• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variability of atmospheric freezing level height derived from radiosonde data in China during 1958-2005 and its impact to cryosphere changes

    2011-12-09 09:36:44YanJunGuoYinShengZhang
    Sciences in Cold and Arid Regions 2011年6期

    YanJun Guo , YinSheng Zhang

    1. National Climate Center, China Meteorological Administration, Beijing 100081, China

    2. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China

    Variability of atmospheric freezing level height derived from radiosonde data in China during 1958-2005 and its impact to cryosphere changes

    YanJun Guo1*, YinSheng Zhang2

    1. National Climate Center, China Meteorological Administration, Beijing 100081, China

    2. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China

    Atmospheric air temperature data from 92 stations in China’s radiosonde network were used to analyze changes in the freezing level height (FLH), glacier snow line, and ice edge from 1958-2005 (48 years) and to examine the impact of these changes on the cryosphere. In general, the FLH, glacier snow line, and ice edge exhibited latitudinal zonation, declining from south to north.Trends in the FLH, glacier snow line, and ice edge showed spatial heterogeneity during the study period, with prevailing upward trends. Temporally, the FLH, glacier snow line, and ice edge trends differed on various time scales.

    freezing level height; glacier snow line; permafrost line; cryosphere; China

    1. Introduction

    Air temperature in the troposphere generally decreases with altitude, often reaching 0 °C over ground that is not frozen. The freezing level height (FLH, or 0 °C isotherm of free air) in the atmosphere is a critical parameter that influences the cryosphere in high mountain and high altitude areas by causing phase change in water in the cryosphere(Harriset al., 2000; Hoffmann, 2003; Francouet al., 2004;Coudrainet al., 2005; Vuilleet al., 2008). In particular, the mass balance of glaciers depends on the extent of ice melting and sublimation, and on the correlation of the permafrost distribution with temperature variation. Diaz and Graham(1996) noted a significant rise in FLHs in the tropics during 1958-1990, related to sea surface temperatures (SSTs) in the east-central equatorial Pacific. In the American sector of the tropics, the strongest relationship between FLH and SST was found for the SSTs preceding the FLH by about 3 months (Diazet al., 2003). The largest changes in FLH have been documented in recent decades, along with significant warming in high mountain regions (Diazet al., 2003).

    China’s radiosonde network began observations in the 1950s and now has more than 100 stations. Recent works have examined radiosonde temperature time series from every station in China and have developed techniques to improve the data by quality controlling and homogenizing the time series (Guoet al., 2008; Guo and Ding, 2009). In this study, we examined the variation in FLH over China during 1958-2005, which was calculated from the homogenized radiosonde temperature time series. Furthermore, we studied a number of indicators of climatic variations in the cryosphere of China, including changes in the glacier snow line and ice edge. The data and methods are discussed in the next section, followed by our results. In the final section we discuss and summarize our major findings.

    2. Material and methods

    2.1. Radiosonde data

    The FLH can theoretically be deduced from vertical profiles of temperature and geopotential height in free air. Ra-diosonde observations provided by the Chinese National Metrological Information Center (NMIC)/China Meteorological Administration (CMA) formed the basis of this analysis. Considering the amplitude of FLH variation, we used data for five mandatory pressure levels: the ground surface and 850, 700, 500, and 400 hPa. These levels were observed twice daily at 00 UTC and 12 UTC. The 00 UTC and 12 UTC series were combined into a merged radiosonde time series for the final homogenization procedure; sets of merged series were considered missing if either the 00 UTC or the 12 UTC series were missing. Seasonal anomalies were computed with reference to 1971-2000.

    The 116 stations in the radiosonde network are distributed throughout China (Figure 1). We examined the data availability for each station and included as many stations as possible. Gaffenet al. (2000) demonstrated that the proportion of missing data is a key parameter in the reliability of a radiosonde time series. Guo and Ding (2009) found that 30% missing data is the critical value determining the usability of a time series from the Chinese radiosonde network.Thus, based on a maximum missing data fraction of 30%,we selected the optimal network (Figure 1, open circles).The analysis yielded a nominal radiosonde time series network of 92 stations for 1958-2005.

    Figure 1 Location of radiosonde stations in China

    Heterogeneity often exists in both instrumental climate records and radiosonde time series. Hence quality control(QC) and homogenization are necessary when using radiosonde data (IPCC, 2007). Many statistical methods have been developed to detect and correct inconsistencies in data sets, such as those caused by the use of different instruments and data correction methods. We employed a hydrostatic method (Collins, 2000) for the QC and a two-phase regression method (Easterling and Peterson, 1995) for the data homogenization. Previous studies showed that these methods are suitable for the Chinese radiosonde network (Guoet al., 2008; Guo and Ding, 2009).

