• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Failure mechanisms of reinforced concrete slabs in fire

    2011-12-22 03:12:02YUXinmengZHAXiaoxiongHUANGZhaohui
    火災(zāi)科學(xué) 2011年1期
    關(guān)鍵詞:機(jī)制混凝土結(jié)構(gòu)

    YU Xin-meng,ZHA Xiao-xiong,HUANG Zhao-hui

    (1.Department of Civil&Environmental Engineering,Harbin Institute of Technology,Shenzhen,518055,China;2.Department of Civil and Structural Engineering,University of Sheffield,UK)

    余新盟1,查曉雄1,HUAN G Zhao-hui2

    (1.哈爾濱工業(yè)大學(xué)深圳研究生院土木與環(huán)境工程學(xué)科部,深圳,518055;2.英國謝菲爾德大學(xué)土木與結(jié)構(gòu)工程系)

    Failure mechanisms of reinforced concrete slabs in fire

    YU Xin-meng1,ZHA Xiao-xiong1,HUANG Zhao-hui2

    (1.Department of Civil&Environmental Engineering,Harbin Institute of Technology,Shenzhen,518055,China;2.Department of Civil and Structural Engineering,University of Sheffield,UK)

    When a slab is subjected to fire attack,the material property degradation and thermal expansion make the failure mechanism quite different from that at ambient temperature in stress distribution,deformation,integrity failure and ultimate load resistance.In this research,the failure mechanism of RC slabs at ambient and in fire is studied analytically and numerically.The study on cracking mechanisms and spalling influence on the fire resistance of RC slabs in fire leads to a general understanding of failure mechanisms of RC slabs in fire and some recommendations on post-fire structural health monitoring and spalling prevention are given.

    Slab failure mechanism;Numerical modelling;Integrity failure;Concrete cracking;Spalling of concrete;Structural fire engineering

    1 Introduction

    Traditionally,the design of reinforced concrete(RC,and hereafter)slabs is based on classical small deflection elastic bending theory of thin plates,to calculate the response including the deflection and elastic stress distribution.However,for slabs subjected to large deflections,ultimate limit state analysis is necessary.The most usual design method for reinforced concrete slabs is the Yield Line Theory[1],which can be used to investigate the ultimate limit state failure mechanism.Yield line theory assumes a collapse mechanism defined by a pattern of yield lines,across which the reinforcing bars have yielded and about which plastic rotation occurs.The flat concrete plate facets between the yield lines are assumed to remain rigid and perfectly planar.The pattern of yield lines is governed by the type of loading,the geometry of the slab,and the boundary conditions.Yield line theory only considersthe moments and shear forces at the yield lines without considering the development of in-plane forces as displacement increases.With the development of computational technology and the advance of numerical modelling,performance based design is increasingly accepted and implemented in engineering practice by many industry pioneers such as Arup,Buro-Happold,and so on.

    Fire disasters have shown that structures design safe at ambient temperature is not necessarily safe in fire.Experimental studies[2-5]show that the structural behaviour of RC structures in fire is quite different from that at ambient temperature.Spalling might happen at high temperatures because of thermally induced stresses and high pore pressurein concrete. Degradation of material strength and non-uniform thermal expansion inten-sify structural deformation which may form through thickness cracking and spread the flame into adjacent compartments.Therefore it is necessary to understand the failure mechanism in fire so that adequate measures can be made to design safer buildings.

    However,fire experiments are very expansive and not scalable.A general methodology is to develop numerical models based on the knowledge gain from a number of small scale fire tests.Then the models are used to model the fire performance of full scale structures.Numerical study also provides a powerful alternative to the techniques of experimentation and observation,when phenomena are not observable or measurements are impractical or too expensive.This is especially valuable in predicting potential damages in structural health monitoring.

    This paper aims at investigating numerically the failure mechanism of RC slabs in fire,including progressive cracking of concrete and the spalling influence on the fire resistance.Recommendations for structural health monitoring are also provided.

    2 The failure mechanism of RC slabs at ambient temperature

    圖1 常溫下板截面應(yīng)力分布機(jī)制Fig.1 Stressing mechanisms in the cross section of slabs at ambient temperature

    Mechanical theories are usually based on material properties at ambient temperature.When a structural member is subjected to bending,the member bends along its neutral axis and the maximum stresses are on the top and bottom surfaces;if there exist in-plane stresses,then the resultant stresses governs the most critical positions(see Fig.1).rules,the applied load can only cause small displacement and the stresses are small.With the increase of displacement,geometric nonlinearity can no longer be ignored.If the slab is four-edge effectively supported,the membrane action due to double curvature will greatly enhance the ultimate load bearing capacity.A general characteristic is the formation of a tensile zone in the centre surrounded by a compressive ring as shown in Fig.2.

    圖2 板在雙曲變形下的膜效應(yīng)Fig.2 Membrane action in a doubly curved slab

    Concrete is strong in compression but weak in tension,therefore,anti-cracking rebars are applied to resist tension in reinforced concrete slabs.Even though,cracking will occur once concrete is excessively stressed.A slab usually subjected to sagging moment in the centre and hogging moment at the supports,therefore the cracking initiates from the bottom surface in the centre and top surface at supports.

