• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variability of atmospheric freezing level height derived from radiosonde data in China during 1958-2005 and its impact to cryosphere changes

    2011-12-09 09:36:44YanJunGuoYinShengZhang
    Sciences in Cold and Arid Regions 2011年6期

    YanJun Guo , YinSheng Zhang

    1. National Climate Center, China Meteorological Administration, Beijing 100081, China

    2. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China

    Variability of atmospheric freezing level height derived from radiosonde data in China during 1958-2005 and its impact to cryosphere changes

    YanJun Guo1*, YinSheng Zhang2

    1. National Climate Center, China Meteorological Administration, Beijing 100081, China

    2. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China

    Atmospheric air temperature data from 92 stations in China’s radiosonde network were used to analyze changes in the freezing level height (FLH), glacier snow line, and ice edge from 1958-2005 (48 years) and to examine the impact of these changes on the cryosphere. In general, the FLH, glacier snow line, and ice edge exhibited latitudinal zonation, declining from south to north.Trends in the FLH, glacier snow line, and ice edge showed spatial heterogeneity during the study period, with prevailing upward trends. Temporally, the FLH, glacier snow line, and ice edge trends differed on various time scales.

    freezing level height; glacier snow line; permafrost line; cryosphere; China

    1. Introduction

    Air temperature in the troposphere generally decreases with altitude, often reaching 0 °C over ground that is not frozen. The freezing level height (FLH, or 0 °C isotherm of free air) in the atmosphere is a critical parameter that influences the cryosphere in high mountain and high altitude areas by causing phase change in water in the cryosphere(Harriset al., 2000; Hoffmann, 2003; Francouet al., 2004;Coudrainet al., 2005; Vuilleet al., 2008). In particular, the mass balance of glaciers depends on the extent of ice melting and sublimation, and on the correlation of the permafrost distribution with temperature variation. Diaz and Graham(1996) noted a significant rise in FLHs in the tropics during 1958-1990, related to sea surface temperatures (SSTs) in the east-central equatorial Pacific. In the American sector of the tropics, the strongest relationship between FLH and SST was found for the SSTs preceding the FLH by about 3 months (Diazet al., 2003). The largest changes in FLH have been documented in recent decades, along with significant warming in high mountain regions (Diazet al., 2003).

    China’s radiosonde network began observations in the 1950s and now has more than 100 stations. Recent works have examined radiosonde temperature time series from every station in China and have developed techniques to improve the data by quality controlling and homogenizing the time series (Guoet al., 2008; Guo and Ding, 2009). In this study, we examined the variation in FLH over China during 1958-2005, which was calculated from the homogenized radiosonde temperature time series. Furthermore, we studied a number of indicators of climatic variations in the cryosphere of China, including changes in the glacier snow line and ice edge. The data and methods are discussed in the next section, followed by our results. In the final section we discuss and summarize our major findings.

    2. Material and methods

    2.1. Radiosonde data

    The FLH can theoretically be deduced from vertical profiles of temperature and geopotential height in free air. Ra-diosonde observations provided by the Chinese National Metrological Information Center (NMIC)/China Meteorological Administration (CMA) formed the basis of this analysis. Considering the amplitude of FLH variation, we used data for five mandatory pressure levels: the ground surface and 850, 700, 500, and 400 hPa. These levels were observed twice daily at 00 UTC and 12 UTC. The 00 UTC and 12 UTC series were combined into a merged radiosonde time series for the final homogenization procedure; sets of merged series were considered missing if either the 00 UTC or the 12 UTC series were missing. Seasonal anomalies were computed with reference to 1971-2000.

    The 116 stations in the radiosonde network are distributed throughout China (Figure 1). We examined the data availability for each station and included as many stations as possible. Gaffenet al. (2000) demonstrated that the proportion of missing data is a key parameter in the reliability of a radiosonde time series. Guo and Ding (2009) found that 30% missing data is the critical value determining the usability of a time series from the Chinese radiosonde network.Thus, based on a maximum missing data fraction of 30%,we selected the optimal network (Figure 1, open circles).The analysis yielded a nominal radiosonde time series network of 92 stations for 1958-2005.

    Figure 1 Location of radiosonde stations in China

    Heterogeneity often exists in both instrumental climate records and radiosonde time series. Hence quality control(QC) and homogenization are necessary when using radiosonde data (IPCC, 2007). Many statistical methods have been developed to detect and correct inconsistencies in data sets, such as those caused by the use of different instruments and data correction methods. We employed a hydrostatic method (Collins, 2000) for the QC and a two-phase regression method (Easterling and Peterson, 1995) for the data homogenization. Previous studies showed that these methods are suitable for the Chinese radiosonde network (Guoet al., 2008; Guo and Ding, 2009).