    2.2. The freezing level height (FLH)

    The lowest five levels in the radiosonde time series(corresponding to the ground surface, 850, 700, 500, and 400 hPa) were examined for a transition to temperatures below 0 °C. The FLH was estimated for each snapshot by reverse interpolation of the temperature profile at each station to find the geopotential height of the 0 °C isotherm. The algorithm checked for zero crossings in the temperature profile between the ground surface and 400 hPa. If a single zero crossing existed, its altitude was taken as the freezing level. Two additional special cases were considered: no zero crossings (T<0 °C throughout the entire profile) and multiple zero crossings due to temperature inversions. In the case whereT<0 °C throughout the column, the freezing level was flagged as missing. In the case of multiple zero crossings,the locations were flagged and only the lowest FLH value was stored. The height of the freezing level was then obtained through linear interpolation between the geopotential heights of the transition levels. The mean monthly and annual FLH were also calculated.

    2.3. Glacier snow line

    The glacier snow line is defined as the altitude where the glacier mass balance is equal to zero, which means that solid precipitation is consumed by melting. It is also called the equilibrium line altitude (ELA) in glaciology. In this work,we calculated the ELA by a power function using the summer mean FLH as follows:

    herehis the FLH in summer, andaandbare regression coefficients. Liuet al. (2000) found a correlation ofa=2,968.93 andb=0.09888 in the Qilian Mountains in China withR2=0.9877.

    Equation(1)does not account for precipitation, which could cause problems with the resulting estimation. However, precipitation at the ELA has been found to correlate closely with air temperature (Liet al., 2008). In a monsoon climate region such as China, precipitation mainly occurs in summer and is not as important as air temperature to causing glacier fluctuation (Zhang, 1998).

    2.4. Permafrost edge

    Permafrost is defined as soil or rock that remains at or below 0 °C for at least one year. The permafrost edge is the limit of the permafrost distribution. Much effort has been made to deduce air temperature criteria for the existence of permafrost.Jianget al. (2003) demonstrated that annual mean air temperatures of -1.8 °C are required for permafrost to develop. Accordingly, we deduced the following formula for the permafrost edge altitude (PEA) calculation using the FLH:

    here LAP is the lapse rate in free atmosphere, which can be computed from the radiosonde temperature and height.

    3. Results

    3.1. Annual mean FLH, glacier snow line, and permafrost line over China

    Figure 2 shows distributions of the mean FLH, glacier snow line, and ice edge during 1958-2005. White areas in the three panels indicate an absence of stations (Figure 1).Generally, the FLH showed latitudinal zonation and declined from south to north. The FLH averaged about 1,000 m over most of northern China and rose steeply to 5,000 m at the margins of the tropics.

    Figure 2 Distribution of mean freezing level height, glacier snow line, and ice edge in China during 1958-2005

    The glacier snow line declined from south to north with a similar latitudinal dependence on the FLH. Several glaciers are closely monitored in China (WGMS, 2008). The average ELA of Glacier No. 1, located at 86.49°E, 43.06°N,was 4,049 meters above sea level (m a.s.l.); that of the July 1 Glacier, located at 99.45°E, 39.14°N, was 4,670 m a.s.l.; and that of the Donkemadi Glacier, located at 92.05°E, 33.04°N,was 5,600 m a.s.l. Compared with the climatology of the glacier snow line (shown in Figure 2), our results closely match the observations.

    The averaged IEA during 1958-2005 ranged from 1,000 to 5,500 m a.s.l. The spatial pattern of the IEA also exhibited latitudinal zonation like that of the FLH and glacier snow line. Due to topographic effects, the spatial variation was rather homogenous in northeastern China, but sharp in central China. The IEA maximum reached 5,500 m a.s.l. in the central Tibetan Plateau.

    3.2. Trend during 1958-2005

    Linear trends of the FLH, glacier snow line, and ice edge over the last 48 years (1958-2005) were computed and are shown in Figure 3 (in units of m/decade). Over the whole of China, 72 stations showed positive trends and 20 showed negative trends in FLH during 1958-2005. Significant positive trends were irregularly distributed over the area. Extreme positive trends (more than 50 m/decade) were found at several stations in Inner Mongolia and northeastern and southern China. An extreme negative trend was found in western China, with a rate of -30 m/decade.

    Figure 3 Distribution of linear trend during 1958-2005 for freezing level height, glacier snow line, and ice edge in China.Blue or red color denotes negative or positive with significance level above 95%.

