• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    表面活性素單分子膜在空氣/水界面的遲滯現(xiàn)象

    2011-11-30 10:56:42宋昌盛葉汝強(qiáng)牟伯中
    物理化學(xué)學(xué)報(bào) 2011年9期
    關(guān)鍵詞:原子力華東理工大學(xué)聚集體

    楊 瑩 宋昌盛,2 葉汝強(qiáng) 牟伯中,*

    (1華東理工大學(xué)應(yīng)用化學(xué)研究所,上海200237;2太倉(cāng)出入境檢驗(yàn)檢疫局,江蘇太倉(cāng)215400)

    表面活性素單分子膜在空氣/水界面的遲滯現(xiàn)象

    楊 瑩1宋昌盛1,2葉汝強(qiáng)1牟伯中1,*

    (1華東理工大學(xué)應(yīng)用化學(xué)研究所,上海200237;2太倉(cāng)出入境檢驗(yàn)檢疫局,江蘇太倉(cāng)215400)

    表面活性素是一類具有較強(qiáng)表面活性的微生物脂肽類化合物,能在空氣/水界面形成不溶性單分子膜.利用Langmuir膜天平測(cè)定了表面活性素單分子膜的壓縮-擴(kuò)張循環(huán)曲線,發(fā)現(xiàn)單分子膜在經(jīng)歷了“平臺(tái)區(qū)”后出現(xiàn)較大的遲滯環(huán),遲滯環(huán)的形狀與亞相pH有關(guān).將“平臺(tái)區(qū)”的單分子膜轉(zhuǎn)移到云母表面后,用原子力顯微鏡(AFM)和掃描電子顯微鏡(SEM)均觀察到高度達(dá)幾十至數(shù)百納米的表面聚集體,說(shuō)明表面活性素在單分子膜的“平臺(tái)區(qū)”伴隨著自聚集.研究結(jié)果表明,表面活性素單分子膜在空氣/水界面的遲滯現(xiàn)象是分子浸入亞相和形成三維表面聚集體共同作用的結(jié)果.

    壓縮-擴(kuò)張循環(huán);遲滯環(huán);原子力顯微鏡;掃描電子顯微鏡;表面聚集體

    1 Introduction

    Surfactin is a fascinating group of lipopeptides produced by Bacillus subtilis.1Because of its exceptional surface activities,1-4and peculiar biological properties,5-7surfactin has a broad potential application in many fields,such as cosmetics,food additives,pharmacy,and oil recovery.8,9The structure of surfactin (Fig.1)contains a hydrophilic peptide loop of seven amino acids bonded to a linear hydrophobic fatty acid chain,10and consequently it exhibits amphiphilic behavior which is one of the main forces for self-assembly.11,12It is presumed that its biological activities,such as cytolytic property,5antiviral and hemolytic activities,6and the ability to inhibit formation of fibrin clots,1are a direct consequence of the interaction of surfactin with its target membrane.13To study the interactions between surfactin and biomembrane molecules,it seems important to study the structures and properties of surfactin and its analogues.An interest in the behavior of surfactin layers on water is due to the fact that the surface activity and biological property mostly occur at interfaces.14,15

    Several authors have experimentally investigated the interfacial behavior and molecular organization of surfactin at the air-water interface.4,16-18Maget-Dana and Ptak16firstly reported the interfacial behavior of surfactin.They found that there existed a“plateau region”in the compression isotherm during which the peptide loop of surfactin molecule would adopt a vertical orientation.Based on dark-field electron micrographs of single-layer Langmuir-Blodgett(LB)film of surfactin, Ishigami et al.4proposed that surfactin molecules would rather promote the formation of inhomogeneous multilayer films in three dimensions at high surface pressure.The interfacial behavior of surfactin analogues has been investigated by Eeman et al.17It was found that a more hydrophobic alkyl chain induced a higher surface pressure and the opening of the peptide ring reduced the maximal surface pressure.The plateau regions in isotherms were observed for all samples they used.On the basis of atomic force microscopy(AFM)observation for single-layer LB film,18it appears that surfactin film would transit from monolayer to multilayer during the“plateau region”.According to computer simulation of surfactin conformation at a hydrophobic-hydrophilic interface,Gallet et al.15suggested that some molecules would be organized into clusters or twodimensional micelles during the“plateau”transition.While the plateau is usually considered to be related with the conformational changes in the polar moiety,19,20the origin of the“plateau region”in surfactin monolayer is still unclear.

    Fig.1 Primary structure of surfactinApeptide loop containing seven amino acid residues bonds to a β-hydroxylfatty acid chain with 14 carbon atoms,denoted as SuC14in the context.

    In order to obtain information on molecular behavior of surfactin during the“plateau region”,hysteresis behavior was studied and surface morphologies of single-layer LB films were observed by AFM and scanning electron microscopy (SEM).The contribution of surface-to-bulk diffusion and formation of three-dimensional surface aggregates to the hysteresis loop were also discussed.