    A layered slab element[6]enhanced with embedded weak discontinuities is developed by the authors to model the progressive cracking of RC slabs at large displacements.Fig.3 shows the numerical result of openings of the crack from bottom to top near the centre of the Slab M1[2].It can be seen from the figure that the through thickness crack is formed along the short span,but the top layer is not cracked along the long span.This agrees well with the test observation.

    3 The failure mechanism of RC slabs in fire

    圖3 常溫下RC板的裂縫自下而上拓展Fig.3 Cracking propagates from bottom to top in an RC slab at ambient temperature

    In addition to the stressing mechanisms at ambient temperature,thermally induced stresses arealso involved in fire(Fig.4).Both material degradation and thermal stresses increase the deflection of slabs so that enforce the membrane action.

    圖4 火災(zāi)下板截面應(yīng)力分布機(jī)制Fig.4 Stressing mechanisms in the cross section of slabs in fire

    The thermally induced stressesstem from thermal expansion mismatch due to the gradient temperature distribution in the slab or from boundary restraining.Different from the tension on the bottom surface at ambient temperature,the high temperature gradient in fire makes the bottom concrete expansion overweight bending induce tension,by which spalling may occur to expose the reinforcement inside(Fig.5,refer to Section 3.2 for more illustration),or lead to internal cracking without spalling.If the deflection is large enough,the tensile strain exceeds the sum of thermal strain and concrete tensile strain limit,then the bottom surface cracks,which issignificantin cooling stage.Cracking,spalling and slippage of reinforcement are main failure modes of RC slabs in fire,but only cracking and the influence of spalling are discussed in this paper.

    圖5 Cardington火災(zāi)試驗(yàn)中混凝土剝落暴露出了鋼筋[7]Fig.5 Spalling exposed the reinforcement in Cardington fire test[7]

    3.1 Cracking failure of RC slabs in fire

    In an experimental study[2]on a 1.8m by 1.2m simply supported Slab MF1,a 75mm large crack was formed along the short span.The slab is modelled again using the embedded slab model.It is known from numerical modelling(Fig.6)thatthe crack propagates to the top surfacewhen the reinforcement exceeds 150℃.This is accompanied by a suddenly increase of stress in the reinforcement.However,this stress concentration is soon tuned down by stress redistribution in the slab.The crack on the top surface increases to 0.5mm when the reinforcement temperature reaches 580℃,the moment only about half of the strength left.The reinforcement stress reaches its strength when temperature is elevated to 700℃.Then the slab fails quickly. The slab losses its stability when the opening width reaches 45mm with the reinforcement temperature reaches 800℃.

    圖6 板MF1靠段跨裂縫處的鋼筋應(yīng)力變化Fig.6 The reinforcement stress near the large crack along the short span in Slab MF1

    In order to understand the failure mechanism of RC slabs in a frame structure,the full scale Cardington Fire Test 7 is modelled.The observation of the test is given in[8].The profiled slab is transformed into a flat one with an equivalent thickness defined in Eurocode 4[9].The slab is further subdivided into 27 layers with the steel reinforcement occupying layers 14 and 15.In order to take into account the imperfect bond between the overlapped reinforcing meshes,only half of the reinforcement strength is used within that area of the slab in the modelling.The FE discretization is shown in Fig.7.According to the current analysis,a very clear membrane ring(Fig.8)is formed in the slab in the fire zone.This is because of the effective vertical support by the beams[10]and the large deflection of the slab in fire.The cracking details of the element E08 alongX-axis andY-axis(see Fig.7)are listed in Table 1.The opening width decreases from top to bottom along the X-axis due to hogging moment from the underneath beam restraining.It is worth to note that only some of the internal layers are cracked along the Y-axis.This internal cracking phenomenon is quite different from that at ambient temperature.The cracking mechanism is governed by the coupled action of bending,in-plane stretching and thermal expansion.This should not be neglected in the assessment of the damage of buildings after fire attack.

    表1 模擬Cardington火災(zāi)試驗(yàn)7中單元E8在第60分鐘時的各層開裂情形(X,Y軸定義參看圖7)Table 1 The predicted crack opening width in each layer of slab elements E8 at 60 minutes test time in Cardington Fire Test 7(X,Y-axes are labeled in Fig.7).

    3.2 The influence of spalling on the fire resistance of RC slabs in fire

    Concrete is a porous material which consists mainly of mineral aggregate bound by a matrix of hardened cement paste.The paste is highly porous and,unless artificially dried,normally contains a large amount of free(evaporable)water.Normal concretes are made using Portland cement,and are not particularly intended to serve at very high temperatures,although they may be exposed to them accidentally.The component in concrete undergoes physical and chemical reactions at elevated temperatures,such as dehydration and expansion,as well as the decrease of binding strength(when the temperature exceeds 180℃).Experiments have shown that spalling might happen and consequently reduces the load capacity of RC structures.