    The positive and negative trends of the glacier snow line during 1958-2005 varied in distribution across China. Fifty-four stations (59%) in the network had positive trends.The most pronounced rise in the glacier snow line was found over the Tibetan Plateau and far northwestern China.

    More significant positive trends were found for the change in the permafrost edge over China. During the study period, the ice edge showed a positive trend at 76 stations(83%), and at 60% of these stations the positive trend was significant at the 95% level. The most extreme positive trend was 12 m/decade in central eastern China.

    3.3. Decadal changes

    To investigate the interannual changes in the FLH, glacier snow line, and ice edge in China, we summarized the decadal mean changes relative to those in 1971-2000 during the decades of 1960-1969, 1970-1979, 1980-1989,1990-1999, and 2000-2005 (Figure 4). Compared to the glacier snow line, the FLH and ice edge showed isochronous variation on decadal scales. Since 1980, both the FLH and glacier snow line maintained positive increases up to 2005.Average anomalies of FLH were 37.0 m and 41.0 m for 1990-1999 and 2000-2005, respectively. Average anomalies of the ice edge were 59.8 m and 37.0 m for 1990-1999 and 2000-2005, respectively.

    The glacier snow line fluctuations were rather gentle and irregular on decadal scales compared to those of the FLH and ice edge. Average anomalies of the glacier snow line were 2.6, -14.2, 2.3, 6.4, and -7.0 m for 1960-1969,1970-1979, 1980-1989, 1990-1999, and 2000-2005, respectively, much lower than those of the FLH and ice edge in the same decades.

    3.4. Nationwide average time series of FLH, glacier snow line, and ice edge

    We averaged the time series of annual FLH, glacier snow line, and ice edge anomalies during 1958-2005 over the selected 92 stations in China (Figure 1). Nationwide, the FLH, glacier snow line, and ice edge showed similar variations during 1958-2005. All of the time series had downward trends from 1958 to 1968 and upward trends up to 2005. We calculated the trends by least-squares linear fitting derived from averaged time series; the results indicated trends of 13.5, 1.2, and 28.8 m/decade for the FLH, glacier snow line, and ice edge, respectively.

    Figure 4 Decadal mean anomalies of the freezing level height, glacier snow line, and ice edge in China during 1960-2005

    Figure 5 Variation in the anomalies of the freezing level height, glacier snow line, and ice edge in China during 1958-2005

    4. Discussion and summary

    Several previous works in western China suggested that the FLH might serve as an indicator of climate change through its impact on the cryosphere. Zhanget al. (2009)found that the sudden increase in the FLH over the western Tianshan Mountains was correlated with rapid glacier melt and maximal negative balance in glacial amount. Maoet al.(2004) demonstrated that the FLH could be an important factor for forecasting flooding in the Aksu River, where glacier and snow covers exist in headwater regions. Furthermore, Wanget al. (2008) concluded that the average discharge in the Hotan River Basin in western China responded on interannual and interdecadal scales to changes in regional FLH.

    We used air temperature at four levels from China’s radiosonde network to analyze changes in the FLH, glacier snow line, and ice edge during a recent 48-year period and investigated the impact of these changes on the cryosphere.We examined radiosonde time series from 92 stations selected from the entire national network. Generally, the FLH,glacier snow line, and ice edge exhibited latitudinal zones and declined from south to north. The trends in the FLH,glacier snow line, and ice edge during 1958-2005 showed spatial heterogeneity and prevailing upward trends. Temporally, the FLH, glacier snow line, and ice edge trends varied on different time scales.

    This study was funded by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2010CB951701 and No. 2010CB428606, and by the Natural Science Foundation of China (No. 41071042 and No. 40775045). It was also supported by the Innovation Project of the Chinese Academy of Sciences(KZCX2-YW-BR-22), and special finance support from the China Meteorological Administration (GYHY200906017).

    Collins WG, 2000. The operational complex quality control of radiosonde heights and, temperatures at the national centers for environmental prediction, Part I: Description of the method. Journal of Applied Meteorol ogy and Climatology, 40: 137-151.

    Coudrain A, Francou B, Kundewicz ZW, 2005. Glacier shrinkage in the Andes and consequences for water resources. Hydrol. Sci. J., 50:925-932.

    Diaz HF, Graham NE, 1996. Recent changes in tropical freezing heights and the role of sea surface temperature. Nature, 383: 152-155.

    Diaz HF, Eischeid JK, Duncan C, Bradley RS, 2003. Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years. Clim. Change,59: 33-52.

    Easterling DR, Peterson TC, 1995. A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol., 15:369-377.