    2 Experimental

    2.1 Materials

    Surfactin samples used in the experiment were produced by Bacillus subtilis HSO121,21the isolation,purification,and structural analysis were conducted in our laboratory.22The surfactin with a β-hydroxyl fatty acid chain of 14 carbon atoms (denoted as SuC14)was collected by a semipreparative reversed-phase high performance liquid chromatography (HPLC),and its structure was determined by electrospray ionization quadruple-time-of-flight mass spectrometry(ESI QTOF MS),electroionization gas chromatography/mass spectrometry(EI GC/MS)combined with amino acid analysis and analytical HPLC.Hexane(≥99.0%)and chloroform(≥96.0%) were purchased from Shanghai Reagent Factory.

    2.2 Surface pressure-molecular area(π-A) isotherm and preparation of LB films

    The π-A isotherms were recorded by a computer-controlled film balance(612D,Nima Technology,England).Surfactin was spread onto subphase from its hexane/chloroform(2:1,V/ V)solution with the concentration of 1 mmol·L-1.The subphase was water purified with a Hitech-Kflow system(resistivity 18 MΩ·cm,pH~6),its pH was adjusted with hydrochloric acid or sodium hydroxide and its temperature was controlled by a water bath.After 30 μL of the stock solution was spread, the monolayer film was maintained without compression for at least 15 min to ensure the complete evaporation of the solvents and then compressed by barriers with a speed of 0.1 nm2· min-1·molecule-1.For hysteresis measurements,a 10 s delay was used following each compression or expansion step,prior to the next compression or expansion.Each of the isotherms was performed three times and the isotherms were reproducible.

    Surfactin LB films were prepared by vertical dipping method.At the plateau region in the isotherm,where the change in area with change in surface pressure was large,the pressure control feedback was difficult to control.23Therefore,the films were transferred onto the freshly cleaved mica by the molecular area control.When molecular area reached 0.8 nm2·molecule-1,the LB film was deposited at a speed of 2 mm·min-1.

    2.3 AFM and SEM imaging

    Fig.2 Hysteresis cycles of SuC14monolayer on pure water(pH 6)at 25°C The solid and dashed lines,labeled with 1 and 2 respectively,are two consecutive hysteresis cycles at full expansion. The dotted lines are the hysteresis at 20 mN·m-1.

    Atomic force microscopy(AJ III,Aijian Nanotechnology, China)was used to observe the surface morphologies of LB films.All AFM measurements were performed at room temperature(20°C)in tapping mode,using silicon cantilever(Mikro-Masch Company,Estonia)with a resonance frequency in the range of 240-400 kHz,and a spring constant of 48 N·m-1.The AFM images were obtained with a maximum scan range of 18 μm×18 μm and the scan rate was 1-2 Hz.All images were gained from at least three macroscopically-separated areas on each sample,and at least two independent samples of each type were prepared and observed.

    The LB films were also observed by scanning electron microscopy(JSM-6390A,JEOL,Japan)after being gold-coated.

    3 Results and discussion

    3.1 Hysteresis loop

    Fig.2 shows the compression-expansion cycles of surfactin monolayer on pure water at 25°C.The dotted line exhibits the hysteresis at a lower surface pressure(20 mN·m-1).Two consecutive hysteresis cycles at full trough expansion are shown as the solid and dashed lines,labeled with 1 and 2,respectively.All cycles present the same feature:the expansion isotherm curves are all under the compression curves.However,there is a larger hysteresis at full trough expansion as compared to that expanded at the lower pressure.The 2nd cycle is shifted towards smaller molecular areas than the 1st cycle.

    Fig.3 Hysteresis cycles of SuC14monolayer on acidic subphase (pH 2)and alkaline subphase(pH 10)at 25°C

    We also studied the hysteresis cycles of surfactin monolayer on acidic subphase and alkaline subphase(shown in Fig.3).All these hysteresis cycles present similar characteristics:as the monolayers expanded,a sharp drop in the surface pressure is observed.With subphase pH decreased,hysteresis loop becomes smaller and the expansion isotherm curve undergoes a pseudo plateau.It is presumed that the difference results from the surface-to-bulk diffusion of molecules during the plateau region.At low pH,the peptide loop can be hardly ionized.As the pH increases,the peptide loop in surfactin tends to be ionized,and the increase of hydrophilicity leads some molecules to submerge into subphase.The solubilization and chain reorganization processes of molecules require time to return to their surface-adsorbed state at expanded areas.24The“l(fā)oss”of some molecules at interface at expansion areas induces lower surface pressure.

    3.2 Surface morphology studies

    To obtain information on the molecular behavior of surfactin in the plateau region,surfactin films were imaged by AFM after LB deposition.

    Fig.4 shows the representative AFM topographic images of SuC14LB films prepared at the subphase pH 2,6,and 10.The LB films were all transferred at the plateau region.At pH 2, regular spheres shown in Fig.4A are observed.The diameters of these spheres are in a scale of hundreds of nanometers,the heights range from tens to hundreds nanometers.At pH 6,the AFM image(Fig.4B)shows quasi-circular aggregates,and the size distribution is similar to that observed in Fig.4A.At pH 10,the number of aggregates is greatly decreased(Fig.4C). However,with the addition of calcium cations into the alkaline subphase,more aggregates which were bigger and higher were observed(Fig.4D).

