionless thermoelectric figure of merit attains 1.77 at 623 K,which is 36%higher than that of conventional hot-pressed sample.Moreover,the addition of 1%SiC nanosized particles caused grain refinement of Zn4Sb3matrix,thus leading to improvements in both thermoelectric and mechanical properties(such as hardness and flexural strength).Acknowledgements

    This work was supported in part by the Japan Science and Technology Agency(JST)and JFE 21st Century Foundation.

    [1] Caillat T,F(xiàn)leurial J-P,Borshchevsky A.Preparation and thermoelectric properties of semiconducting Zn4Sb3[J].J Phys Chem Solids,1997,58:1119-1125.

    [2] Zhu T J,Zhao X B,Yan M,et al.Transport properties of β-Zn4Sb3prepared by vacuum melting[J].Mater Lett,2000,46:44-48.

    [3] Souma T,Nakamoto G,Kurisu M.Low-temperature thermoelectric preperties of α-and β-Zn4Sb3bulk crystals prepared by a gradient freeze method and a spark plasma sintering method[J].J Alloy Comp,2002,340:275-280.

    [4] Zhang L T,Tsutsui M,Ito K,et al.Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3[J].J Alloy Comp,2003,358:252-256.

    [5] Ur S-C,Kim I-H,Nash P.Thermoelectric properties of Zn4Sb3directly synthesized by hot pressing[J].Mater Lett,2004,58:2132-2136.

    [6] Ueno K,Yamamoto A,Noguchi T,et al.Optimization of hot-press conditions of Zn4Sb3for high thermoelectric performance,I.Physical properties and thermoelectric performance[J].J Alloy Comp,2004,384:254-260.

    [7] Ueno K,Yamamoto A,Noguchi T,et al.Optimization of hot-press conditions of Zn4Sb3for high thermoelectric performance III.Effect of starting particle size on thermoelectric and mechanical properties[J].J Alloy Comp,2005,392:295-299.

    [8] Izard V,Record M C,Tedenac J C,et al.Discussion on the stability of the antimony-zinc binary phases[J].Calphad,2001,25:567-581.

    [9] Chen Z-C,Tsujimura J,F(xiàn)ujita F.Processing and thermoelectric properties of Zn4Sb3compound by powder extrusion technique[C] //in:Powder Metallurgy&Particulate Materials,Proceedings of 2008 World Congress on Powder Metallurgy&Particulate Materials.2008:229-237.

    [10] Miller G R,Li C Y.Evidence for the existence of antistructure defects in bismuth telluride by density measurements[J].J Phys Chem Solids,1965,26:173-177.

    [11] Horá k J,Navrátil J,Star Z.Lattice point defects and freecarrier concentration in Bi2+xTe3and Bi2+xSe3crystals[J].J Phys Chem Solids,1992,53:1067-1072.

    [12] Chen Z-C,Suzuki K,Miura S,et al.Microstructural features and deformation-induced lattice defects in hot-extruded Bi2Te3thermoelectric compound[J].Mater Sci Eng,2009,500:70-78.

    TB 39

    A

    1671-6620(2011)01-0051-07

    2010-05-20.

    陳中春 (1963—),男,湖北應(yīng)城人,日本鳥取大學(xué)教授,E-mail:chen@mech.to ttori-u.ac.jp.