    Heating rate is always regarded as one of the most important factors influence the spalling of concrete.Higher moisture content is more susceptible to spalling than low moisture content in that evaporation of free water increases about 1700 times in volume which is condensed in small pore spaces waiting for releasing.The permeability of concrete is a very important factor in affecting the rate at which water vapour can escape from within the concrete.The spalling of concrete is also affected by many other factors,such as type of aggregate,amount of reinforcement,load and restraint to free thermal expansion,tensile strength,water/cement ratio,size and shape,and so on.However,these factors interact and competing with each other make the prediction of spalling very difficult,e.g.,mixture type influences spalling of concrete via affecting the permeability/porosity,thermal conductivity,tensile strength,and so on.

    As concrete ages its moisture content generally reduces,and this suggests that the tendency for spalling should lessen.However,there do seem to be some contradictory conclusions about the influence of age of concrete and how this relates to moisture content.For example Zaman and Sullivan[11]suggested that spalling would not occur for older concretes due to the low moisture contents,while Malhotra[12]concluded that older concretes,which are denser and with reduced permeability,were more vulnerable.Purkiss et a1[13].reported unpublished work by others which also showed that the age of the concrete appeared to be a critical factor,with lower moisture contents resulting in an increased probability of spalling;however,this may again be due to reduced permeability over time.These apparently contradictory conclusions may be associated with the relationship between water/cement ratio and other properties-for example a lower water/cement ratio is associated with higher strength and lower porosity.This may also explain why Shorter and Harmathy[14]also found that only concrete of a certain humidity suffered from spalling,since a very high water/cement ratio will increase permeability and porosity which in turn reduces the tendency for spalling.

    It is generally believed that the mechanisms of spalling of concrete in fire associated with the thermally induced stresses and the accumulation of pore pressure in the concrete[15].Spalling of concrete in fire can be categorized into progressive spalling and explosive spalling.Progressive spalling stems mainly from the differential thermal stresses generated by the incompatibility of ther-mal expansions caused by thermal gradient in concrete,while explosive spalling is mainly due to rapid accumulation of pore pressure by evaporating of concentrated moisture faster than escaping rate.However,spalling prediction models available are still at the stage of academic value.It is difficult to predict the time and extent of spalling in real RC structures.

    No doubt,spalling affects the fire resistance of RC slabs.A quantitative understanding of this influence can be done by evaluating the ultimate limit state by assuming a certain degree of spalling happened at a certain time.Literature review[15]on the spalling of concrete in fire shows that spalling usually happens at 15-25 minutes of fire with a temperature in the range of 200℃~400℃.The later spalling occurs,the deeper into the concrete.In assessing the severity of spalling,three classes have been defined[16]:

    ?Minor:The concrete surface spalls without reaching the reinforcement.

    ?Major:The spalled zone reaches the steel reinforcement and leaves it exposed.

    ? Severe:Concrete spalling reaches large depths,inside the steel reinforcing cage,and occurs with very high explosive energy.

    Only minor and major spallings are studied in this research.It is assumed ideally that minor spalling sloughs a half thickness of the concrete cover at 15 minutes of fire while major spalling removes the whole cover at 25 minutes of fire.

    The structural fire engineering software package Vulcan developed at the University of Sheffield is used to perform thermal and structural analyses.The block of spalled concrete is modeled as“void”,which is defined as no thermal and mechanical properties.The temperature data predicted is then used in structural analysis. The predictions of slabs with four-edge restrained and simply supported boundary conditions are shown in Figs 9 and 10.An edge is"restrained"means restraining horizontal movement across the edge,as well as preventing rotation about it.It can be seen that spalling has little influence on the fire resistance of restrained(or continuous)slabs.This explains why no collapsing happened although major spalling did occur,e.g.Fig.5,in many fire tests.However,minor or major spalling reduces the fire resistance time by 40%or 75%.Therefore,for slabs at the corner or edge of buildings,where the boundary is similar to simply supported,it is necessary to apply adequate measures to limit the spalling to satisfy design requirements.

    4 Conclusions

    In this paper,the failure mechanisms of reinforced concrete slabs in fire are analyzed analytically and numerically.Different from the cracking failure at ambient temperature,which is initiated and propagated from one surface to the other,the thermal gradient in slabs in fire enforces large deflections and forms membrane action.

    In this research,a layered slab element enhanced with embedded weak discontinuities is used to study the progressive cracking failure of RC slabs in fire.The study shows that:(a)Slabs tend to undergo large displacements and form tensile membrane action;(b)Cracking occur at large deflections causes stress redistribution in the slab;(c)Slabs loss the load bearing capacity quickly when the stress in the reinforcement reaches its degraded yield strength;(d)Thermal expansion may leads to invisible internal cracking which should not be neglected in structural damage assessment after fire.

    Another failure mechanism is the spalling of concrete which sloughs outer concrete and exposes the reinforcement to the fire.Spalling accelerates the reinforcement temperature growth and deteriorates bearing capacity of slabs.In order to have a quantitative understanding of the spalling influence on the fire resistance of RC slabs,the structural fire engineering software Vulcan developed at the University of Sheffield is used to study the limit state of RC slabs subject to predefined extents of spalling at predefined times.The spalled concrete blocks are assigned as“void”,which has no thermal and mechanical properties.Numerical study shows that spalling has little influence on the fire resistance of four-edge restrained slabs.However,minor or major spalling in a simply supported slab may reduce the fire resistance time by 40%or 75%,and therefore measures must be done to prevent avoid this spalling to satisfy the design requirements.