    Fig.4 Top viewAFM images of single-layer SuC14LB film deposited at the plateau regions on water subphase(A)pH 2,(B)pH 6,(C)pH 10,(D)pH 10(containing calcium cation).All LB films were transferred at the pressure to which molecular area reaching at 0.8 nm2·molecule-1.

    Fig.5 SEM images of single-layer SuC14LB film deposited at the plateau regions on water subphase(A)pH 2,(B)pH 6,(C)pH 10(containing calcium cation).All LB films were prepared at the conditions as same as forAFM observations.

    To reveal further details on the distribution of particles observed by AFM,all LB films,which were prepared at the conditions as same as for AFM observations,were characterized by SEM.The SEM micrographs are presented in Fig.5.At pH 2 and 6,homogeneous distributions of circular particles are observed,with the diameter of(393±52)and(371±101)nm,respectively.The particles in Fig.5C exhibit a much larger size but fewer amount compared with those in Fig.5(A,B).No particles are observed by SEM for LB film prepared on alkaline subphase(pH 10)(data not shown),which is probably due to the low contrast between the targets and background.

    The correspondence between the AFM images and SEM micrographs reveals that it would be a general phenomenon for surfactins that three-dimensional structures are formed in the plateau regions(for SuC13and SuC15,similar plateau regions and three-dimensional molecular particles are also observed, data not shown).For SuC14,the hydrophilic segment in molecule structure consists of a peptide loop of seven amino acids with two carboxyl residues(Glu1 and Asp5 in Fig.1).Several studies have proven that there exists hydrogen bond in surfactin molecules.4,15,26At low subphase pH,where the solubilization of surfactin molecule is low,the π-A isotherm shows a higher transition pressure reflecting the strong tendency of surfactin spreading on the subphase surface,and the protonation of the carboxylic moieties causes a reduction in both intra-and inter-molecular electrostatic repulsions,allowing a tighter closepacking of the alkyl chains at the interface,25and three hydrogen bonds in the most stable surfactin conformation assembled in monolayer15would be strengthened.Consequently molecules in Langmuir monolayer would pile up into supramolecular structures at high lateral pressure.When subphase is adjusted to pH 6 which is the pK(dissociation constant)of surfactin at interface,16the carboxyl groups are partially deprotonated, partial loss of surfactin molecules from the interface during the compression would occur besides the formation of supramolecular structures at high lateral pressure.At pH 10,the solubility of surfactin in water increase with ionization of the peptide loop,16which would induce molecules submerging into the subphase.On the other hand,the ionization of the peptide loop would greatly reduce the inter-and intra-molecular hydrogen bonds and hence surfactin molecules can hardly aggregate into supramolecular structure.However,the addition of calcium cations into the alkaline subphase would neutralize the two acidic amino residues and reduce electrostatic repulsions resulted from the ionization of the peptide loop.

    4 Conclusions

    The hysteresis behavior of surfactin monolayer on water subphase with different pH values and the LB film morphologies on mica substrates were investigated in this study.When compression cycle reached a plateau region at higher surface pressure,the expansion cycle showed a sharp drop in the surface pressure.With subphase pH decreased,hysteresis loop became smaller and the expansion isotherm underwent a pseudo plateau.AFM and SEM images of LB films at plateau region indicated that,when peptide loop in molecule structure was protonated or partially ionized,surfactin in monolayer could pile up into three-dimensional surface aggregates with the heights range from tens to hundreds nanometers.However,when peptide loop was fully ionized,surfactin in monolayer would prefer to submerge into subphase.Based on above findings,it is proposed that the formation of three-dimensional surface aggregates during the high-pressure transition induces the large hysteresis loop in surfactin monolayer,which is also attributed to the submergence of molecules into subphase when the peptide loop is ionized.The results presented here,concerning the hysteresis behavior in surfactin monolayer,provide new insights into the interfacial behavior of the amphiphilic lipopeptide.It is believed to be important to understand peculiar properties.

    However,when examining LB film by AFM and SEM,it is difficult to fully determine whether the observed structure is a characteristic of the original monolayer on water or a result of structural change upon the film transfer.As a result,in situ technologies,such as Brewster angle microscopy and in situ infrared spectroscopy,would be applied to acquire structural information at the molecular level in future.

    (1)Arima,K.;Kakinuma,A.;Tamura,G.Biochem.Biophys.Res. Commun.1968,31,488.

    (2) Deleu,M.;Razafindralambo,H.;Popineau,Y.;Jacques,P.; Thonart,P.;Paquot,M.Colloids Surf.A 1999,152,3.

    (3) Morikawa,M.;Hirata,Y.;Imanaka,T.Biochim.Biophys.Acta 2000,1488,211.

    (4) Ishigami,Y.;Osman,M.;Nakahara,H.;Sano,Y.;Ishiguro,R.; Matsumoto,M.Colloids Surf.B 1995,4,341.

    (5) Bernheimer,A.W.;Avigad,L.S.J.Gen.Microbiol.1970,61, 361.