    Francou B, Vuille M, Favier V, Cáceres B, 2004. New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador,280S. J. Geophys. Res., 109: D18106. DOI:10.1029/2003JD004484.

    Gaffen DJ, Santer BD, Boyle JS, Christy JR, Graham NE, Ross RJ, 2000.Multidecadal changes in the vertical temperature structure of the tropical troposphere. Science, 287: 1242-1245.

    Guo Y, Thorne P, McCarthy P, 2008. Radiosonde temperature trends and their uncertainties over eastern China. Int. J. Climatol., 28: 1269-1281.

    Guo Y, Ding Y, 2009. Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series. J.Clim., 22(4): 1037-1051.

    Harris NG, Gettys N, Bowman KP, Shin DB, 2000. Comparison of freezing-level ALHitudes from NCEP Reanalysis with TRMM precipitation radar brightband data. J. Clim., 13: 4137-4148.

    Hoffmann G, 2003. Taking the pulse of the tropical water cycle. Science, 301:776-778.

    Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, U.K.

    Jiang FC, Wu XH, Wang SB, Zhao ZZ, Fu JL, 2003. Basic features of spatial distribution of the limits of permafrost in China. Journal of Geomechanics, 19(14): 12-22.

    Li X, 2008. Cryospheric change in China. Global and Planetary Change, 62:210-218.

    Liu C, 2000. Glaciers and their distribution in China. In: Shi YF (Ed.). Glaciers and Their Environments in China: The Present, Past and Future.Science Press, Beijing. 9-53.

    Mao W, 2004. Relationship of 0 °C level height and summer flood of Aksu River, Xinjiang. Journal of Glaciology and Geocryology, 26(6): 117-123.

    Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS,2008. Climate change and tropical Andean glaciers—Past, present and future. Earth Sci. Rev., 89: 79-96.

    Wang Y, 2008. Response of summer average discharge in the Hotan River to changes in regional 0 °C Level Height. Advances in Climate Change Research, 4(3): 151-155.

    WGMS, 2008. Global Glacier Changes: Facts and Figures. In: Zemp M,Roer I, K??b A, Hoelzle M, Paul F, Haeberli W (Eds.). UNEP. World Glacier Monitoring Service, Zurich, Switzerland.

    Zhang G, 2009. The response of the Glacier No. 1 to the height change of the 0 °C Level in summer at the riverhead of the Urümqi River, Tianshan Mountains. Journal of Glaciology and Geocryology, 31(6): 117-123.

    Zhang Y, 1998. The response of glacier ELA response to climatic fluctuation on high Asia. Bulletin of Glacier Research, 16: 1-11.

    10.3724/SP.J.1226.2011.00485

    *Correspondence to: Dr. YanJun Guo, National Climate Center, China Meteorological Administration. No. 46, Zhongguancun Nandajie, Haidian District, Beijing 100081, China. Email: gyj@cma.gov.cn