    猜你喜歡
    大學(xué)教授湖北日本
    The rise of China-Chic
    日本元旦是新年
    探尋日本
    中華手工(2021年2期)2021-09-15 02:21:08
    遼寧工程技術(shù)大學(xué)教授
    安全(2020年12期)2021-01-22 01:26:32
    馳援湖北
    海峽姐妹(2020年2期)2020-03-03 13:36:28
    湖北武漢卷
    《黃金時(shí)代》日本版
    電影(2019年3期)2019-04-04 11:57:16
    湖北現(xiàn)“最牛釘子戶” 車道4變2給樓讓路
    澳門月刊(2018年1期)2018-01-17 08:49:15
    實(shí)境學(xué)習(xí):讓學(xué)習(xí)在學(xué)習(xí)者的手中和腦中同時(shí)發(fā)生——訪澳大利亞莫道克大學(xué)教授揚(yáng)·哈靈頓博士
    深情躬耕海洋 促進(jìn)人類健康——記天津科技大學(xué)教授徐仰倉
    五月玫瑰六月丁香| 欧美xxxx黑人xx丫x性爽| 色av中文字幕| 国产熟女xx| 免费在线观看亚洲国产| 啪啪无遮挡十八禁网站| 亚洲美女视频黄频| 色视频www国产| 日韩人妻高清精品专区| 人妻丰满熟妇av一区二区三区| 久久久色成人| www.色视频.com| 两个人的视频大全免费| 中文资源天堂在线| 亚洲在线观看片| 夜夜夜夜夜久久久久| 桃红色精品国产亚洲av| 日韩欧美免费精品| 欧美日韩乱码在线| 国产一区二区亚洲精品在线观看| 国语自产精品视频在线第100页| 日日夜夜操网爽| 成年免费大片在线观看| 麻豆成人午夜福利视频| 嫩草影院精品99| 亚洲美女搞黄在线观看 | 久久久久国产精品人妻aⅴ院| 久久久久久久亚洲中文字幕 | 国产一区二区亚洲精品在线观看| 国产精品自产拍在线观看55亚洲| 欧美日韩中文字幕国产精品一区二区三区| 国产精品自产拍在线观看55亚洲| 亚洲五月天丁香| 国产成人影院久久av| 免费观看人在逋| 丰满人妻一区二区三区视频av| 成人国产一区最新在线观看| 大型黄色视频在线免费观看| 婷婷亚洲欧美| 欧美一级a爱片免费观看看| 99久久精品国产亚洲精品| 97热精品久久久久久| 在线a可以看的网站| 亚洲第一电影网av| 最后的刺客免费高清国语| 老鸭窝网址在线观看| 丁香欧美五月| www.999成人在线观看| 在线a可以看的网站| 国产伦一二天堂av在线观看| 特大巨黑吊av在线直播| 国产精华一区二区三区| 成人特级av手机在线观看| 丰满的人妻完整版| 久久香蕉精品热| 看免费av毛片| 国产淫片久久久久久久久 | 一夜夜www| 久久99热这里只有精品18| 国产精品久久久久久久电影| 色综合婷婷激情| 青草久久国产| 一个人免费在线观看的高清视频| 五月伊人婷婷丁香| 亚洲精品一区av在线观看| 成人国产综合亚洲| 99热精品在线国产| netflix在线观看网站| 91午夜精品亚洲一区二区三区 | 日本三级黄在线观看| 在线观看午夜福利视频| 色哟哟·www| 亚洲乱码一区二区免费版| 国产视频一区二区在线看| 少妇的逼水好多| 精品日产1卡2卡| 欧美色视频一区免费| 午夜免费激情av| 成人特级av手机在线观看| 最新中文字幕久久久久| 亚洲中文字幕一区二区三区有码在线看| 亚洲 欧美 日韩 在线 免费| 精品国内亚洲2022精品成人| 在线国产一区二区在线| 久久久国产成人精品二区| 给我免费播放毛片高清在线观看| 国产精品日韩av在线免费观看| 婷婷色综合大香蕉| 国产主播在线观看一区二区| 色噜噜av男人的天堂激情| 免费看光身美女| 欧洲精品卡2卡3卡4卡5卡区| 成人午夜高清在线视频| ponron亚洲| 久久香蕉精品热| 又紧又爽又黄一区二区| 在线观看免费视频日本深夜| 欧美乱色亚洲激情| 国产伦在线观看视频一区| 赤兔流量卡办理| 99久久精品一区二区三区| 尤物成人国产欧美一区二区三区| 欧美中文日本在线观看视频| 九色国产91popny在线| 午夜福利视频1000在线观看| 一二三四社区在线视频社区8| 少妇丰满av| 成人国产一区最新在线观看| 人妻夜夜爽99麻豆av| 国产伦一二天堂av在线观看| 看片在线看免费视频| 又黄又爽又刺激的免费视频.