    (6) Vollenbroich,D.;Pauli,G.;Ozel,M.;Vater,J.Appl.Environ. Microbiol.1997,63,44.

    (7) Kracht,M.;Rokos,H.;Ozel,M.;Kowall,M.;Pauli,G.; Vater,J.J.Antibiot.1999,52,613.

    (8) Desai,J.D.;Banat,I.M.Microbiol.Mol.Biol.Rev.1997, 61,47.

    (9) Schaller,K.D.;Fox,S.L.;Bruhn,D.F.;Noah,K.S.;Bala, G.A.Appl.Biochem.Biotechnol.2004,115,827.

    (10) Yang,S.Z.;Wei,D.Z.;Mu,B.Z.J.Biochem.Biophys. Methods 2006,68,69.

    (11) Lang,S.Curr.Opin.Colloid Interface Sci.2002,7,12.

    (12) Terheiden,A.;Rellinghaus,B.;Stappert,S.;Acet,M.; Mayer,C.J.Chem.Phys.2004,121,510.

    (13) Grau,A.;Gomez-Fernandez,J.C.;Peypoux,F.;Ortiz,A. Biochim.Biophys.Acta 1999,1418,307.

    (14) Infante,M.R.;Moses,V.Int.J.Pept.Protein Res.1994,43, 173.

    (15) Gallet,X.;Deleu,M.;Razafindralambo,H.;Jacques,P.; Thonart,P.;Paquot,M.;Brasseur,R.Langmuir 1999,15, 2409.

    (16) Maget-Dana,R.;Ptak,M.J.Colloid Interface Sci.1992, 153,285.

    (17) Eeman,M.;Berquand,A.;Dufrene,Y.F.;Paquot,M.; Dufour,S.;Deleu,M.Langmuir 2006,22,11337.

    (18) Song,C.S.;Ye,R.Q.;Mu,B.Z.Colloids Surf.A 2007,302, 82.

    (19) Youm,S.G.;Paeng,K.;Choi,Y.W.;Park,S.;Sohn,D.;Seo, Y.S.;Satija,S.K.;Kim,B.G.;Kim,S.;Park,S.Y. Langmuir 2005,21,5647.

    (20) Islam,M.N.;Kato,T.J.Chem.Phys.2004,121,10217.

    (21) Lü,Y.N.;Yang,S.Z.;Mu,B.Z.Microbiology 2005,32,67. [呂應(yīng)年,楊世忠,牟伯中.微生物學(xué)通報(bào),2005,32,67.]

    (22) Liu,X.;Haddad,N.I.A.;Yang,S.;Mu,B.Protein Pept. Lett.2007,14,766.

    (23) Alonso,C.;Alig,T.;Yoon,J.;Bringezu,F.;Warriner,H.; Zasadzinski,J.A.Biophys.J.2004,87,4188.

    (24) Zhu,J.;Eisenberg,A.;Lennox,R.B.Macromolecules 1992, 25,6547.

    (25) Petriat,F.;Giasson,S.Langmuir 2005,21,7326.

    (26) Song,C.S.;Ye,R.Q.;Mu,B.Z.Colloids Surf.A 2008,330,49.

    May 17,2011;Revised:June 29,2011;Published on Web:July 11,2011.

    Hysteresis Behavior of Surfactin Monolayer at the Air/Water Interface

    YANG Ying1SONG Chang-Sheng1,2YE Ru-Qiang1MU Bo-Zhong1,*
    (1Institute of Applied Chemistry,East China University of Science and Technology,Shanghai 200237,P.R.China;
    2Taicang Entry-Exit Inspection and Quarantine Bureau,Taicang 215400,Jiangsu Province,P.R.China)

    Surfactin,one of the most surface-active microbial lipopeptides,can readily form an insoluble monolayer at the air/water interface.Consecutive compression-expansion cycles of surfactin with a β-hydroxyl fatty acid chain consisting of 14 carbon atoms were studied by a Langmuir film balance.A larger hysteresis loop was observed when the compression isotherm reached a plateau compared with that expanded at a lower surface pressure(20 mN·m-1).The 2nd cycle was shifted towards smaller molecular areas compared with the 1st cycle.We also studied the hysteresis cycles of the surfactin monolayer on subphase of different pH values.With a decrease in the subphase pH the hysteresis loop became smaller and the expansion isotherm curve underwent a longer pseudo plateau.Furthermore,the morphologies of the surfactin monolayers in the plateau region,which were transferred onto a mica surface,were characterized by atomic force microscopy(AFM)and scanning electron microscopy(SEM).Both AFM and SEM images gave three-dimensional surface aggregates with heights ranging from tens to hundreds of nanometers.The above results suggest that the formation of three-dimensional surface aggregates at the plateau region induces a large hysteresis loop in the surfactin monolayer,which can also be attributed to the submergence of molecules into the subphase when the peptide loop in the surfactin molecule is ionized.

    Compression-expansion cycle;Hysteresis loop;AFM;SEM;Surface aggregate

    O647

    ?Corresponding author.Email:bzmu@ecust.edu.cn;Tel:+86-21-64252063;Fax:+86-21-64252458.

    The project was supported by the National High Technology Research and Development Program of China(863)(2009AA063503).