    11 June 2011 Accepted: 12 August 2011

    日韩一本色道免费dvd| 91字幕亚洲| 亚洲久久久国产精品| 国产成人精品久久二区二区91| 成人黄色视频免费在线看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品国产av成人精品| 狠狠精品人妻久久久久久综合| 国产真人三级小视频在线观看| 人人妻人人澡人人爽人人夜夜| 国产黄色免费在线视频| 成人三级做爰电影| 热99国产精品久久久久久7| 国产爽快片一区二区三区| 国产在线视频一区二区| 操出白浆在线播放| 好男人视频免费观看在线| 久久久久久免费高清国产稀缺| 午夜免费男女啪啪视频观看| 婷婷色麻豆天堂久久| 国产激情久久老熟女| 我要看黄色一级片免费的| 成人国产一区最新在线观看 | 男男h啪啪无遮挡| 黄色 视频免费看| 中文字幕人妻丝袜一区二区| 美女主播在线视频| 亚洲国产欧美网| 中文字幕制服av| 中文字幕人妻丝袜一区二区| 国产国语露脸激情在线看| xxxhd国产人妻xxx| 亚洲图色成人| 成年美女黄网站色视频大全免费| 2018国产大陆天天弄谢| 五月天丁香电影| 波多野结衣av一区二区av| 香蕉丝袜av| 在线av久久热| 热99国产精品久久久久久7| 天天躁狠狠躁夜夜躁狠狠躁| 黄频高清免费视频| 精品久久蜜臀av无| 97人妻天天添夜夜摸| 精品一品国产午夜福利视频| a级毛片在线看网站| 国产精品 欧美亚洲| 亚洲欧美中文字幕日韩二区| 18禁国产床啪视频网站| 两性夫妻黄色片| 中国国产av一级| 狂野欧美激情性bbbbbb| 人人妻人人爽人人添夜夜欢视频| 最黄视频免费看| 国精品久久久久久国模美| 久久久久久人人人人人| 久久鲁丝午夜福利片| 国产一区二区三区av在线| 久久影院123| 亚洲精品成人av观看孕妇| 国产精品久久久人人做人人爽| 母亲3免费完整高清在线观看| 国产亚洲欧美精品永久| 97精品久久久久久久久久精品| 久热这里只有精品99| 美国免费a级毛片| 亚洲精品中文字幕在线视频| 性高湖久久久久久久久免费观看| 亚洲成国产人片在线观看| 免费在线观看视频国产中文字幕亚洲 | av天堂在线播放| 精品国产一区二区三区久久久樱花| 亚洲国产av新网站| 热99国产精品久久久久久7| 日本欧美视频一区| 天天操日日干夜夜撸| 欧美日韩福利视频一区二区| 精品一区在线观看国产| 热99国产精品久久久久久7| 中文字幕亚洲精品专区| 尾随美女入室| 人成视频在线观看免费观看| 精品国产一区二区久久| 亚洲欧美日韩高清在线视频 | 成人国语在线视频| 精品久久久精品久久久| 婷婷色av中文字幕| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 免费观看a级毛片全部| 午夜激情久久久久久久| 久久99热这里只频精品6学生| 热99国产精品久久久久久7| 青春草视频在线免费观看| 日韩av不卡免费在线播放| 大片电影免费在线观看免费| 久久国产精品影院| 在线天堂中文资源库| 精品国产一区二区久久| 黄色视频在线播放观看不卡| 99国产精品免费福利视频| 日本午夜av视频| 91精品国产国语对白视频| 好男人电影高清在线观看| 夫妻性生交免费视频一级片| 黑人猛操日本美女一级片| 日韩中文字幕欧美一区二区 | 久久精品国产综合久久久| 在线观看人妻少妇| 久久免费观看电影| 免费在线观看日本一区| 欧美av亚洲av综合av国产av| 欧美亚洲 丝袜 人妻 在线| 两个人看的免费小视频| 亚洲精品国产av蜜桃| 看十八女毛片水多多多| 国产黄频视频在线观看| 日本av手机在线免费观看| 欧美成人午夜精品| 日韩电影二区| 只有这里有精品99| 丝袜美足系列| 80岁老熟妇乱子伦牲交| 国产国语露脸激情在线看| 美国免费a级毛片| 久久狼人影院| 国产欧美日韩综合在线一区二区| 女性被躁到高潮视频| 免费看不卡的av| 国产精品成人在线| 国产成人精品久久二区二区免费| 日韩欧美一区视频在线观看| 两性夫妻黄色片| 国产成人a∨麻豆精品| 极品少妇高潮喷水抽搐| 国产成人影院久久av| 校园人妻丝袜中文字幕| 国产xxxxx性猛交| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 国产亚洲av片在线观看秒播厂| 交换朋友夫妻互换小说| 免费在线观看日本一区| 精品国产一区二区三区四区第35| 免费观看a级毛片全部| 久久精品国产综合久久久| 国产免费又黄又爽又色| 婷婷色综合大香蕉| a级毛片黄视频| 国产伦理片在线播放av一区| 亚洲精品乱久久久久久| 国产一级毛片在线| 99国产综合亚洲精品| 亚洲综合色网址| 亚洲精品第二区| 91精品三级在线观看| 亚洲av男天堂| 另类精品久久| 