| 校园春色视频在线观看| 久久久久久九九精品二区国产| 中文字幕免费在线视频6| 午夜精品久久久久久毛片777| 夜夜爽天天搞| 精品免费久久久久久久清纯| 久久中文看片网| 成人毛片a级毛片在线播放| 亚洲色图av天堂| 搡老熟女国产l中国老女人| 免费观看精品视频网站| 欧美成人免费av一区二区三区| 99热这里只有是精品在线观看 | 韩国av一区二区三区四区| 淫妇啪啪啪对白视频| 国产色爽女视频免费观看| 啪啪无遮挡十八禁网站| 最后的刺客免费高清国语| 天美传媒精品一区二区| 国产av不卡久久| 国产蜜桃级精品一区二区三区| 国产三级在线视频| 白带黄色成豆腐渣| 永久网站在线| 成人一区二区视频在线观看| 午夜精品一区二区三区免费看| 成熟少妇高潮喷水视频| 精品欧美国产一区二区三| 国产精品久久视频播放| 性色av乱码一区二区三区2| 免费观看人在逋| 少妇的逼好多水| 国产黄a三级三级三级人| 香蕉av资源在线| 久久精品国产亚洲av香蕉五月| av视频在线观看入口| 亚洲国产精品999在线| 九九在线视频观看精品| 亚洲国产精品合色在线| 又黄又爽又免费观看的视频| 亚洲av五月六月丁香网| 天天一区二区日本电影三级| 韩国av一区二区三区四区| 国产老妇女一区| 国产一级毛片七仙女欲春2| 成人特级黄色片久久久久久久| 国产一级毛片七仙女欲春2| 国产高清视频在线播放一区| 久久久久久久久久黄片| 亚洲成人精品中文字幕电影| 亚洲成人中文字幕在线播放| 中文字幕人成人乱码亚洲影| 色吧在线观看| 淫妇啪啪啪对白视频| 亚洲精品乱码久久久v下载方式| 国产精品野战在线观看| 国产av麻豆久久久久久久| 亚洲av成人精品一区久久| 免费看光身美女| 成人特级黄色片久久久久久久| 999久久久精品免费观看国产| 91久久精品电影网| 村上凉子中文字幕在线| 国产午夜精品久久久久久一区二区三区 | 国产精品女同一区二区软件 | 淫秽高清视频在线观看| 最新中文字幕久久久久| 美女黄网站色视频| 亚洲无线在线观看| 又爽又黄无遮挡网站| 国产成人aa在线观看| 性欧美人与动物交配| 校园春色视频在线观看| 日韩欧美国产在线观看| 女人被狂操c到高潮| bbb黄色大片| 热99re8久久精品国产| 久久99热6这里只有精品| 99热这里只有精品一区| 国产又黄又爽又无遮挡在线| 国产又黄又爽又无遮挡在线| 丁香六月欧美| 窝窝影院91人妻| 成人高潮视频无遮挡免费网站| 欧美激情久久久久久爽电影| 男女做爰动态图高潮gif福利片| 亚洲色图av天堂| 黄色日韩在线| 亚洲成人免费电影在线观看| 亚洲精品亚洲一区二区| 日本免费一区二区三区高清不卡| 午夜福利18| 国产高清激情床上av| 久久中文看片网| 日韩亚洲欧美综合| 高清毛片免费观看视频网站| 桃红色精品国产亚洲av| 高清毛片免费观看视频网站| 中文字幕精品亚洲无线码一区| 又爽又黄无遮挡网站| 天堂网av新在线| 亚洲在线自拍视频| 脱女人内裤的视频| 午夜视频国产福利| 内射极品少妇av片p| 国语自产精品视频在线第100页| 在线十欧美十亚洲十日本专区| 亚洲中文日韩欧美视频| 一个人看视频在线观看www免费| 一个人看的www免费观看视频| 国产三级在线视频| 一级黄色大片毛片| 悠悠久久av| 国产三级在线视频| 久久婷婷人人爽人人干人人爱| 五月玫瑰六月丁香| 久久久久久国产a免费观看| 丰满乱子伦码专区| 