    國(guó)家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(863)(2009AA063503)資助

    猜你喜歡
    原子力華東理工大學(xué)聚集體
    銅納米簇聚集體的合成、發(fā)光與胞內(nèi)溫度傳感
    一種新型聚集誘導(dǎo)發(fā)光的片狀銀納米簇聚集體的合成
    原子力顯微鏡(AFM)用于瀝青老化行為微觀表征研究綜述
    石油瀝青(2022年3期)2022-08-26 09:13:44
    類胡蘿卜素聚集體的研究進(jìn)展
    華東理工大學(xué)藝術(shù)設(shè)計(jì)與傳媒學(xué)院設(shè)計(jì)作品選登
    單浩作品選登
    原子力顯微鏡—熒光顯微鏡聯(lián)用技術(shù)在活細(xì)胞單分子檢測(cè)中的應(yīng)用
    The Immoral Duchess
    原子力顯微鏡在材料成像中的應(yīng)用
    化工管理(2015年8期)2015-12-21 08:37:22
    水合物聚集體受力分析及臨界聚集體粒徑的計(jì)算
    石油化工(2014年1期)2014-06-07 05:57:08
    美女大奶头视频| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩精品一区二区| ponron亚洲| 美女黄网站色视频| 色播亚洲综合网| 三级毛片av免费| 最近最新中文字幕大全电影3| 黄色一级大片看看| 成人三级黄色视频| 深爱激情五月婷婷| 无人区码免费观看不卡| 看片在线看免费视频| 日韩中文字幕欧美一区二区| 欧美午夜高清在线| 精品久久久久久久末码| 日韩欧美在线二视频| 91在线观看av| 亚洲乱码一区二区免费版| 国产三级黄色录像| 国产欧美日韩一区二区精品| 99精品在免费线老司机午夜| 亚洲电影在线观看av| 婷婷色综合大香蕉| 嫩草影院新地址| 色视频www国产| 少妇的逼水好多| 国产高清视频在线播放一区| 琪琪午夜伦伦电影理论片6080| 精品欧美国产一区二区三| 日韩欧美国产在线观看| 在线观看免费视频日本深夜| 国产成年人精品一区二区| 18禁裸乳无遮挡免费网站照片| 男人狂女人下面高潮的视频| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久久免 | 日韩人妻高清精品专区| 国产成人福利小说| 亚洲人成电影免费在线| 国产欧美日韩精品一区二区| 午夜影院日韩av| 舔av片在线| 在线免费观看不下载黄p国产 | 欧美一区二区精品小视频在线| 五月玫瑰六月丁香| 国产真实乱freesex| 男女那种视频在线观看| 欧美三级亚洲精品| 欧美黑人欧美精品刺激| 麻豆国产av国片精品| 成人美女网站在线观看视频| 亚洲 国产 在线| 哪里可以看免费的av片| 精品人妻熟女av久视频| 国产在线男女| 深夜a级毛片| 精品免费久久久久久久清纯| 久久精品国产亚洲av天美| 欧美激情久久久久久爽电影| 亚洲激情在线av| 性色avwww在线观看| 日本三级黄在线观看| 亚洲av五月六月丁香网| 一进一出好大好爽视频| 禁无遮挡网站| 成人精品一区二区免费| av中文乱码字幕在线| 舔av片在线| 首页视频小说图片口味搜索| 天天一区二区日本电影三级| 日本免费一区二区三区高清不卡| 99国产综合亚洲精品| 国产69精品久久久久777片| 99久久99久久久精品蜜桃| 欧美又色又爽又黄视频| 日本免费a在线| 日本黄色片子视频| 成人国产综合亚洲| 国产精品久久久久久精品电影| 午夜福利在线观看吧| av黄色大香蕉| 在线天堂最新版资源| 香蕉av资源在线| 男人的好看免费观看在线视频| av在线老鸭窝| 色哟哟哟哟哟哟| АⅤ资源中文在线天堂| 99热6这里只有精品| 色5月婷婷丁香| 亚洲美女黄片视频| av视频在线观看入口| 精品99又大又爽又粗少妇毛片 | 久久婷婷人人爽人人干人人爱| 中亚洲国语对白在线视频| 亚洲精品乱码久久久v下载方式| 国产乱人伦免费视频| 精品一区二区免费观看| 日韩亚洲欧美综合| 成人精品一区二区免费| 久久国产乱子免费精品| 男女视频在线观看网站免费| 国内久久婷婷六月综合欲色啪| 欧美日韩综合久久久久久 | 嫩草影院精品99| 性欧美人与动物交配| 免费看光身美女| 国内揄拍国产精品人妻在线| 欧美xxxx黑人xx丫x性爽| 日本一本二区三区精品| 日韩人妻高清精品专区| 亚洲七黄色美女视频| 亚洲avbb在线观看| 一区二区三区激情视频| 国产亚洲欧美在线一区二区| 国产69精品久久久久777片| 欧美精品啪啪一区二区三区| 国产伦精品一区二区三区视频9| 在线观看午夜福利视频| av专区在线播放| 国产男靠女视频免费网站| 日本免费a在线| 亚洲美女搞黄在线观看 | 伊人久久精品亚洲午夜| 欧美午夜高清在线| 