国产男女超爽视频在线观看| 亚洲欧洲精品一区二区精品久久久| 在线观看www视频免费| 国产成人精品在线电影| 男女高潮啪啪啪动态图| 午夜免费成人在线视频| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 男女午夜视频在线观看| 一区二区三区精品91| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| 日本av免费视频播放| 一区二区三区乱码不卡18| 考比视频在线观看| 精品一区二区三区四区五区乱码 | 国产av精品麻豆| 欧美国产精品一级二级三级| 男女午夜视频在线观看| 如日韩欧美国产精品一区二区三区| 精品少妇内射三级| 欧美变态另类bdsm刘玥| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 欧美日韩综合久久久久久| 国产男女内射视频| 亚洲国产精品国产精品| 亚洲av国产av综合av卡| 无限看片的www在线观看| 欧美变态另类bdsm刘玥| 亚洲成国产人片在线观看| 国产精品国产三级国产专区5o| av有码第一页| 国产高清videossex| 国产欧美日韩一区二区三区在线| 久久免费观看电影| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 日韩伦理黄色片| 在线 av 中文字幕| 99re6热这里在线精品视频| 首页视频小说图片口味搜索 | 女警被强在线播放| 一区二区三区激情视频| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 纯流量卡能插随身wifi吗| 久久99一区二区三区| 91老司机精品| av福利片在线| 国产精品久久久久成人av| 一本一本久久a久久精品综合妖精| 七月丁香在线播放| 国产日韩欧美视频二区| 久久99一区二区三区| 久久精品久久精品一区二区三区| 国产精品香港三级国产av潘金莲 | 午夜福利视频在线观看免费| 日本午夜av视频| 美女国产高潮福利片在线看| 岛国毛片在线播放| 国产一区二区 视频在线| 精品人妻一区二区三区麻豆| 伊人亚洲综合成人网| 国产成人a∨麻豆精品| 久久毛片免费看一区二区三区| 亚洲国产av新网站| 悠悠久久av| 满18在线观看网站| 99国产精品99久久久久| 亚洲国产精品999| 18禁裸乳无遮挡动漫免费视频| 超碰97精品在线观看| 大话2 男鬼变身卡| 亚洲av片天天在线观看| 国产一卡二卡三卡精品| 成人国语在线视频| 伊人久久大香线蕉亚洲五| 亚洲精品自拍成人| 日韩免费高清中文字幕av| 亚洲,欧美精品.| 日韩大片免费观看网站| 男人舔女人的私密视频| 一区二区三区精品91| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 美女扒开内裤让男人捅视频| 欧美av亚洲av综合av国产av| 欧美精品人与动牲交sv欧美| 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 考比视频在线观看| 只有这里有精品99| 黄色a级毛片大全视频| 麻豆乱淫一区二区| 国产91精品成人一区二区三区 | 老司机靠b影院| 在线天堂中文资源库| 99精品久久久久人妻精品| 国产成人啪精品午夜网站| 侵犯人妻中文字幕一二三四区| 少妇被粗大的猛进出69影院| 精品福利永久在线观看| 国产亚洲午夜精品一区二区久久| 日韩 亚洲 欧美在线| 亚洲视频免费观看视频| 国产精品偷伦视频观看了| 精品一区二区三区av网在线观看 | 国产老妇伦熟女老妇高清| 岛国毛片在线播放| 黄色怎么调成土黄色| 午夜福利乱码中文字幕| 日韩制服骚丝袜av| 中文字幕制服av| 婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 亚洲精品美女久久av网站| www.精华液| 精品亚洲成国产av| 少妇人妻 视频| 日韩一区二区三区影片| cao死你这个sao货| 好男人视频免费观看在线| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久 | 国产不卡av网站在线观看| 精品久久蜜臀av无| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区 | 久久99精品国语久久久| 国产黄色视频一区二区在线观看| 久久99一区二区三区| 久久99热这里只频精品6学生| av在线app专区| 久久天躁狠狠躁夜夜2o2o | 亚洲人成网站在线观看播放| 嫁个100分男人电影在线观看 | 欧美黑人精品巨大| 男的添女的下面高潮视频| 久久午夜综合久久蜜桃| 国产成人欧美| 女性生殖器流出的白浆| 