淫秽高清视频在线观看| 91在线精品国自产拍蜜月| 18美女黄网站色大片免费观看| 男人狂女人下面高潮的视频| 亚洲人成伊人成综合网2020| 亚洲久久久久久中文字幕| 亚洲欧美日韩高清在线视频| 99热这里只有是精品50| 波多野结衣巨乳人妻| 亚洲无线观看免费| 国产白丝娇喘喷水9色精品| 国产午夜福利久久久久久| 午夜福利18| 精品人妻熟女av久视频| 国产高清激情床上av| АⅤ资源中文在线天堂| 美女黄网站色视频| 一本一本综合久久| 欧美性猛交╳xxx乱大交人| 最后的刺客免费高清国语| 给我免费播放毛片高清在线观看| 亚洲欧美激情综合另类| 亚洲精品乱码久久久v下载方式| 高潮久久久久久久久久久不卡| 免费人成在线观看视频色| 亚洲欧美日韩东京热| 我的老师免费观看完整版| 国产 一区 欧美 日韩| 久久久久久久大尺度免费视频| 欧美成人午夜免费资源| 欧美97在线视频| 白带黄色成豆腐渣| 久久国产乱子免费精品| 亚洲怡红院男人天堂| 2018国产大陆天天弄谢| 久久6这里有精品| 亚洲四区av| 久久99热6这里只有精品| 亚洲精品国产av蜜桃| 联通29元200g的流量卡| 91精品一卡2卡3卡4卡| 九草在线视频观看| 精品人妻偷拍中文字幕| 国产女主播在线喷水免费视频网站| 成人午夜精彩视频在线观看| 免费看光身美女| 两个人的视频大全免费| 亚洲怡红院男人天堂| 又粗又硬又长又爽又黄的视频| 嫩草影院精品99| 性插视频无遮挡在线免费观看| 在线 av 中文字幕| 少妇 在线观看| 99久久人妻综合| 欧美老熟妇乱子伦牲交| 亚洲国产高清在线一区二区三| av在线观看视频网站免费| 我的女老师完整版在线观看| 亚洲色图综合在线观看| 日本欧美国产在线视频| 如何舔出高潮| 久久这里有精品视频免费| 岛国毛片在线播放| 寂寞人妻少妇视频99o| 国产真实伦视频高清在线观看| 中国三级夫妇交换| 午夜亚洲福利在线播放| 色婷婷久久久亚洲欧美| 日本三级黄在线观看| 黄色配什么色好看| 国产精品偷伦视频观看了| 高清午夜精品一区二区三区| 久久99蜜桃精品久久| 亚洲精品乱久久久久久| 亚洲婷婷狠狠爱综合网| 欧美 日韩 精品 国产| 午夜精品一区二区三区免费看| 久久久久国产网址| 亚洲精品视频女| 精品午夜福利在线看| 国产在视频线精品| 欧美高清性xxxxhd video| a级一级毛片免费在线观看| 久久精品国产亚洲av涩爱| 男的添女的下面高潮视频| 久久99热这里只有精品18| 色视频在线一区二区三区| 男插女下体视频免费在线播放| 亚洲精品国产av蜜桃| 国产黄片美女视频| 少妇高潮的动态图| 交换朋友夫妻互换小说| 久久精品国产自在天天线| 免费大片18禁| 国产精品嫩草影院av在线观看| 高清毛片免费看| 亚洲成色77777| 欧美精品一区二区大全| 日日撸夜夜添| 99热这里只有精品一区| videos熟女内射| 日韩在线高清观看一区二区三区| 交换朋友夫妻互换小说| 日本wwww免费看| 日本爱情动作片www.在线观看| 狂野欧美白嫩少妇大欣赏| 国产成人a区在线观看| 三级经典国产精品| 国产精品秋霞免费鲁丝片| 一区二区三区四区激情视频| 日本欧美国产在线视频| 国产在线一区二区三区精| 国产精品不卡视频一区二区| 欧美日韩一区二区视频在线观看视频在线 | av在线亚洲专区| 性色av一级| 男女无遮挡免费网站观看| 在线a可以看的网站| 26uuu在线亚洲综合色| 91在线精品国自产拍蜜月| 久久精品久久久久久久性| 熟女av电影| 少妇丰满av| 18禁在线播放成人免费| 免费在线观看成人毛片| 日韩欧美一区视频在线观看 | 在线观看国产h片| 国产美女午夜福利| 久久精品熟女亚洲av麻豆精品| 亚洲精品aⅴ在线观看| 777米奇影视久久| 五月天丁香电影| 麻豆精品久久久久久蜜桃| 欧美日本视频| 精品久久久久久久久亚洲| 国产视频首页在线观看| 