国产美女午夜福利| 久久精品国产亚洲av涩爱 | 精品国内亚洲2022精品成人| 一级a爱片免费观看的视频| 欧美黑人巨大hd| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| a级毛片免费高清观看在线播放| 国产视频内射| 国产黄片美女视频| 少妇的逼好多水| 很黄的视频免费| 成人高潮视频无遮挡免费网站| 亚洲综合色惰| 中文字幕精品亚洲无线码一区| 国产精品亚洲美女久久久| 国内揄拍国产精品人妻在线| 18禁黄网站禁片午夜丰满| 国产午夜精品论理片| 午夜福利欧美成人| 久9热在线精品视频| 在线播放无遮挡| 亚洲成人中文字幕在线播放| 国产欧美日韩一区二区精品| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 久久久国产成人精品二区| 伦理电影大哥的女人| 久久久久久久久久黄片| 日本撒尿小便嘘嘘汇集6| 亚洲最大成人中文| 国产欧美日韩精品亚洲av| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩东京热| 精品一区二区免费观看| 国产中年淑女户外野战色| 免费看光身美女| 美女黄网站色视频| 夜夜夜夜夜久久久久| 亚洲色图av天堂| 五月玫瑰六月丁香| 国产精品久久久久久久久免 | 色播亚洲综合网| 亚洲欧美日韩高清在线视频| 欧美又色又爽又黄视频| 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 国产真实伦视频高清在线观看 | 国产大屁股一区二区在线视频| 国产高潮美女av| 日韩欧美免费精品| 久久人妻av系列| 亚洲精品在线观看二区| 18美女黄网站色大片免费观看| 啦啦啦观看免费观看视频高清| 自拍偷自拍亚洲精品老妇| 久久亚洲真实| 亚洲欧美日韩高清在线视频| 色在线成人网| 一边摸一边抽搐一进一小说| 国产伦一二天堂av在线观看| 免费高清视频大片| 极品教师在线视频| 永久网站在线| 69人妻影院| 男女那种视频在线观看| 亚洲精品日韩av片在线观看| 午夜精品久久久久久毛片777| 免费看光身美女| 国产成年人精品一区二区| 成年免费大片在线观看| 午夜福利在线观看免费完整高清在 | 免费在线观看成人毛片| 欧美日韩综合久久久久久 | 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添av毛片 | 18禁裸乳无遮挡免费网站照片| 中文字幕高清在线视频| www.色视频.com| 99热6这里只有精品| 免费av不卡在线播放| 91在线观看av| 国产私拍福利视频在线观看| 婷婷丁香在线五月| 日韩人妻高清精品专区| 十八禁人妻一区二区| 亚洲午夜理论影院| 亚州av有码| 国产69精品久久久久777片| 日韩中文字幕欧美一区二区| 啪啪无遮挡十八禁网站| 国产亚洲精品综合一区在线观看| 男女做爰动态图高潮gif福利片| 简卡轻食公司| 黄色日韩在线| 日本免费a在线| 99热这里只有是精品50| 欧美在线黄色| 国产中年淑女户外野战色| 小说图片视频综合网站| 精品免费久久久久久久清纯| 免费av观看视频| 免费av毛片视频| 99热这里只有是精品在线观看 | 99久久精品国产亚洲精品| 又紧又爽又黄一区二区| 一夜夜www| 久久久精品大字幕| 国产高清激情床上av| 无人区码免费观看不卡| 成年女人看的毛片在线观看| 欧美成人a在线观看| 中文字幕高清在线视频| 亚洲18禁久久av| 精品午夜福利视频在线观看一区| 此物有八面人人有两片| 国产精品嫩草影院av在线观看 | 亚洲电影在线观看av| 国产伦人伦偷精品视频| 99久久精品一区二区三区| av欧美777| 99热6这里只有精品| 在线a可以看的网站| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩精品一区二区| 五月玫瑰六月丁香| 国产精品永久免费网站| av在线观看视频网站免费| 亚洲成av人片免费观看| 国产伦在线观看视频一区| 成人三级黄色视频| 听说在线观看完整版免费高清| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品色激情综合| 嫩草影院入口| 国产大屁股一区二区在线视频| 成人av一区二区三区在线看| 久久久精品欧美日韩精品| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 国产男靠女视频免费网站| 欧美成人一区二区免费高清观看| 成人一区二区视频在线观看| 成年女人看的毛片在线观看| 中文字幕熟女人妻在线| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡| 色吧在线观看| 十八禁人妻一区二区| 九色国产91popny在线| 12—13女人毛片做爰片一| 中文字幕熟女人妻在线| 