国产麻豆69| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产女主播在线喷水免费视频网站| svipshipincom国产片| 一本久久精品| 一区二区日韩欧美中文字幕| 国产黄频视频在线观看| 高潮久久久久久久久久久不卡| 午夜影院在线不卡| 亚洲色图 男人天堂 中文字幕| 我的亚洲天堂| 亚洲av在线观看美女高潮| 日本色播在线视频| 悠悠久久av| 只有这里有精品99| 97精品久久久久久久久久精品| 亚洲一码二码三码区别大吗| 超碰成人久久| 大话2 男鬼变身卡| 中文乱码字字幕精品一区二区三区| 99精国产麻豆久久婷婷| 美国免费a级毛片| 亚洲成色77777| 亚洲精品久久午夜乱码| 老汉色av国产亚洲站长工具| av在线播放精品| 亚洲第一青青草原| 91老司机精品| 国产欧美日韩精品亚洲av| 亚洲精品国产色婷婷电影| 亚洲精品久久成人aⅴ小说| 亚洲精品乱久久久久久| 免费少妇av软件| 一本色道久久久久久精品综合| 国产深夜福利视频在线观看| 精品一区二区三区四区五区乱码 | 一区二区三区精品91| 亚洲专区国产一区二区| 麻豆av在线久日| 老司机在亚洲福利影院| 男女边摸边吃奶| a 毛片基地| cao死你这个sao货| 亚洲欧美精品综合一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲欧美中文字幕日韩二区| 日韩人妻精品一区2区三区| 一边摸一边抽搐一进一出视频| 男女之事视频高清在线观看 | 美女高潮到喷水免费观看| 色视频在线一区二区三区| 国产伦理片在线播放av一区| 亚洲欧美日韩高清在线视频 | 久热这里只有精品99| 免费久久久久久久精品成人欧美视频| 成人午夜精彩视频在线观看| 国产人伦9x9x在线观看| 国产精品国产av在线观看| 一级毛片电影观看| 1024香蕉在线观看| 两个人看的免费小视频| 欧美日本中文国产一区发布| 亚洲人成网站在线观看播放| 欧美国产精品一级二级三级| 欧美老熟妇乱子伦牲交| 搡老乐熟女国产| 91麻豆精品激情在线观看国产 | 亚洲熟女毛片儿| 亚洲av国产av综合av卡| 亚洲精品在线美女| 欧美日韩一级在线毛片| 999久久久国产精品视频| 婷婷色综合大香蕉| 老熟女久久久| 国产成人欧美在线观看 | 亚洲欧洲精品一区二区精品久久久| 亚洲人成网站在线观看播放| 亚洲情色 制服丝袜| 午夜福利,免费看| 免费av中文字幕在线| 午夜免费观看性视频| 亚洲国产中文字幕在线视频| 91麻豆精品激情在线观看国产 | 性色av一级| 久久九九热精品免费| 婷婷色av中文字幕| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三区在线| 又大又黄又爽视频免费| 人人妻,人人澡人人爽秒播 | 黑人巨大精品欧美一区二区蜜桃| 国产麻豆69| 国产日韩欧美亚洲二区| 又粗又硬又长又爽又黄的视频| 久久国产精品男人的天堂亚洲| 中文精品一卡2卡3卡4更新| av欧美777| 精品一区在线观看国产| 久久精品国产亚洲av涩爱| av国产精品久久久久影院| 国产一区二区激情短视频 | 亚洲少妇的诱惑av| 中文精品一卡2卡3卡4更新| h视频一区二区三区| 国产精品三级大全| 亚洲男人天堂网一区| xxxhd国产人妻xxx| 国产高清不卡午夜福利| 在线 av 中文字幕| 亚洲精品久久久久久婷婷小说| 国产亚洲一区二区精品| 99热国产这里只有精品6| 伊人久久大香线蕉亚洲五| e午夜精品久久久久久久| 国产在线观看jvid| 国产精品 欧美亚洲| 宅男免费午夜| 中文字幕av电影在线播放| 成人免费观看视频高清| 中文字幕精品免费在线观看视频| 母亲3免费完整高清在线观看| 亚洲精品成人av观看孕妇| 成年人黄色毛片网站| 在线亚洲精品国产二区图片欧美| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美亚洲二区| www.精华液| 熟女av电影| 免费在线观看日本一区| 人体艺术视频欧美日本| 午夜激情av网站| 久久99精品国语久久久| 成年av动漫网址| 少妇人妻久久综合中文| 国产成人系列免费观看| 国产高清videossex| 91精品三级在线观看| 看免费av毛片| 精品国产一区二区三区久久久樱花| 国产精品熟女久久久久浪| 久久久亚洲精品成人影院| 国产精品国产三级国产专区5o| 麻豆国产av国片精品| av线在线观看网站| 高清av免费在线| 欧美老熟妇乱子伦牲交| 一本色道久久久久久精品综合| 日韩视频在线欧美| 国产日韩一区二区三区精品不卡| 女人久久www免费人成看片| 日韩免费高清中文字幕av| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| av福利片在线| 