国产精品久久久久久精品电影小说 | 国产视频首页在线观看| 国产成人aa在线观看| 久久这里有精品视频免费| 汤姆久久久久久久影院中文字幕| 久久人人爽av亚洲精品天堂 | 国产淫片久久久久久久久| videos熟女内射| 夫妻性生交免费视频一级片| 国产精品久久久久久精品电影| 毛片女人毛片| 亚洲三级黄色毛片| 国产乱人视频| 狂野欧美激情性xxxx在线观看| 久久人人爽人人片av| 亚洲无线观看免费| 中文欧美无线码| 女人十人毛片免费观看3o分钟| 中文字幕制服av| 看十八女毛片水多多多| 亚洲自拍偷在线| 午夜亚洲福利在线播放| 成人二区视频| 国产毛片a区久久久久| 亚洲天堂av无毛| 国产免费一区二区三区四区乱码| 欧美高清性xxxxhd video| 国产男女超爽视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 99久久精品国产国产毛片| 日韩电影二区| 午夜福利在线在线| 亚洲,一卡二卡三卡| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 内地一区二区视频在线| 插阴视频在线观看视频| a级一级毛片免费在线观看| 精品国产一区二区三区久久久樱花 | 一区二区三区免费毛片| 精品亚洲乱码少妇综合久久| 五月开心婷婷网| 97人妻精品一区二区三区麻豆| 综合色av麻豆| 黄色视频在线播放观看不卡| 亚洲三级黄色毛片| 22中文网久久字幕| 国产男女内射视频| 亚洲欧美清纯卡通| 国产成人精品一,二区| 精品国产露脸久久av麻豆| 五月伊人婷婷丁香| 久久99热这里只频精品6学生| 免费看日本二区| 久久精品国产亚洲av涩爱| 天堂中文最新版在线下载 | 五月玫瑰六月丁香| 禁无遮挡网站| 国产高清三级在线| 亚洲欧美精品自产自拍| 九色成人免费人妻av| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看 | 热99国产精品久久久久久7| 五月开心婷婷网| 国产精品爽爽va在线观看网站| 超碰97精品在线观看| 欧美日韩一区二区视频在线观看视频在线 | 三级男女做爰猛烈吃奶摸视频| 大码成人一级视频| 在现免费观看毛片| 中文在线观看免费www的网站| av网站免费在线观看视频| 久久综合国产亚洲精品| 中文字幕免费在线视频6| 中文精品一卡2卡3卡4更新| 亚洲精品成人久久久久久| 卡戴珊不雅视频在线播放| 亚洲精品一区蜜桃| 成人毛片60女人毛片免费| 色哟哟·www| 欧美日韩亚洲高清精品| 成人亚洲欧美一区二区av| 国产男女内射视频| 欧美丝袜亚洲另类| 日韩成人伦理影院| 午夜精品国产一区二区电影 | 最近的中文字幕免费完整| 韩国av在线不卡| 亚洲无线观看免费| 看非洲黑人一级黄片| 一区二区三区乱码不卡18| 热99国产精品久久久久久7| 亚洲丝袜综合中文字幕| 亚洲真实伦在线观看| 美女xxoo啪啪120秒动态图| 国产成人a区在线观看| 美女主播在线视频| 国产精品99久久99久久久不卡 | 中文精品一卡2卡3卡4更新| 亚洲,一卡二卡三卡| 伊人久久国产一区二区| 身体一侧抽搐| 久久99热这里只频精品6学生| 99热这里只有是精品50| 日韩欧美精品v在线| 亚洲精品影视一区二区三区av| 美女被艹到高潮喷水动态| 欧美日韩精品成人综合77777| 亚洲av免费高清在线观看| 久久这里有精品视频免费| 99热国产这里只有精品6| 精品久久久精品久久久| 久久久久久久亚洲中文字幕| 只有这里有精品99| 一本久久精品| 在线播放无遮挡| 久久久久精品久久久久真实原创| 国产亚洲av嫩草精品影院| 91精品一卡2卡3卡4卡| 日韩不卡一区二区三区视频在线| 亚洲成人久久爱视频| .