国产精品久久久久久久久免 | 国产野战对白在线观看| 91久久精品国产一区二区成人| 亚洲第一电影网av| 精品国产亚洲在线| 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 欧美不卡视频在线免费观看| 天堂动漫精品| aaaaa片日本免费| 日韩精品中文字幕看吧| 日韩欧美免费精品| 在线观看舔阴道视频| 亚洲内射少妇av| 观看免费一级毛片| 一进一出好大好爽视频| 久久伊人香网站| 97人妻精品一区二区三区麻豆| 日韩 亚洲 欧美在线| 亚洲成人免费电影在线观看| 午夜老司机福利剧场| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 波多野结衣巨乳人妻| 88av欧美| 亚洲在线观看片| 久久99热这里只有精品18| 国产精品久久久久久久久免 | 久久久色成人| 欧美三级亚洲精品| 中国美女看黄片| 成人国产综合亚洲| 69av精品久久久久久| 91狼人影院| 久久久久久大精品| 国产精品野战在线观看| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| www.999成人在线观看| 国产aⅴ精品一区二区三区波| 国产主播在线观看一区二区| 成人亚洲精品av一区二区| 欧美日本亚洲视频在线播放| 久久99热6这里只有精品| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 亚洲 国产 在线| 午夜精品久久久久久毛片777| 日本黄色视频三级网站网址| 久久九九热精品免费| 国产老妇女一区| 欧美成人a在线观看| 日韩精品中文字幕看吧| 亚洲aⅴ乱码一区二区在线播放| 老司机深夜福利视频在线观看| 亚洲无线在线观看| 成人精品一区二区免费| 有码 亚洲区| 欧美一级a爱片免费观看看| www.色视频.com| 亚洲美女搞黄在线观看 | 亚洲乱码一区二区免费版| 午夜激情福利司机影院| 精品人妻1区二区| 熟女人妻精品中文字幕| 国内少妇人妻偷人精品xxx网站| 毛片女人毛片| 欧美日韩黄片免| 久久九九热精品免费| 亚洲中文字幕日韩| 男人和女人高潮做爰伦理| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 国产极品精品免费视频能看的| 最后的刺客免费高清国语| h日本视频在线播放| 免费搜索国产男女视频| 久久国产精品影院| 美女cb高潮喷水在线观看| 欧美区成人在线视频| 亚洲精品久久国产高清桃花| 亚洲成人免费电影在线观看| 在现免费观看毛片| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 精品国产亚洲在线| 国产淫片久久久久久久久 | 中国美女看黄片| 在线观看66精品国产| 中亚洲国语对白在线视频| 婷婷精品国产亚洲av| 免费人成视频x8x8入口观看| 国产老妇女一区| 国产成人影院久久av| 免费av观看视频| 欧美黄色片欧美黄色片| 免费人成在线观看视频色| 十八禁网站免费在线| 亚洲在线自拍视频| 色哟哟·www| 丁香六月欧美| 噜噜噜噜噜久久久久久91| 99久久99久久久精品蜜桃| 最近视频中文字幕2019在线8| 日韩欧美在线乱码| 午夜亚洲福利在线播放| 婷婷亚洲欧美| 午夜老司机福利剧场| 久久香蕉精品热| 国产成人影院久久av| 成人特级黄色片久久久久久久| 给我免费播放毛片高清在线观看| 亚洲成人久久性| 亚洲国产色片| 欧美+亚洲+日韩+国产| 亚洲欧美激情综合另类| 99国产极品粉嫩在线观看| 桃色一区二区三区在线观看| 精华霜和精华液先用哪个| 色综合欧美亚洲国产小说| 国内揄拍国产精品人妻在线| 久久人妻av系列| 波多野结衣高清作品| 欧美潮喷喷水| 欧美一区二区亚洲| 人妻制服诱惑在线中文字幕| 久久亚洲真实| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 国产精品一区二区性色av| 久久久国产成人免费| 大型黄色视频在线免费观看| 99久久精品国产亚洲精品| 亚洲国产精品999在线| 人妻久久中文字幕网| 亚洲片人在线观看| 久久国产精品人妻蜜桃| 国产一区二区在线av高清观看| 久久久久久久久中文| 18禁在线播放成人免费| 久久久久国产精品人妻aⅴ院| 亚洲精品影视一区二区三区av| 麻豆成人av在线观看| 男人的好看免费观看在线视频| 人妻夜夜爽99麻豆av| 日韩 亚洲 欧美在线| 日本与韩国留学比较| 婷婷丁香在线五月| 宅男免费午夜| 真人做人爱边吃奶动态| 国内毛片毛片毛片毛片毛片| 伦理电影大哥的女人| 十八禁人妻一区二区| 1000部很黄的大片| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| 在线观看舔阴道视频| 两个人视频免费观看高清| av福利片在线观看| av女优亚洲男人天堂| 