亚洲欧美色中文字幕在线| 久久久精品94久久精品| 亚洲精品美女久久av网站| 丰满少妇做爰视频| 久久免费观看电影| 欧美日韩亚洲高清精品| 可以免费在线观看a视频的电影网站| 精品人妻在线不人妻| 青春草亚洲视频在线观看| 国产欧美日韩精品亚洲av| 欧美日韩国产mv在线观看视频| 在线看a的网站| 亚洲精品第二区| 中文字幕人妻熟女乱码| 免费黄频网站在线观看国产| 国产高清videossex| www.av在线官网国产| 亚洲欧美清纯卡通| 汤姆久久久久久久影院中文字幕| 天天躁夜夜躁狠狠躁躁| 一级片'在线观看视频| 国产不卡av网站在线观看| 日日摸夜夜添夜夜爱| 人体艺术视频欧美日本| 侵犯人妻中文字幕一二三四区| 观看av在线不卡| 午夜福利视频在线观看免费| 中文字幕最新亚洲高清| 久久精品人人爽人人爽视色| 亚洲国产精品成人久久小说| 日本色播在线视频| 国产精品麻豆人妻色哟哟久久| 国产人伦9x9x在线观看| 国产免费现黄频在线看| a 毛片基地| 久9热在线精品视频| 午夜福利视频在线观看免费| 制服人妻中文乱码| 成人亚洲精品一区在线观看| 五月天丁香电影| 成年人黄色毛片网站| 国产日韩欧美亚洲二区| 国产高清国产精品国产三级| 亚洲人成77777在线视频| 丝袜脚勾引网站| 欧美人与性动交α欧美精品济南到| 日本91视频免费播放| 搡老乐熟女国产| 人人妻人人澡人人爽人人夜夜| 曰老女人黄片| 欧美日韩福利视频一区二区| 日韩视频在线欧美| 久久青草综合色| 少妇裸体淫交视频免费看高清 | 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 狠狠精品人妻久久久久久综合| 一级片免费观看大全| 99热网站在线观看| 亚洲图色成人| 国产成人免费观看mmmm| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 在线观看人妻少妇| 一本色道久久久久久精品综合| 国产日韩欧美在线精品| 夫妻午夜视频| 黄片小视频在线播放| 亚洲精品av麻豆狂野| 成在线人永久免费视频| 久久精品亚洲熟妇少妇任你| 99国产精品一区二区蜜桃av | 欧美精品啪啪一区二区三区 | 两人在一起打扑克的视频| 另类亚洲欧美激情| netflix在线观看网站| 视频在线观看一区二区三区| 亚洲精品一区蜜桃| 亚洲av电影在线观看一区二区三区| 欧美日韩综合久久久久久| 99热全是精品| 久久久久久亚洲精品国产蜜桃av| 人妻一区二区av| 欧美人与性动交α欧美软件| 亚洲色图 男人天堂 中文字幕| 国产精品久久久av美女十八| 久久99热这里只频精品6学生| 满18在线观看网站| 狠狠精品人妻久久久久久综合| 亚洲国产中文字幕在线视频| 色94色欧美一区二区| 亚洲专区国产一区二区| 免费不卡黄色视频| 宅男免费午夜| 中文字幕精品免费在线观看视频| 男人操女人黄网站| avwww免费| 男男h啪啪无遮挡| 久久精品成人免费网站| av在线app专区| 国产精品一区二区免费欧美 | 欧美人与性动交α欧美软件| 久久精品亚洲av国产电影网| 免费黄频网站在线观看国产| 亚洲欧美日韩高清在线视频 | 久久国产精品大桥未久av| 亚洲专区国产一区二区| 国产成人免费观看mmmm| 亚洲久久久国产精品| 国产老妇伦熟女老妇高清| 日本一区二区免费在线视频| 精品人妻在线不人妻| 国产免费一区二区三区四区乱码| 亚洲人成电影观看| 国产成人系列免费观看| 国精品久久久久久国模美| 久久免费观看电影| 涩涩av久久男人的天堂| 日本av手机在线免费观看| 欧美精品一区二区大全| 亚洲 国产 在线| 中文字幕最新亚洲高清| 黄频高清免费视频| 午夜精品国产一区二区电影| 99国产综合亚洲精品| 超碰97精品在线观看| 2018国产大陆天天弄谢| 十八禁网站网址无遮挡| 九色亚洲精品在线播放| 亚洲免费av在线视频| 精品少妇黑人巨大在线播放| 欧美日韩精品网址| 国产成人免费观看mmmm| 国产欧美日韩精品亚洲av| 欧美精品亚洲一区二区| 一级毛片 在线播放| 99re6热这里在线精品视频| 9热在线视频观看99| 色婷婷av一区二区三区视频| www.999成人在线观看| 老司机在亚洲福利影院| 国产成人免费观看mmmm| 日韩,欧美,国产一区二区三区| 欧美日韩av久久| 两人在一起打扑克的视频| 精品人妻熟女毛片av久久网站| 777久久人妻少妇嫩草av网站| av片东京热男人的天堂| 日本黄色日本黄色录像| 亚洲欧美日韩另类电影网站| 中文字幕色久视频| videosex国产| 久久久久久免费高清国产稀缺| 亚洲国产中文字幕在线视频| 国产精品av久久久久免费| 欧美日韩亚洲高清精品| 久久午夜综合久久蜜桃| 大型av网站在线播放| 乱人伦中国视频| 日本av手机在线免费观看|