    2.2. The freezing level height (FLH)

    The lowest five levels in the radiosonde time series(corresponding to the ground surface, 850, 700, 500, and 400 hPa) were examined for a transition to temperatures below 0 °C. The FLH was estimated for each snapshot by reverse interpolation of the temperature profile at each station to find the geopotential height of the 0 °C isotherm. The algorithm checked for zero crossings in the temperature profile between the ground surface and 400 hPa. If a single zero crossing existed, its altitude was taken as the freezing level. Two additional special cases were considered: no zero crossings (T<0 °C throughout the entire profile) and multiple zero crossings due to temperature inversions. In the case whereT<0 °C throughout the column, the freezing level was flagged as missing. In the case of multiple zero crossings,the locations were flagged and only the lowest FLH value was stored. The height of the freezing level was then obtained through linear interpolation between the geopotential heights of the transition levels. The mean monthly and annual FLH were also calculated.

    2.3. Glacier snow line

    The glacier snow line is defined as the altitude where the glacier mass balance is equal to zero, which means that solid precipitation is consumed by melting. It is also called the equilibrium line altitude (ELA) in glaciology. In this work,we calculated the ELA by a power function using the summer mean FLH as follows:

    herehis the FLH in summer, andaandbare regression coefficients. Liuet al. (2000) found a correlation ofa=2,968.93 andb=0.09888 in the Qilian Mountains in China withR2=0.9877.

    Equation(1)does not account for precipitation, which could cause problems with the resulting estimation. However, precipitation at the ELA has been found to correlate closely with air temperature (Liet al., 2008). In a monsoon climate region such as China, precipitation mainly occurs in summer and is not as important as air temperature to causing glacier fluctuation (Zhang, 1998).

    2.4. Permafrost edge

    Permafrost is defined as soil or rock that remains at or below 0 °C for at least one year. The permafrost edge is the limit of the permafrost distribution. Much effort has been made to deduce air temperature criteria for the existence of permafrost.Jianget al. (2003) demonstrated that annual mean air temperatures of -1.8 °C are required for permafrost to develop. Accordingly, we deduced the following formula for the permafrost edge altitude (PEA) calculation using the FLH:

    here LAP is the lapse rate in free atmosphere, which can be computed from the radiosonde temperature and height.

    3. Results

    3.1. Annual mean FLH, glacier snow line, and permafrost line over China

    Figure 2 shows distributions of the mean FLH, glacier snow line, and ice edge during 1958-2005. White areas in the three panels indicate an absence of stations (Figure 1).Generally, the FLH showed latitudinal zonation and declined from south to north. The FLH averaged about 1,000 m over most of northern China and rose steeply to 5,000 m at the margins of the tropics.

    Figure 2 Distribution of mean freezing level height, glacier snow line, and ice edge in China during 1958-2005

    The glacier snow line declined from south to north with a similar latitudinal dependence on the FLH. Several glaciers are closely monitored in China (WGMS, 2008). The average ELA of Glacier No. 1, located at 86.49°E, 43.06°N,was 4,049 meters above sea level (m a.s.l.); that of the July 1 Glacier, located at 99.45°E, 39.14°N, was 4,670 m a.s.l.; and that of the Donkemadi Glacier, located at 92.05°E, 33.04°N,was 5,600 m a.s.l. Compared with the climatology of the glacier snow line (shown in Figure 2), our results closely match the observations.

    The averaged IEA during 1958-2005 ranged from 1,000 to 5,500 m a.s.l. The spatial pattern of the IEA also exhibited latitudinal zonation like that of the FLH and glacier snow line. Due to topographic effects, the spatial variation was rather homogenous in northeastern China, but sharp in central China. The IEA maximum reached 5,500 m a.s.l. in the central Tibetan Plateau.

    3.2. Trend during 1958-2005

    Linear trends of the FLH, glacier snow line, and ice edge over the last 48 years (1958-2005) were computed and are shown in Figure 3 (in units of m/decade). Over the whole of China, 72 stations showed positive trends and 20 showed negative trends in FLH during 1958-2005. Significant positive trends were irregularly distributed over the area. Extreme positive trends (more than 50 m/decade) were found at several stations in Inner Mongolia and northeastern and southern China. An extreme negative trend was found in western China, with a rate of -30 m/decade.

    Figure 3 Distribution of linear trend during 1958-2005 for freezing level height, glacier snow line, and ice edge in China.Blue or red color denotes negative or positive with significance level above 95%.

    The positive and negative trends of the glacier snow line during 1958-2005 varied in distribution across China. Fifty-four stations (59%) in the network had positive trends.The most pronounced rise in the glacier snow line was found over the Tibetan Plateau and far northwestern China.