    [1]Johansen K W.Yield-line formulae for slabs[M].Cement and Concrete Association, Taylor &Francis,1962.

    [2]Bailey C,Toh W S.Small-scale concrete slab tests at ambient and elevated temperatures[J].Engineering Structures,2007,29(10):2775-2791.

    [3]Foster S J.Tensile membrane action of reinforced concrete slabs at ambient and elevated temperatures[D].PhD Thesis.University of Sheffield,2006.

    [4]Foster SJ,Bailey C G,Burgess I W,Plank R J.Experimental behaviour of concrete floor slabs at large displacements[J].Engineering Structures,2004,26(9):1231-1247.

    [5]Lim L C S,Wade C.Experimental fire tests of two-way concrete slabs[R],Fire engineering research report 02/12,University of Canterbury,2002.

    [6]Yu X M,Huang Z.An embedded FE model for modelling reinforced concrete slabs in fire[J].Engineering Structures,2008,30(11):3228-3238.

    [7]DTI.Report on spalling of concrete structures[R].DTI Construction Industry Directorate Project Report,No.209-977 cc 2376,2003.

    [8]Yu X M,Huang Z,Burgess I W,Plank R J.Nonlinear analysis of orthotropic composite slabs in fire[J].Engineering Structures,2008,30(1):67-80.

    [9]BS EN 1994-1-2:2005,Eurocode 4:Design of composite steel and concrete structures-Part 1.2:General rules-Structural fire design[S].

    [10]Abu A K,Burgess I W,Plank RJ.Effects of slab panel vertical support on tensile membrane action[A].3rd International Conference on Steel and Composite Structures(ICSCS07)[C],Manchester,U K,2007.

    [11]Zaman A A A,Sullivan P J.Explosive spalling of concrete exposed to high temperatures[R].Concrete Structures and Technology Research Report,Imperial College,London,1970.

    [12]Malhotra H L.Fire resistance of structural concrete beams[R].Fire Research Note No.741,Joint Fire Research Organization,Borehamwood,1969.

    [13]Purkiss J A,Moris W A,Connolly R J.Fire resistance of reinforced concrete columns-Correlation of analytical methods with observed experimental behaviour[A].Proceedings of the 7th International Fire Science and Engineering Conference[C],eds.Franks,C.and Grayson,S.,26-28 March,St John’s College,Cambridge,Interscience Communications,531-541.

    [14]Shorter G W,Harmathy T Z.Moisture clog spalling[A].Proceedings of Institution of Civil Engineers[C],1965,20:75-90.

    [15]Yu X M,Huang Z,Burgess I W,Plank R J.Concrete Spalling in Fire:A Review of the Current State of Knowledge[R].Report to KICT,Korea.Also Research Report DCSE/06/F/01,University of Sheffield,2006.

    [16]Ali F,Ali N,Silcock G,Abu-Tair A.Outcomes of a major research on fire resistance of concrete columns[J].Fire Safety Journal,2004,39(6):433-445.

    1004-5309(2011)-0001-08

    2010-11-23;修改日期:2010-12-21

    中國博士后科學(xué)基金(20100471075)

    余新盟(1970-),男,漢,2008年10月獲英國謝菲爾德大學(xué)結(jié)構(gòu)工程博士學(xué)位,現(xiàn)在哈爾濱工業(yè)大學(xué)深圳研究生院從事博士后研究工作。主要研究方向?yàn)榻Y(jié)構(gòu)抗火,計(jì)算力學(xué),局部破壞等。

    鋼筋混凝土在火災(zāi)中的破壞機(jī)制分析

    鋼筋混凝土樓板由于材料退化和熱膨脹的作用,在火災(zāi)條中的破壞機(jī)制與常溫下有很大的區(qū)別,體現(xiàn)在應(yīng)力分布、變形程度、局部破壞、極限承載力等方面。從數(shù)值分析的角度分析了鋼筋混凝土樓板在火災(zāi)中的破壞機(jī)制,對爆裂防護(hù)位置提出了建議,并指出了過火結(jié)構(gòu)健康檢測時應(yīng)注意的問題。

    樓板破壞機(jī)制;數(shù)值模擬;局部破壞;混凝土開裂;混凝土爆裂;結(jié)構(gòu)抗火

    TU375.2

    A

    余新盟1,查曉雄1,HUAN G Zhao-hui2

    (1.哈爾濱工業(yè)大學(xué)深圳研究生院土木與環(huán)境工程學(xué)科部,深圳,518055;2.英國謝菲爾德大學(xué)土木與結(jié)構(gòu)工程系)

