• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    InAs管狀團簇及單壁InAs納米管的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì)

    2011-11-30 10:56:42劉志鋒祝恒江劉立仁
    物理化學(xué)學(xué)報 2011年9期
    關(guān)鍵詞:單壁新疆師范大學(xué)新疆維吾爾自治區(qū)

    劉志鋒 祝恒江 陳 杭 劉立仁

    (新疆師范大學(xué)物理與電子工程學(xué)院,烏魯木齊830054)

    InAs管狀團簇及單壁InAs納米管的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì)

    劉志鋒 祝恒江*陳 杭 劉立仁

    (新疆師范大學(xué)物理與電子工程學(xué)院,烏魯木齊830054)

    采用密度泛函理論研究了InnAsn(n≤90)管狀團簇以及單壁InAs納米管的幾何結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì).小團簇InnAsn(n=1-3)基態(tài)結(jié)構(gòu)和電子性質(zhì)的計算結(jié)果與已有報道相一致.當(dāng)n≥4時優(yōu)化得到了一族穩(wěn)定的管狀團簇,其結(jié)構(gòu)基元(In原子與As原子交替排列的四元環(huán)和六元環(huán)結(jié)構(gòu))滿足共同的衍化通式.團簇的平均結(jié)合能表明橫截面為八個原子的管狀團簇穩(wěn)定性最好.管狀團簇前線軌道隨尺寸的變化規(guī)律有效地解釋了一維穩(wěn)定管狀團簇的生長原因,同時也說明了實驗上之所以能合成InAs納米管的微觀機理.此外,研究結(jié)果表明通過管狀團簇的有效組裝可得到寬帶隙的InAs半導(dǎo)體單壁納米管.

    InnAsn管狀團簇;InAs納米管;密度泛函理論;幾何結(jié)構(gòu);穩(wěn)定性;電子性質(zhì)

    1 Introduction

    Recently,low-dimensional semiconductor materials are of great interest to researchers in the field of nanoscience.1-5Among these materials,the III-V group semiconductor com-pounds havs been paid much attention due to their paramount technological potential applications,6-17such as optoelectronic device,photonics integrations,ultra high frequency microwave device,ultra high-speed microelectronic device,and photovoltaic solar cells.

    Indium arsenide(InAs),as a substantial member of the III-V group semiconductor compounds,has many distinctive properties within a narrow band gap of 0.36 eV at 300 K,such as low electron effective mass,high-electron mobility 33000 cm2·V-1· s-1,and high-saturation drift velocity,which make it ideal for optoelectronic,low power,and ultra high-speed device application.Moreover,it is the advantageous material for making nanoscale devices due to its surface Fermi level pinning in the conduction band without becoming an insulator because of depletion of carriers.Hence,for the past decades,there have been a number of studies18-24which examined the chemical and physical properties of its nanostructure.For instance,Persson et al.22fabricated the dense and uniform InAs nanowire arrays.Cirlin et al.23investigated the formation of InAs quantum dots on a silicon(100)surface.Mohan et al.24reported the realization of ordered arrays of single crystalline InAs nanotubes based on lattice-mismatchedInP/InAscore-shellnanowires,which showed that the synthesized nanotubes are highly uniform and conductive with well-defined size and shape.Costales et al.25,26studied the structure,geometry,and vibrational frequencies of InnAsnclusters with n=1-3 with DFT.

    Although several theoretical and experimental studies have been carried out,there have been few studies of the structures, stabilities,and electronic properties of InnAsntubelike clusters and infinite single-walled InAs nanotubes(InAsNTs).As we know,the nanoclusters or nanotubes can be considered as the transitional forms between atoms and bulk,and their fundamental properties depend crucially on their size.27It is possible to tune physical and chemical properties of these nanostructures by changing their size,making them promising materials for numerous applications.Apparently,to understand the unique properties of tubular InAs nanostructures on different nanometer scale,the structures and electronic properties of InAs tubelike clusters and nanotubes should be clarified first.Therefore,this study intends to investigate stoichiometric InnAsn(n≤90)tubelike clusters and InAsNTs with DFT method,especially to seek the answer for the following questions.(1)When can the stable tubelike clusters be found?(2)Are there any laws of the structures?growth of the clusters and InAsNTs?(3)How about their stabilities and electronic properties,such as binding energy,HOMO-LUMO energy gaps,and energy band structures?(4)Why can the stable one-dimensional tubular structures be obtained in the previous experimental study and our theoretical calculation?(5)Are the small-bore tubelike clusters and InAsNTs still conductive or semiconductive with a narrow band gap?