    More significant positive trends were found for the change in the permafrost edge over China. During the study period, the ice edge showed a positive trend at 76 stations(83%), and at 60% of these stations the positive trend was significant at the 95% level. The most extreme positive trend was 12 m/decade in central eastern China.

    3.3. Decadal changes

    To investigate the interannual changes in the FLH, glacier snow line, and ice edge in China, we summarized the decadal mean changes relative to those in 1971-2000 during the decades of 1960-1969, 1970-1979, 1980-1989,1990-1999, and 2000-2005 (Figure 4). Compared to the glacier snow line, the FLH and ice edge showed isochronous variation on decadal scales. Since 1980, both the FLH and glacier snow line maintained positive increases up to 2005.Average anomalies of FLH were 37.0 m and 41.0 m for 1990-1999 and 2000-2005, respectively. Average anomalies of the ice edge were 59.8 m and 37.0 m for 1990-1999 and 2000-2005, respectively.

    The glacier snow line fluctuations were rather gentle and irregular on decadal scales compared to those of the FLH and ice edge. Average anomalies of the glacier snow line were 2.6, -14.2, 2.3, 6.4, and -7.0 m for 1960-1969,1970-1979, 1980-1989, 1990-1999, and 2000-2005, respectively, much lower than those of the FLH and ice edge in the same decades.

    3.4. Nationwide average time series of FLH, glacier snow line, and ice edge

    We averaged the time series of annual FLH, glacier snow line, and ice edge anomalies during 1958-2005 over the selected 92 stations in China (Figure 1). Nationwide, the FLH, glacier snow line, and ice edge showed similar variations during 1958-2005. All of the time series had downward trends from 1958 to 1968 and upward trends up to 2005. We calculated the trends by least-squares linear fitting derived from averaged time series; the results indicated trends of 13.5, 1.2, and 28.8 m/decade for the FLH, glacier snow line, and ice edge, respectively.

    Figure 4 Decadal mean anomalies of the freezing level height, glacier snow line, and ice edge in China during 1960-2005

    Figure 5 Variation in the anomalies of the freezing level height, glacier snow line, and ice edge in China during 1958-2005

    4. Discussion and summary

    Several previous works in western China suggested that the FLH might serve as an indicator of climate change through its impact on the cryosphere. Zhanget al. (2009)found that the sudden increase in the FLH over the western Tianshan Mountains was correlated with rapid glacier melt and maximal negative balance in glacial amount. Maoet al.(2004) demonstrated that the FLH could be an important factor for forecasting flooding in the Aksu River, where glacier and snow covers exist in headwater regions. Furthermore, Wanget al. (2008) concluded that the average discharge in the Hotan River Basin in western China responded on interannual and interdecadal scales to changes in regional FLH.

    We used air temperature at four levels from China’s radiosonde network to analyze changes in the FLH, glacier snow line, and ice edge during a recent 48-year period and investigated the impact of these changes on the cryosphere.We examined radiosonde time series from 92 stations selected from the entire national network. Generally, the FLH,glacier snow line, and ice edge exhibited latitudinal zones and declined from south to north. The trends in the FLH,glacier snow line, and ice edge during 1958-2005 showed spatial heterogeneity and prevailing upward trends. Temporally, the FLH, glacier snow line, and ice edge trends varied on different time scales.

    This study was funded by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2010CB951701 and No. 2010CB428606, and by the Natural Science Foundation of China (No. 41071042 and No. 40775045). It was also supported by the Innovation Project of the Chinese Academy of Sciences(KZCX2-YW-BR-22), and special finance support from the China Meteorological Administration (GYHY200906017).

    Collins WG, 2000. The operational complex quality control of radiosonde heights and, temperatures at the national centers for environmental prediction, Part I: Description of the method. Journal of Applied Meteorol ogy and Climatology, 40: 137-151.

    Coudrain A, Francou B, Kundewicz ZW, 2005. Glacier shrinkage in the Andes and consequences for water resources. Hydrol. Sci. J., 50:925-932.

    Diaz HF, Graham NE, 1996. Recent changes in tropical freezing heights and the role of sea surface temperature. Nature, 383: 152-155.

    Diaz HF, Eischeid JK, Duncan C, Bradley RS, 2003. Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years. Clim. Change,59: 33-52.

    Easterling DR, Peterson TC, 1995. A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol., 15:369-377.

    Francou B, Vuille M, Favier V, Cáceres B, 2004. New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador,280S. J. Geophys. Res., 109: D18106. DOI:10.1029/2003JD004484.