    猜你喜歡
    機(jī)制混凝土結(jié)構(gòu)
    混凝土試驗(yàn)之家
    關(guān)于不同聚合物對混凝土修復(fù)的研究
    《形而上學(xué)》△卷的結(jié)構(gòu)和位置
    混凝土預(yù)制塊模板在堆石混凝土壩中的應(yīng)用
    論結(jié)構(gòu)
    中華詩詞(2019年7期)2019-11-25 01:43:04
    混凝土,了不起
    自制力是一種很好的篩選機(jī)制
    文苑(2018年21期)2018-11-09 01:23:06
    論《日出》的結(jié)構(gòu)
    破除舊機(jī)制要分步推進(jìn)
    創(chuàng)新治理結(jié)構(gòu)促進(jìn)中小企業(yè)持續(xù)成長
    亚洲美女视频黄频| 成年人午夜在线观看视频| 99久久综合免费| 成人国产av品久久久| 国产亚洲精品第一综合不卡 | 91精品伊人久久大香线蕉| 激情五月婷婷亚洲| xxxhd国产人妻xxx| 99久国产av精品国产电影| 性色av一级| 亚洲av不卡在线观看| 欧美 日韩 精品 国产| 夜夜骑夜夜射夜夜干| 人妻人人澡人人爽人人| 日韩强制内射视频| 免费人妻精品一区二区三区视频| 日本免费在线观看一区| 免费黄频网站在线观看国产| av在线播放精品| 啦啦啦在线观看免费高清www| 欧美性感艳星| 另类精品久久| 亚洲精华国产精华液的使用体验| av专区在线播放| 麻豆乱淫一区二区| 精品一区在线观看国产| 亚洲欧洲日产国产| 一级毛片黄色毛片免费观看视频| 亚洲三级黄色毛片| 国产精品久久久久久久久免| 少妇人妻精品综合一区二区| 99久国产av精品国产电影| 欧美 亚洲 国产 日韩一| 免费av中文字幕在线| 99国产综合亚洲精品| 免费黄色在线免费观看| 免费观看性生交大片5| 成人毛片60女人毛片免费| 国产精品人妻久久久久久| 最近2019中文字幕mv第一页| 久久综合国产亚洲精品| 免费观看a级毛片全部| 欧美日韩精品成人综合77777| 如何舔出高潮| 日韩中文字幕视频在线看片| 黄色怎么调成土黄色| 日韩成人av中文字幕在线观看| 亚洲国产精品专区欧美| 18+在线观看网站| 久久99热这里只频精品6学生| 亚洲欧美成人综合另类久久久| 欧美老熟妇乱子伦牲交| 一边摸一边做爽爽视频免费| 色哟哟·www| 菩萨蛮人人尽说江南好唐韦庄| 日本vs欧美在线观看视频| 我的老师免费观看完整版| 日韩一区二区视频免费看| 久久午夜福利片| 欧美人与性动交α欧美精品济南到 | 亚洲欧美日韩卡通动漫| 九九久久精品国产亚洲av麻豆| 国产黄色免费在线视频| 黑丝袜美女国产一区| 久久精品国产亚洲av涩爱| 蜜桃在线观看..| 午夜福利,免费看| 美女中出高潮动态图| 有码 亚洲区| 欧美精品人与动牲交sv欧美| 久久久亚洲精品成人影院| 亚洲一区二区三区欧美精品| 美女大奶头黄色视频| 国产探花极品一区二区| 国产国拍精品亚洲av在线观看| 国产白丝娇喘喷水9色精品| 一个人免费看片子| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9| av在线播放精品| 最近2019中文字幕mv第一页| 中文字幕免费在线视频6| 久久人人爽人人片av| 免费观看性生交大片5| 一边亲一边摸免费视频| 国产精品国产三级专区第一集| 九九在线视频观看精品| 久久人妻熟女aⅴ| 亚洲国产精品专区欧美| 亚洲av免费高清在线观看| 丝袜脚勾引网站| 精品人妻熟女av久视频| www.色视频.com| 久久久久久伊人网av| 亚洲激情五月婷婷啪啪| 赤兔流量卡办理| 一级毛片aaaaaa免费看小| 久久国产精品大桥未久av| 交换朋友夫妻互换小说| 欧美一级a爱片免费观看看| 亚洲国产色片| 人人澡人人妻人| 国产欧美另类精品又又久久亚洲欧美| 黄片无遮挡物在线观看| 精品一区在线观看国产| 九九爱精品视频在线观看| 日韩在线高清观看一区二区三区| 精品久久久噜噜| 亚洲精品久久午夜乱码| 久久久国产一区二区| 久久人人爽人人爽人人片va| 中文字幕av电影在线播放| 国产精品三级大全| 婷婷色综合大香蕉| 免费人妻精品一区二区三区视频| 久热这里只有精品99| 国产日韩欧美亚洲二区| 亚洲久久久国产精品| 91午夜精品亚洲一区二区三区| 91精品三级在线观看| 亚洲精品456在线播放app| 国产精品一区www在线观看| 一本色道久久久久久精品综合| 啦啦啦中文免费视频观看日本| 在线免费观看不下载黄p国产| 成年女人在线观看亚洲视频| 中文欧美无线码| 欧美性感艳星| 国产亚洲精品第一综合不卡 | 高清黄色对白视频在线免费看| 天天躁夜夜躁狠狠久久av| 99热国产这里只有精品6| 亚洲av二区三区四区| 