国产精品久久| 视频中文字幕在线观看| 日韩视频在线欧美| 亚洲自拍偷在线| 亚洲va在线va天堂va国产| 少妇的逼水好多| 免费黄频网站在线观看国产| 99久国产av精品国产电影| av专区在线播放| 七月丁香在线播放| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看 | 伊人久久精品亚洲午夜| 亚洲国产欧美在线一区| 女的被弄到高潮叫床怎么办| 交换朋友夫妻互换小说| 人人妻人人爽人人添夜夜欢视频 | 日韩不卡一区二区三区视频在线| 久久久色成人| 91狼人影院| 日本wwww免费看| 狂野欧美激情性bbbbbb| 中文资源天堂在线| 日韩不卡一区二区三区视频在线| 天堂俺去俺来也www色官网| 高清午夜精品一区二区三区| 少妇裸体淫交视频免费看高清| 精品久久久噜噜| 国产亚洲5aaaaa淫片| 王馨瑶露胸无遮挡在线观看| 久热这里只有精品99| 日日啪夜夜撸| 精品少妇久久久久久888优播| 大又大粗又爽又黄少妇毛片口| 亚洲自拍偷在线| 欧美成人a在线观看| 免费黄频网站在线观看国产| av播播在线观看一区| 一区二区三区乱码不卡18| 精品少妇黑人巨大在线播放| 爱豆传媒免费全集在线观看| 中文字幕免费在线视频6| 久久久午夜欧美精品| 在线 av 中文字幕| 亚洲色图av天堂| 国产精品精品国产色婷婷| 久久精品熟女亚洲av麻豆精品| 亚州av有码| 老师上课跳d突然被开到最大视频| 搡女人真爽免费视频火全软件| 欧美 日韩 精品 国产| 99久久中文字幕三级久久日本| 亚洲av一区综合| 91精品一卡2卡3卡4卡| 欧美性猛交╳xxx乱大交人| 亚洲美女搞黄在线观看| 亚洲熟女精品中文字幕| 国产 精品1| 大话2 男鬼变身卡| 亚洲国产最新在线播放| 黄色一级大片看看| 日本av手机在线免费观看| 人人妻人人看人人澡| 国产av不卡久久| tube8黄色片| 亚洲精品色激情综合| 亚洲av在线观看美女高潮| 日韩不卡一区二区三区视频在线| 如何舔出高潮| 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区| av福利片在线观看| 91在线精品国自产拍蜜月| 精品少妇黑人巨大在线播放| 听说在线观看完整版免费高清| 国产高清三级在线| 99久久中文字幕三级久久日本| 乱码一卡2卡4卡精品| 99久久精品热视频| 国产久久久一区二区三区| 26uuu在线亚洲综合色| 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 51国产日韩欧美| 日韩人妻高清精品专区| 中文乱码字字幕精品一区二区三区| 大话2 男鬼变身卡| 国内精品宾馆在线| 国产成人精品久久久久久| 99久国产av精品国产电影| 在线看a的网站| 婷婷色综合www| 欧美xxⅹ黑人| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 午夜老司机福利剧场| 夫妻性生交免费视频一级片| 18禁在线无遮挡免费观看视频| 亚洲色图av天堂| 美女内射精品一级片tv| 亚洲av二区三区四区| 国产av国产精品国产| www.av在线官网国产| 中文资源天堂在线| 国产毛片在线视频| 嫩草影院精品99| kizo精华| 狂野欧美白嫩少妇大欣赏| 午夜福利高清视频| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 午夜福利视频1000在线观看| 国产av码专区亚洲av| 日本一二三区视频观看| 欧美日韩一区二区视频在线观看视频在线 | 麻豆久久精品国产亚洲av| 麻豆成人午夜福利视频| 午夜福利网站1000一区二区三区| 最近手机中文字幕大全| 国产免费福利视频在线观看| 在现免费观看毛片| 久久久久久九九精品二区国产| 国产淫片久久久久久久久| 国内少妇人妻偷人精品xxx网站| 97精品久久久久久久久久精品| 男人舔奶头视频| 日韩一区二区三区影片|