    Gaffen DJ, Santer BD, Boyle JS, Christy JR, Graham NE, Ross RJ, 2000.Multidecadal changes in the vertical temperature structure of the tropical troposphere. Science, 287: 1242-1245.

    Guo Y, Thorne P, McCarthy P, 2008. Radiosonde temperature trends and their uncertainties over eastern China. Int. J. Climatol., 28: 1269-1281.

    Guo Y, Ding Y, 2009. Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series. J.Clim., 22(4): 1037-1051.

    Harris NG, Gettys N, Bowman KP, Shin DB, 2000. Comparison of freezing-level ALHitudes from NCEP Reanalysis with TRMM precipitation radar brightband data. J. Clim., 13: 4137-4148.

    Hoffmann G, 2003. Taking the pulse of the tropical water cycle. Science, 301:776-778.

    Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, U.K.

    Jiang FC, Wu XH, Wang SB, Zhao ZZ, Fu JL, 2003. Basic features of spatial distribution of the limits of permafrost in China. Journal of Geomechanics, 19(14): 12-22.

    Li X, 2008. Cryospheric change in China. Global and Planetary Change, 62:210-218.

    Liu C, 2000. Glaciers and their distribution in China. In: Shi YF (Ed.). Glaciers and Their Environments in China: The Present, Past and Future.Science Press, Beijing. 9-53.

    Mao W, 2004. Relationship of 0 °C level height and summer flood of Aksu River, Xinjiang. Journal of Glaciology and Geocryology, 26(6): 117-123.

    Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS,2008. Climate change and tropical Andean glaciers—Past, present and future. Earth Sci. Rev., 89: 79-96.

    Wang Y, 2008. Response of summer average discharge in the Hotan River to changes in regional 0 °C Level Height. Advances in Climate Change Research, 4(3): 151-155.

    WGMS, 2008. Global Glacier Changes: Facts and Figures. In: Zemp M,Roer I, K??b A, Hoelzle M, Paul F, Haeberli W (Eds.). UNEP. World Glacier Monitoring Service, Zurich, Switzerland.

    Zhang G, 2009. The response of the Glacier No. 1 to the height change of the 0 °C Level in summer at the riverhead of the Urümqi River, Tianshan Mountains. Journal of Glaciology and Geocryology, 31(6): 117-123.

    Zhang Y, 1998. The response of glacier ELA response to climatic fluctuation on high Asia. Bulletin of Glacier Research, 16: 1-11.

    10.3724/SP.J.1226.2011.00485

    *Correspondence to: Dr. YanJun Guo, National Climate Center, China Meteorological Administration. No. 46, Zhongguancun Nandajie, Haidian District, Beijing 100081, China. Email: gyj@cma.gov.cn