高清毛片免费看| 欧美精品亚洲一区二区| 久久久久视频综合| 亚洲丝袜综合中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩在线观看h| 久久这里有精品视频免费| 99久久人妻综合| 国产成人a∨麻豆精品| 飞空精品影院首页| 一二三四中文在线观看免费高清| 老司机影院成人| 国产在视频线精品| 久久青草综合色| 美女xxoo啪啪120秒动态图| 成人18禁高潮啪啪吃奶动态图 | 精品国产国语对白av| 麻豆乱淫一区二区| 成人二区视频| 国内精品宾馆在线| 亚洲国产精品成人久久小说| 国产精品一二三区在线看| 久久久久国产网址| 一区二区日韩欧美中文字幕 | 亚洲精品aⅴ在线观看| 国产精品久久久久久久电影| 十八禁网站网址无遮挡| 国产成人午夜福利电影在线观看| 十八禁高潮呻吟视频| 国产精品一二三区在线看| 秋霞在线观看毛片| 男人爽女人下面视频在线观看| 青春草亚洲视频在线观看| 99久久中文字幕三级久久日本| 亚洲一级一片aⅴ在线观看| 国产欧美日韩综合在线一区二区| 欧美日韩精品成人综合77777| 人体艺术视频欧美日本| 亚洲av不卡在线观看| 美女国产高潮福利片在线看| 99久久精品国产国产毛片| 国产女主播在线喷水免费视频网站| 人妻一区二区av| 尾随美女入室| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 久久久久久久精品精品| 99视频精品全部免费 在线| 国产成人freesex在线| 国产精品99久久久久久久久| 免费看不卡的av| 国产精品国产av在线观看| 午夜视频国产福利| 尾随美女入室| 国产av码专区亚洲av| 永久免费av网站大全| 国产免费福利视频在线观看| 边亲边吃奶的免费视频| 亚洲美女黄色视频免费看| 国产女主播在线喷水免费视频网站| 伊人久久精品亚洲午夜| 制服丝袜香蕉在线| 亚洲精品视频女| 亚洲综合色惰| 免费播放大片免费观看视频在线观看| 久久久久久久久久人人人人人人| 看十八女毛片水多多多| 色网站视频免费| 熟女电影av网| 日韩人妻高清精品专区| 色网站视频免费| 制服诱惑二区| xxx大片免费视频| 成人无遮挡网站| 国产69精品久久久久777片| 最近的中文字幕免费完整| 国产成人免费无遮挡视频| 精品国产国语对白av| 春色校园在线视频观看| 国产免费一区二区三区四区乱码| 18禁在线播放成人免费| 视频中文字幕在线观看| 激情五月婷婷亚洲| 2018国产大陆天天弄谢| 男女高潮啪啪啪动态图| 一级毛片 在线播放| 国产一区二区在线观看av| 91国产中文字幕| 伊人久久精品亚洲午夜| 亚洲国产精品999| 亚洲精品久久成人aⅴ小说 | 中文字幕人妻熟人妻熟丝袜美| 狠狠精品人妻久久久久久综合| 久久精品久久久久久久性| 亚洲少妇的诱惑av| 另类精品久久| 国产乱来视频区| 女的被弄到高潮叫床怎么办| 涩涩av久久男人的天堂| 欧美老熟妇乱子伦牲交| 欧美日本中文国产一区发布| 肉色欧美久久久久久久蜜桃| 亚洲精品日韩在线中文字幕| 精品熟女少妇av免费看| 伦理电影大哥的女人| 亚洲中文av在线| 欧美激情国产日韩精品一区| 国产精品一区二区三区四区免费观看| 精品酒店卫生间| 免费观看av网站的网址| 欧美日韩在线观看h| 中文精品一卡2卡3卡4更新| 女人精品久久久久毛片| 精品久久久久久久久亚洲| 欧美三级亚洲精品| 欧美日韩综合久久久久久| 全区人妻精品视频| 国产一区二区在线观看av| 成年人午夜在线观看视频| 人人澡人人妻人| 青青草视频在线视频观看| 国模一区二区三区四区视频| 免费看av在线观看网站| 伊人久久国产一区二区| 精品99又大又爽又粗少妇毛片| 欧美亚洲日本最大视频资源| 内地一区二区视频在线| 久久久亚洲精品成人影院| 色视频在线一区二区三区| 国产一级毛片在线| 久久亚洲国产成人精品v| 色5月婷婷丁香| 岛国毛片在线播放| 黄色一级大片看看| 亚洲av欧美aⅴ国产| 亚洲国产精品一区二区三区在线| 只有这里有精品99| 午夜av观看不卡| 午夜福利在线观看免费完整高清在| 纵有疾风起免费观看全集完整版| 99精国产麻豆久久婷婷| 亚洲精品自拍成人| 超色免费av| 亚洲欧美一区二区三区黑人 | 中文乱码字字幕精品一区二区三区| 国产日韩欧美视频二区| 国产精品久久久久成人av| 国产精品99久久99久久久不卡 | 在线观看美女被高潮喷水网站| 王馨瑶露胸无遮挡在线观看| 国产成人免费无遮挡视频| 91在线精品国自产拍蜜月| 国产精品女同一区二区软件| 精品少妇内射三级| 久久久久国产精品人妻一区二区| 少妇人妻精品综合一区二区| 97精品久久久久久久久久精品| 伊人久久国产一区二区| 男的添女的下面高潮视频| 少妇的逼好多水| 久久国产亚洲av麻豆专区| 国产av国产精品国产| 