99国产极品粉嫩在线观看| 精品午夜福利视频在线观看一区| 国产91精品成人一区二区三区| 免费观看精品视频网站| 欧美一区二区亚洲| 亚洲专区国产一区二区| 日韩亚洲欧美综合| 欧美日本亚洲视频在线播放| 亚洲不卡免费看| 亚洲18禁久久av| 少妇的逼水好多| 日本a在线网址| 一个人看的www免费观看视频| 高清毛片免费观看视频网站| 午夜福利高清视频| 久久久国产成人精品二区| 国产主播在线观看一区二区| 免费观看精品视频网站| 日韩欧美免费精品| 麻豆成人av在线观看| 别揉我奶头~嗯~啊~动态视频| av在线观看视频网站免费| 哪里可以看免费的av片| 波多野结衣巨乳人妻| 男女之事视频高清在线观看| 在线观看66精品国产| 久久久国产成人免费| 亚洲美女黄片视频| 久久伊人香网站| 十八禁网站免费在线| 欧美日本视频| 啪啪无遮挡十八禁网站| 12—13女人毛片做爰片一| 色视频www国产| 久久精品国产亚洲av香蕉五月| 怎么达到女性高潮| 日韩欧美免费精品| 亚洲人成网站在线播放欧美日韩| 三级毛片av免费| 午夜福利欧美成人| 啦啦啦观看免费观看视频高清| 极品教师在线免费播放| 麻豆成人av在线观看| 能在线免费观看的黄片| 美女大奶头视频| 国产大屁股一区二区在线视频| 国产亚洲欧美在线一区二区| 少妇高潮的动态图| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产欧美人成| 欧美不卡视频在线免费观看| 国产真实乱freesex| 亚洲精品日韩av片在线观看| 男女那种视频在线观看| 欧美一区二区亚洲| 国产精品久久久久久久电影| 精品无人区乱码1区二区| 国产主播在线观看一区二区| 99久久精品一区二区三区| 岛国在线免费视频观看| 午夜福利在线观看免费完整高清在 | 国产视频一区二区在线看| 国产成人aa在线观看| 亚洲成人中文字幕在线播放| 亚洲在线观看片| 我要搜黄色片| 国产午夜福利久久久久久| 色视频www国产| 亚洲激情在线av| 99久久99久久久精品蜜桃| 亚洲精品影视一区二区三区av| 国内少妇人妻偷人精品xxx网站| 老司机福利观看| 国产成年人精品一区二区| 成人永久免费在线观看视频| 免费观看的影片在线观看| 国产男靠女视频免费网站| 日韩欧美国产在线观看| 国产精品精品国产色婷婷| 亚洲专区国产一区二区| 亚洲人成伊人成综合网2020| 亚洲综合色惰| 国产熟女xx| 久久久久国内视频| 人人妻,人人澡人人爽秒播| 国产成人啪精品午夜网站| 亚洲国产欧美人成| 亚洲精品一卡2卡三卡4卡5卡| 18禁黄网站禁片午夜丰满| 亚洲美女视频黄频| 在线国产一区二区在线| 中亚洲国语对白在线视频| 亚洲av成人不卡在线观看播放网| 内地一区二区视频在线| 九九热线精品视视频播放| 网址你懂的国产日韩在线| 狂野欧美白嫩少妇大欣赏| 男女做爰动态图高潮gif福利片| 波多野结衣巨乳人妻| 色精品久久人妻99蜜桃| 99国产极品粉嫩在线观看| 天堂影院成人在线观看| 听说在线观看完整版免费高清| 熟女电影av网| 色视频www国产| 美女高潮喷水抽搐中文字幕| 久久久久久久久久成人| 日韩亚洲欧美综合| 色噜噜av男人的天堂激情| 免费人成在线观看视频色| 亚洲黑人精品在线| 国产乱人视频| 国产在视频线在精品| 国内毛片毛片毛片毛片毛片| 不卡一级毛片| 亚洲欧美精品综合久久99| 国产av不卡久久| 伦理电影大哥的女人| 午夜激情福利司机影院| 久久精品国产清高在天天线| 亚洲,欧美,日韩| 麻豆国产av国片精品| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 嫁个100分男人电影在线观看| 亚洲欧美日韩无卡精品| 淫妇啪啪啪对白视频| 欧美zozozo另类| 亚洲 国产 在线| 中文字幕人妻熟人妻熟丝袜美| 免费大片18禁| 身体一侧抽搐| 亚洲精品乱码久久久v下载方式| 亚洲狠狠婷婷综合久久图片| 日本黄色视频三级网站网址| 91麻豆av在线| 亚洲无线在线观看| 熟女电影av网| 色综合欧美亚洲国产小说| a级毛片免费高清观看在线播放| 久久香蕉精品热| 两人在一起打扑克的视频| 波多野结衣高清作品| 亚洲色图av天堂| 日本撒尿小便嘘嘘汇集6| 五月玫瑰六月丁香| 亚洲色图av天堂| xxxwww97欧美| 国产高清视频在线观看网站| 免费无遮挡裸体视频| 国产真实乱freesex| www.色视频.com| 老司机深夜福利视频在线观看| 久99久视频精品免费| 国产精品一及| 黄色配什么色好看| 亚洲人与动物交配视频| 色吧在线观看| 欧美激情久久久久久爽电影| 免费在线观看亚洲国产| 亚洲国产欧洲综合997久久,| 蜜桃亚洲精品一区二区三区| 亚洲精品粉嫩美女一区| 久久香蕉精品热| 午夜福利成人在线免费观看| 露出奶头的视频| 午夜福利在线观看免费完整高清在 | av中文乱码字幕在线| 怎么达到女性高潮| 欧美xxxx黑人xx丫x性爽|