    11 June 2011 Accepted: 12 August 2011

    美女xxoo啪啪120秒动态图| 免费黄频网站在线观看国产| 日韩av免费高清视频| 免费看不卡的av| 日日摸夜夜添夜夜爱| 国产成人精品久久久久久| 亚洲欧美一区二区三区久久| 男女边摸边吃奶| 国产精品一二三区在线看| av在线观看视频网站免费| 亚洲精品中文字幕在线视频| 视频区图区小说| kizo精华| 天堂8中文在线网| 久久人妻熟女aⅴ| 热re99久久精品国产66热6| 哪个播放器可以免费观看大片| 秋霞在线观看毛片| 色婷婷av一区二区三区视频| 久久鲁丝午夜福利片| 97人妻天天添夜夜摸| 免费人妻精品一区二区三区视频| 午夜影院在线不卡| 亚洲综合色惰| 日韩制服丝袜自拍偷拍| 中文字幕最新亚洲高清| 国产精品99久久99久久久不卡 | 人妻少妇偷人精品九色| 中文字幕色久视频| 欧美xxⅹ黑人| 日本91视频免费播放| 精品少妇久久久久久888优播| 一级,二级,三级黄色视频| 精品视频人人做人人爽| 国语对白做爰xxxⅹ性视频网站| av免费观看日本| www.av在线官网国产| 成年av动漫网址| 国产一区二区 视频在线| 日韩一本色道免费dvd| 欧美变态另类bdsm刘玥| 久久人人爽人人片av| 人人澡人人妻人| 国产探花极品一区二区| 99久久综合免费| 看免费成人av毛片| 精品99又大又爽又粗少妇毛片| 一级片免费观看大全| 国产av国产精品国产| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| h视频一区二区三区| 成人毛片60女人毛片免费| 亚洲四区av| 国产黄频视频在线观看| 黑人猛操日本美女一级片| 最近最新中文字幕大全免费视频 | 在线精品无人区一区二区三| 最近2019中文字幕mv第一页| 成年女人毛片免费观看观看9 | 欧美bdsm另类| 亚洲三级黄色毛片| 精品国产国语对白av| 精品一区二区三区四区五区乱码 | 国产亚洲精品第一综合不卡| 欧美日韩国产mv在线观看视频| 成人国产麻豆网| 久久人人精品亚洲av| 亚洲少妇的诱惑av| 成年版毛片免费区| 99热只有精品国产| xxxhd国产人妻xxx| 99热只有精品国产| 在线观看免费视频日本深夜| 精品日产1卡2卡| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 免费观看人在逋| 9热在线视频观看99| 亚洲男人的天堂狠狠| 欧美日韩乱码在线| 亚洲全国av大片| 免费观看精品视频网站| 这个男人来自地球电影免费观看| 午夜a级毛片| 亚洲精品久久午夜乱码| 亚洲一区二区三区欧美精品| 在线视频色国产色| 精品国产国语对白av| 日本撒尿小便嘘嘘汇集6| 久久久国产精品麻豆| 婷婷精品国产亚洲av在线| 人妻丰满熟妇av一区二区三区| 高清毛片免费观看视频网站 | 97超级碰碰碰精品色视频在线观看| 亚洲熟妇熟女久久| 色在线成人网| 老熟妇仑乱视频hdxx| 国产精品99久久99久久久不卡| 中文字幕高清在线视频| 国产激情久久老熟女| 夜夜夜夜夜久久久久| 久久这里只有精品19| 久久热在线av| 两个人看的免费小视频| 精品一区二区三区四区五区乱码| 久久人妻熟女aⅴ| 国产亚洲欧美在线一区二区| 18禁国产床啪视频网站| 999久久久国产精品视频| 国产精品1区2区在线观看.| 日韩大尺度精品在线看网址 | 久久久久国内视频| 国产精品自产拍在线观看55亚洲| 99在线人妻在线中文字幕| 国产高清激情床上av| 18禁观看日本| 每晚都被弄得嗷嗷叫到高潮| 欧美人与性动交α欧美软件| 亚洲色图综合在线观看| 精品久久蜜臀av无| 亚洲人成电影免费在线| 日韩大码丰满熟妇| 国产成人精品久久二区二区91| 午夜亚洲福利在线播放| 亚洲av成人av| 国产不卡一卡二| 精品人妻1区二区| 999久久久精品免费观看国产| 欧美日韩精品网址| 搡老熟女国产l中国老女人| 黄片播放在线免费| 女警被强在线播放| 视频在线观看一区二区三区| 天堂中文最新版在线下载| 亚洲成av片中文字幕在线观看| 两个人免费观看高清视频| 国产亚洲精品第一综合不卡| 欧美一区二区精品小视频在线| 国产精品乱码一区二三区的特点 | 亚洲 欧美一区二区三区| 两人在一起打扑克的视频| 国产极品粉嫩免费观看在线| 免费在线观看亚洲国产| 欧美乱妇无乱码| 一级,二级,三级黄色视频| 天堂中文最新版在线下载| 亚洲av电影在线进入| 国产免费av片在线观看野外av| 在线永久观看黄色视频| 免费少妇av软件| 婷婷精品国产亚洲av在线| 