在线观看免费高清a一片| 人妻人人澡人人爽人人| 一级黄片播放器| 国产亚洲av片在线观看秒播厂| 午夜福利,免费看| 美女脱内裤让男人舔精品视频| 亚洲中文av在线| 午夜福利,免费看| 国产有黄有色有爽视频| 国产一区二区三区av在线| 久久精品国产自在天天线| 亚洲怡红院男人天堂| 国产精品秋霞免费鲁丝片| 精品一区二区三区视频在线| 人妻 亚洲 视频| 男的添女的下面高潮视频| 亚洲av中文av极速乱| 成人毛片a级毛片在线播放| 男女免费视频国产| av福利片在线| 国产熟女午夜一区二区三区 | a级片在线免费高清观看视频| 欧美bdsm另类| av国产精品久久久久影院| 精品久久国产蜜桃| 国产片内射在线| 久久影院123| 亚洲成人手机| 欧美3d第一页| 亚洲欧美色中文字幕在线| 国产欧美亚洲国产| 亚洲精品视频女| 亚洲熟女精品中文字幕| 久久99蜜桃精品久久| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 在线观看美女被高潮喷水网站| 色视频在线一区二区三区| 午夜老司机福利剧场| 美女国产高潮福利片在线看| 下体分泌物呈黄色| 国产 精品1| 久久精品国产亚洲av天美| 久久久久久久久久成人| 精品人妻熟女毛片av久久网站| 日韩电影二区| 国产精品99久久久久久久久| 少妇人妻久久综合中文| av卡一久久| 亚洲五月色婷婷综合| 国产深夜福利视频在线观看| 国产成人精品一,二区| 久久鲁丝午夜福利片| 欧美人与善性xxx| 欧美日韩亚洲高清精品| 免费黄色在线免费观看| 又黄又爽又刺激的免费视频.| 国产精品一国产av| 国产乱来视频区| 三级国产精品欧美在线观看| 亚洲欧美日韩卡通动漫| 99热这里只有精品一区| 啦啦啦在线观看免费高清www| 亚洲激情五月婷婷啪啪| 蜜臀久久99精品久久宅男| 插逼视频在线观看| 男女啪啪激烈高潮av片| 国产一区亚洲一区在线观看| 啦啦啦中文免费视频观看日本| 婷婷成人精品国产| 91久久精品电影网| 国精品久久久久久国模美| 少妇人妻精品综合一区二区| 国产精品国产三级国产av玫瑰| 欧美日韩精品成人综合77777| 久久久久久久久大av| 中国国产av一级| 亚洲人与动物交配视频| 中文字幕免费在线视频6| 狠狠婷婷综合久久久久久88av| 国产精品人妻久久久影院| a级毛片免费高清观看在线播放| 嫩草影院入口| 国产乱来视频区| 精品视频人人做人人爽| 久久99一区二区三区| 草草在线视频免费看| 久久人人爽人人爽人人片va| 日本欧美国产在线视频| 亚洲美女搞黄在线观看| 精品一品国产午夜福利视频| 国产淫语在线视频| 久久99一区二区三区| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 美女主播在线视频| 成年av动漫网址| 国产国语露脸激情在线看| 99热这里只有精品一区| av网站免费在线观看视频| 91精品国产国语对白视频| 18禁在线无遮挡免费观看视频| 亚洲欧美一区二区三区国产| 精品亚洲成a人片在线观看| av有码第一页| 人人澡人人妻人| 91精品一卡2卡3卡4卡| 各种免费的搞黄视频| 99热6这里只有精品| 男女无遮挡免费网站观看| 女人久久www免费人成看片| 少妇丰满av| 一本一本综合久久| 九九爱精品视频在线观看| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 搡老乐熟女国产| 国产一区有黄有色的免费视频| 黑人高潮一二区| 国产淫语在线视频| 狂野欧美激情性xxxx在线观看| 另类亚洲欧美激情| 国产综合精华液| 亚洲,欧美,日韩| 成人漫画全彩无遮挡| 在线观看人妻少妇| 亚洲精品日韩在线中文字幕| 欧美少妇被猛烈插入视频| 午夜激情av网站| 十八禁高潮呻吟视频| 成人免费观看视频高清| 搡女人真爽免费视频火全软件| 狂野欧美激情性xxxx在线观看| 亚洲精品456在线播放app| 一级,二级,三级黄色视频| 久久人人爽人人片av| 91国产中文字幕| 飞空精品影院首页| 亚洲色图 男人天堂 中文字幕 | 国产片特级美女逼逼视频| 看十八女毛片水多多多| 精品人妻一区二区三区麻豆| 国产日韩欧美亚洲二区| 热re99久久精品国产66热6| 成人综合一区亚洲| 熟女电影av网| 欧美人与性动交α欧美精品济南到 | 国产亚洲精品第一综合不卡 | 亚洲精品视频女| 最近中文字幕高清免费大全6| 大又大粗又爽又黄少妇毛片口| 一级片'在线观看视频| 飞空精品影院首页| 国产伦精品一区二区三区视频9| a级毛色黄片| 大陆偷拍与自拍| 丰满少妇做爰视频| videosex国产| 春色校园在线视频观看| 黑丝袜美女国产一区| 美女内射精品一级片tv| 国产成人freesex在线| av国产精品久久久久影院| 日本欧美视频一区| 