成人特级黄色片久久久久久久| 老熟妇乱子伦视频在线观看| 正在播放国产对白刺激| 久久草成人影院| 别揉我奶头~嗯~啊~动态视频| 中文字幕人妻丝袜制服| 国产精品自产拍在线观看55亚洲| 99国产精品免费福利视频| 午夜免费成人在线视频| 国产亚洲av高清不卡| 不卡av一区二区三区| 国产亚洲精品一区二区www| 亚洲色图综合在线观看| 看片在线看免费视频| 亚洲欧美日韩高清在线视频| 在线av久久热| 大码成人一级视频| 中文字幕色久视频| 无人区码免费观看不卡| 99精品久久久久人妻精品| 欧美日韩一级在线毛片| 中文字幕人妻熟女乱码| 热99re8久久精品国产| av福利片在线| 精品一区二区三区四区五区乱码| x7x7x7水蜜桃| 国产精品美女特级片免费视频播放器 | 丁香欧美五月| 久久人人97超碰香蕉20202| 三上悠亚av全集在线观看| 不卡一级毛片| 成人国产一区最新在线观看| 国产三级在线视频| 国产成人欧美| 欧美亚洲日本最大视频资源| 12—13女人毛片做爰片一| 久久久久亚洲av毛片大全| 亚洲全国av大片| 麻豆久久精品国产亚洲av | 在线观看免费日韩欧美大片| 久久精品国产亚洲av高清一级| 免费高清在线观看日韩| 亚洲性夜色夜夜综合| а√天堂www在线а√下载| 99精国产麻豆久久婷婷| avwww免费| 久热这里只有精品99| 18禁国产床啪视频网站| 欧美黑人欧美精品刺激| 黄色女人牲交| 亚洲国产精品999在线| 久久狼人影院| 亚洲,欧美精品.| 国产精品一区二区三区四区久久 | 国产成人精品久久二区二区91| 满18在线观看网站| 最近最新中文字幕大全免费视频| 日韩人妻精品一区2区三区| 后天国语完整版免费观看| 国产av又大| 日本vs欧美在线观看视频| 欧美日韩福利视频一区二区| 亚洲免费av在线视频| 国产成人啪精品午夜网站| 9色porny在线观看| 免费一级毛片在线播放高清视频 | 国产精品 欧美亚洲| 国产片内射在线| 国产99久久九九免费精品| 亚洲色图综合在线观看| 亚洲专区字幕在线| 黄色成人免费大全| 久久人人97超碰香蕉20202| 午夜a级毛片| 五月开心婷婷网| 高清黄色对白视频在线免费看| 香蕉国产在线看| 国产精品秋霞免费鲁丝片| 欧美成人免费av一区二区三区| 欧美人与性动交α欧美精品济南到| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩视频精品一区| 久99久视频精品免费| 高清av免费在线| 国产av一区在线观看免费| 高潮久久久久久久久久久不卡| 欧美乱色亚洲激情| 国产视频一区二区在线看| 女人被躁到高潮嗷嗷叫费观| 成人国产一区最新在线观看| 在线观看一区二区三区激情| 两个人免费观看高清视频| 美女高潮喷水抽搐中文字幕| 国产一区二区三区综合在线观看| 亚洲精品一区av在线观看| 欧美久久黑人一区二区| 涩涩av久久男人的天堂| 亚洲av第一区精品v没综合| 中文欧美无线码| 亚洲欧美一区二区三区黑人| 性色av乱码一区二区三区2| 日韩av在线大香蕉| 人成视频在线观看免费观看| 欧美乱妇无乱码| 免费久久久久久久精品成人欧美视频| 级片在线观看| 日日爽夜夜爽网站| 精品久久久精品久久久| 国产亚洲av高清不卡| 亚洲全国av大片| 在线观看一区二区三区激情| 91麻豆精品激情在线观看国产 | 久久午夜综合久久蜜桃| 国产熟女xx| 在线观看www视频免费| 久久人人精品亚洲av| 亚洲成av片中文字幕在线观看| 黄色视频,在线免费观看| 一边摸一边抽搐一进一小说| 99久久精品国产亚洲精品| 欧美一级毛片孕妇| 久久热在线av| 好看av亚洲va欧美ⅴa在| 夜夜看夜夜爽夜夜摸 | 亚洲精品久久成人aⅴ小说| 欧美午夜高清在线| 国产91精品成人一区二区三区| 国产不卡一卡二| 美女午夜性视频免费| 国产又色又爽无遮挡免费看| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久人妻精品电影| 99久久国产精品久久久| 午夜久久久在线观看| 国产亚洲精品一区二区www| 久久久久久人人人人人| 99热只有精品国产| 99香蕉大伊视频| 99香蕉大伊视频| 高清av免费在线| 午夜91福利影院| 欧美+亚洲+日韩+国产| 免费在线观看完整版高清| 久久亚洲真实| 久久久国产成人精品二区 | 村上凉子中文字幕在线| 丰满的人妻完整版| 夜夜爽天天搞| 十分钟在线观看高清视频www| 搡老乐熟女国产| www日本在线高清视频| 精品人妻1区二区| 成年人免费黄色播放视频| 黄片大片在线免费观看| 国产人伦9x9x在线观看| 欧美激情久久久久久爽电影 | 老汉色∧v一级毛片| 1024香蕉在线观看| 满18在线观看网站| 天堂√8在线中文| 国产一区二区激情短视频| 久久精品成人免费网站| x7x7x7水蜜桃| 韩国av一区二区三区四区| 亚洲va日本ⅴa欧美va伊人久久| 欧美亚洲日本最大视频资源| 欧美老熟妇乱子伦牲交| 1024视频免费在线观看| 国产亚洲欧美精品永久| 91在线观看av| 久久精品亚洲熟妇少妇任你| 精品久久久久久,| 亚洲中文av在线| 国产熟女午夜一区二区三区| 国产日韩一区二区三区精品不卡| av免费在线观看网站| 久久狼人影院| 日本免费a在线| 国产成人一区二区三区免费视频网站| 日本三级黄在线观看| 韩国av一区二区三区四区| 久久久久亚洲av毛片大全| 欧美黑人精品巨大| 交换朋友夫妻互换小说| 热re99久久国产66热| 亚洲精品一卡2卡三卡4卡5卡| 日本 av在线| 亚洲人成77777在线视频| 一级作爱视频免费观看| xxxhd国产人妻xxx| 精品一区二区三区视频在线观看免费 | 欧美日韩瑟瑟在线播放| 成人三级黄色视频| 亚洲av电影在线进入| 亚洲欧美激情综合另类| 真人做人爱边吃奶动态| 国产无遮挡羞羞视频在线观看| 国产一区二区三区综合在线观看| 麻豆国产av国片精品| 国产精品野战在线观看 | 满18在线观看网站| 久久久国产一区二区| 欧美精品亚洲一区二区| 巨乳人妻的诱惑在线观看| 丝袜美腿诱惑在线| 精品久久久久久电影网| 91在线观看av| 亚洲专区中文字幕在线| 99热只有精品国产| 亚洲五月天丁香| av天堂久久9| 亚洲五月色婷婷综合| 日本 av在线| 国产精品久久视频播放| 天堂影院成人在线观看| 老司机深夜福利视频在线观看| 波多野结衣av一区二区av| а√天堂www在线а√下载| 性欧美人与动物交配| 亚洲va日本ⅴa欧美va伊人久久| 无遮挡黄片免费观看| 午夜福利在线免费观看网站| 成人黄色视频免费在线看| 欧美久久黑人一区二区| 国产乱人伦免费视频| 男女做爰动态图高潮gif福利片 | 91成人精品电影| 丝袜美腿诱惑在线| 国产单亲对白刺激| 国产成+人综合+亚洲专区| www.自偷自拍.com| 亚洲狠狠婷婷综合久久图片| 在线av久久热| 欧美精品亚洲一区二区| 丁香欧美五月| 男女之事视频高清在线观看| 桃色一区二区三区在线观看| 精品高清国产在线一区| 日本免费一区二区三区高清不卡 | 国产不卡一卡二| 精品福利永久在线观看| 夫妻午夜视频| 亚洲av五月六月丁香网| 久久亚洲精品不卡| 高清毛片免费观看视频网站 | 又黄又爽又免费观看的视频| 亚洲国产看品久久| 交换朋友夫妻互换小说| 久久影院123| 国产精品98久久久久久宅男小说| 99热只有精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av成人一区二区三| 涩涩av久久男人的天堂| av超薄肉色丝袜交足视频| 国产成人av激情在线播放| 国产无遮挡羞羞视频在线观看| 99精品欧美一区二区三区四区| 91国产中文字幕| 可以在线观看毛片的网站| 神马国产精品三级电影在线观看 | 亚洲成人国产一区在线观看| 午夜福利在线观看吧| 国产在线精品亚洲第一网站| 超碰97精品在线观看| 日本免费a在线| 熟女少妇亚洲综合色aaa.| 又紧又爽又黄一区二区| 老汉色av国产亚洲站长工具| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 久久天堂一区二区三区四区| 18禁黄网站禁片午夜丰满| 在线十欧美十亚洲十日本专区| 18禁国产床啪视频网站| 国产成人av教育| 亚洲色图av天堂| 国产91精品成人一区二区三区| 久9热在线精品视频| 色播在线永久视频| 国产在线观看jvid| 十八禁人妻一区二区| 国产激情欧美一区二区| 波多野结衣av一区二区av| 久久久久国内视频| 久久国产亚洲av麻豆专区| 美女午夜性视频免费| 国产精品 国内视频| 中文字幕av电影在线播放| 欧美日本亚洲视频在线播放| 国产精品 国内视频| 亚洲精品久久午夜乱码| 欧美+亚洲+日韩+国产| 夜夜爽天天搞| 麻豆一二三区av精品| 亚洲自拍偷在线| 日韩高清综合在线| 国产亚洲精品综合一区在线观看 | 日韩欧美国产一区二区入口| 国产精品久久久久久人妻精品电影| 久久青草综合色| 亚洲七黄色美女视频| 久久九九热精品免费| 一本大道久久a久久精品| 欧美激情 高清一区二区三区| 色婷婷av一区二区三区视频| 夜夜看夜夜爽夜夜摸 | 欧美精品一区二区免费开放| 91九色精品人成在线观看| 国产蜜桃级精品一区二区三区| 真人一进一出gif抽搐免费| 午夜福利影视在线免费观看| 亚洲,欧美精品.