国产精品国产三级国产av玫瑰| 涩涩av久久男人的天堂| 日本wwww免费看| 久久久久久久久久久丰满| 日本午夜av视频| 蜜桃久久精品国产亚洲av| 国产 一区精品| 狂野欧美白嫩少妇大欣赏| 免费高清在线观看视频在线观看| 精品人妻熟女av久视频| 久久久午夜欧美精品| 欧美日韩av久久| 欧美日韩一区二区视频在线观看视频在线| 中文乱码字字幕精品一区二区三区| 九草在线视频观看| 少妇猛男粗大的猛烈进出视频| 欧美日本中文国产一区发布| 国产成人a∨麻豆精品| 欧美日本中文国产一区发布| 岛国毛片在线播放| xxxhd国产人妻xxx| 亚洲成色77777| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 精品人妻在线不人妻| 一级二级三级毛片免费看| 99久久精品一区二区三区| 亚洲国产精品一区三区| a级片在线免费高清观看视频| 久久99热这里只频精品6学生| 久久精品国产亚洲av涩爱| 制服人妻中文乱码| 热99久久久久精品小说推荐| 亚洲内射少妇av| 18+在线观看网站| 哪个播放器可以免费观看大片| 三级国产精品片| 日韩av不卡免费在线播放| 国产无遮挡羞羞视频在线观看| av播播在线观看一区| 精品99又大又爽又粗少妇毛片| 亚洲色图 男人天堂 中文字幕 | 免费观看无遮挡的男女| 日本免费在线观看一区| 夜夜骑夜夜射夜夜干| 久久久亚洲精品成人影院| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 晚上一个人看的免费电影| 国产精品无大码| 久久精品国产a三级三级三级| 搡女人真爽免费视频火全软件| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 少妇精品久久久久久久| 亚洲精品乱久久久久久| 欧美精品高潮呻吟av久久| 亚洲怡红院男人天堂| 国产视频内射| 超色免费av| 亚洲不卡免费看| 成人国产麻豆网| 久久国产精品男人的天堂亚洲 | 一级二级三级毛片免费看| 欧美最新免费一区二区三区| 好男人视频免费观看在线| 寂寞人妻少妇视频99o| 欧美 亚洲 国产 日韩一| 最近中文字幕2019免费版| 国产精品一区www在线观看| 成人毛片60女人毛片免费| 韩国高清视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲图色成人| 国产精品三级大全| 欧美日本中文国产一区发布| 女性被躁到高潮视频| 国产一区二区三区av在线| 新久久久久国产一级毛片| 桃花免费在线播放| 久久亚洲国产成人精品v| 成人18禁高潮啪啪吃奶动态图 | 国产一区亚洲一区在线观看| 国产成人午夜福利电影在线观看| 国产亚洲最大av| 成人午夜精彩视频在线观看| 久久精品久久精品一区二区三区| 亚洲欧美精品自产自拍| 九色亚洲精品在线播放| 免费播放大片免费观看视频在线观看| 乱人伦中国视频| √禁漫天堂资源中文www| 亚洲精品久久成人aⅴ小说 | 亚洲精品中文字幕在线视频| av免费在线看不卡| 久久久a久久爽久久v久久| 搡老乐熟女国产| 久久久久久久久久成人| 一本大道久久a久久精品| 制服丝袜香蕉在线| 国产一级毛片在线| 日韩伦理黄色片| 国产淫语在线视频| 伦理电影免费视频| 波野结衣二区三区在线| 插阴视频在线观看视频| 街头女战士在线观看网站| 丝袜在线中文字幕| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 国产高清有码在线观看视频| 国产免费现黄频在线看| 国产精品久久久久久精品电影小说| 22中文网久久字幕| 久热久热在线精品观看| 亚洲国产av影院在线观看| 精品亚洲成a人片在线观看| 成人漫画全彩无遮挡| 99久久精品一区二区三区| 丝袜美足系列| 国产精品久久久久久久电影| 丰满饥渴人妻一区二区三| 欧美日韩精品成人综合77777| av专区在线播放| 国产高清国产精品国产三级| 久久国产精品大桥未久av| 99久久精品国产国产毛片| 欧美日韩视频精品一区| 狠狠精品人妻久久久久久综合| 日本猛色少妇xxxxx猛交久久| 91精品一卡2卡3卡4卡| 一区二区三区乱码不卡18| 2022亚洲国产成人精品| 国产一级毛片在线| xxx大片免费视频| 亚洲精华国产精华液的使用体验| 国模一区二区三区四区视频| 欧美xxⅹ黑人| 中文字幕免费在线视频6| 色婷婷av一区二区三区视频| 国产成人一区二区在线| 中文字幕av电影在线播放| 日韩av不卡免费在线播放| 韩国高清视频一区二区三区| xxx大片免费视频| av专区在线播放| 能在线免费看毛片的网站| 男的添女的下面高潮视频| 免费看av在线观看网站| 国产精品免费大片| a级片在线免费高清观看视频| 热99国产精品久久久久久7|