| 欧美中文日本在线观看视频| 在线观看www视频免费| 免费观看人在逋| 一级毛片女人18水好多| 国产xxxxx性猛交| 久久午夜亚洲精品久久| 久久精品亚洲熟妇少妇任你| 长腿黑丝高跟| 亚洲avbb在线观看| 国产欧美日韩一区二区三区在线| 十八禁人妻一区二区| 美国免费a级毛片| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 麻豆成人av在线观看| 国内毛片毛片毛片毛片毛片| 国产日韩一区二区三区精品不卡| 91成人精品电影| 十八禁人妻一区二区| 又黄又粗又硬又大视频| www.999成人在线观看| 国产成人啪精品午夜网站| 亚洲成人久久性| 色精品久久人妻99蜜桃| 精品国产国语对白av| 亚洲激情在线av| 首页视频小说图片口味搜索| 欧美日韩黄片免| 免费观看人在逋| 夜夜躁狠狠躁天天躁| 久久狼人影院| 一进一出抽搐动态| 麻豆成人av在线观看| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 在线观看一区二区三区激情| av福利片在线| 国产精品一区二区精品视频观看| 俄罗斯特黄特色一大片| 最新美女视频免费是黄的| 国产又爽黄色视频| 国产精品秋霞免费鲁丝片| 丰满饥渴人妻一区二区三| 啪啪无遮挡十八禁网站| 国产熟女xx| 欧美黑人欧美精品刺激| www.精华液| 两个人免费观看高清视频| 国产精品永久免费网站| 亚洲国产精品sss在线观看 | 精品午夜福利视频在线观看一区| 夜夜看夜夜爽夜夜摸 | 国产成人av教育| 两性午夜刺激爽爽歪歪视频在线观看 | 最近最新免费中文字幕在线| 精品国产一区二区久久| 国产精品一区二区免费欧美| 国产精品乱码一区二三区的特点 | 1024香蕉在线观看| 亚洲成a人片在线一区二区| 12—13女人毛片做爰片一| 久9热在线精品视频| 在线观看免费视频日本深夜| 国产成人精品久久二区二区91| 午夜91福利影院| 亚洲九九香蕉| 韩国av一区二区三区四区| 欧美黑人精品巨大| 亚洲第一欧美日韩一区二区三区| 国产av在哪里看| 精品国产一区二区久久| ponron亚洲| 国产黄色免费在线视频| 午夜激情av网站| 欧美日韩乱码在线| 久久精品亚洲精品国产色婷小说| 露出奶头的视频| 国产99久久九九免费精品| 一二三四社区在线视频社区8| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月| 美女扒开内裤让男人捅视频| 亚洲第一av免费看| 国产单亲对白刺激| 亚洲美女黄片视频| 久99久视频精品免费| ponron亚洲| av福利片在线| 国产高清视频在线播放一区| 91国产中文字幕| 一边摸一边做爽爽视频免费| 日韩高清综合在线| 一二三四在线观看免费中文在| 最近最新中文字幕大全免费视频| 无限看片的www在线观看| 成在线人永久免费视频| 欧美乱码精品一区二区三区| 久久中文字幕人妻熟女| 好看av亚洲va欧美ⅴa在| 日韩视频一区二区在线观看| 亚洲欧美日韩高清在线视频| 少妇被粗大的猛进出69影院| 国内久久婷婷六月综合欲色啪| 国产不卡一卡二| 精品欧美一区二区三区在线| 精品久久久久久,| 成人三级做爰电影| 欧美黑人精品巨大| 午夜久久久在线观看| 亚洲精品久久成人aⅴ小说| 国产成人啪精品午夜网站| 久热这里只有精品99| 黄色丝袜av网址大全| 18禁国产床啪视频网站| 亚洲情色 制服丝袜| 欧美老熟妇乱子伦牲交| 两个人看的免费小视频| 在线天堂中文资源库| 亚洲精品av麻豆狂野| 亚洲中文av在线| netflix在线观看网站| 99国产综合亚洲精品| 日韩免费高清中文字幕av| 久久人妻福利社区极品人妻图片| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕一二三四区| 亚洲国产精品合色在线| 一个人观看的视频www高清免费观看 | 欧美 亚洲 国产 日韩一| 69av精品久久久久久| 国产精品98久久久久久宅男小说| 18美女黄网站色大片免费观看| 亚洲熟女毛片儿| 男人操女人黄网站| 大型黄色视频在线免费观看| 亚洲成a人片在线一区二区| 成人三级黄色视频| 国产亚洲欧美精品永久| 黄色女人牲交| 丰满迷人的少妇在线观看| 亚洲男人天堂网一区| 男女午夜视频在线观看| 免费在线观看亚洲国产| 在线观看一区二区三区激情| 欧美中文综合在线视频| 欧美激情 高清一区二区三区| av国产精品久久久久影院| 亚洲狠狠婷婷综合久久图片| 不卡av一区二区三区|