    2 Computational methods

    This research examines the structures and characteristics of tubelike InnAsn(n≤90)clusters by using the DFT with unrestricted B3LYP exchange-correlation potential.28,29For better describing the bonding and geometrical features of heavy atoms,the basis set,effective core potential LanL2DZ,30was adopted by this study for both arsenic(As)and indium(In)atoms.Under this basis set,the outermost valence electrons 3s23p63d104s24p3for As,4s24p64p105s25p1for In were described and their core electrons were not taken into account.The processes of optimization were based on energy system convergence,and the convergence of energy was better than 10-6a.u.. In order to save time and improve efficicency,the processes of optimization were divided into two steps,the first step was to optimize the structures with a prescribed bond length,bond angle,and dihedral angle of the initial value in the convergence criterion of 10-4a.u.;the second step was to optimize the InAs structure by using the result of the first step in the convergence criterion of 10-6a.u..

    Based on the optimized tubelike clusters,the unit cells of the infinite InAsNTs were built by removing some atoms,and the same theory level was employed to optimize the repeated units with the periodic boundary conditions calculations.All these calculations were implemented with the Gaussian 03 program package.31

    3 Results and discussion

    3.1 Structures of InnAsnclusters

    To test the suitability of DFT method and basis sets in our systems,the bond length,the vibrational frequency,and the angle of As―In―As for InnAsn(n=1-3)were calculated and compared with the results of the previous studies.25,26Results show that for the monomer of InAs,the electronic state is3Σ; the bond length is 0.284 nm,and the vibrational frequency is 168 cm-1.These results are consistent with earlier studies at the GGA/DNP(3Σ,0.280 nm,and 171 cm-1,respectively25)and BPW91/DZVP(3Σ,0.279 nm,and 171 cm-1,respectively26)levels.For dimer of In2As2,enough isomers have been generated and the most stable one has D2hrhombus structure,which is also in agreement with the previous results.25,26The bond length of In―As is obtained as 0.295 nm(0.290 nm in literature25) and the angle of As―In―As is 48.5°(48°in literature25).The lowest energy isomer of trimer In3As3presents a face-capped trigonal bipyramid with the Cssymmetry group.The In―As bond length ranges from 0.281 to 0.316 nm,and the result of GGA/DNP study was 0.278-0.309 nm.25All these consistence suggests that the computational scheme we chose will be reasonable for decribing the interatomic bonding and electronic properties of InAs clusters.

    As for the structures of InnAsn(n=4,6,8,10,12)clusters, Fig.1 shows that all of these structures share the following common characteristics:(1)all of them are double-ring structures;(2)each As(In)atom has three In(As)neighbors to fully fill a sp3type hybridization bond;(3)all structures consist of two polygons with In-As alternating arrangement.Meanwhile, the two polygons are parallel to each other and there is a relative angle of 2π/n between them.Thus,the numbers of fourmember-rings(4MRs)between the two polygons are found to be n.Specif?cally,for In6As6,the double-ring is composed of two parallel hexagons and six 4MRs,which is similar to the structure of isovalent III-V Ga6As6,32Al6As6,33In6P6,34and Al6P6.35Taking the structures of InnAsn(n=4,6,8,10,12)as the basic framework,we stacked them along the central axis of the double-ring to form finite tubelike clusters.Then five sorts of stable tubular clusters with different sizes of section(from 0.651 to 1.558 nm)have been obtained by full optimization. The growth behaviors of these tubelike clusters?structures are shown in Fig.1.Through the figure,one can find that all of these structures contain two parallel polygons and p 4MRs(on the wall of the tube)at the two ends,where p is the number of atoms for the polygon.Furthermore,on the assumption that k is the number of atomic layer in the structure,the quantity of six-membered-ring(6MR),h,on wall of the tube can be inferred by,

    Fig.1 Top view of the optimized InnAsnclusters(the first row;n=4,6,8,10,12)and the side view of tubelike clusters Inpk/2Aspk/2 (all the rest;p=4,6,8,10,12;k=2,3,4,…,15)

    It means that for the determinate p the longer the tubelike cluster is,the more 6MRs are.Meanwhile,for the determinate k the larger diameter of the tubelike cluster is,the more 6MRs are. Hence,we can conclude that the 6MRs are the building blocks in the construction of the tubelike clusters.According to these results,all the tubelike clusters in Fig.1 can be classified by the common molecular formula,Inpk/2Aspk/2or In(p+k)As(p+k),where p is equal to 4,6,8,10,12 and k ranges from 2 to 15.It is noteworthy that for k>3 all of the structures have point group Spsymmetry when it is even,while the Cph/2symmetry when it is odd.

    Even though all the structures abide by some common rules, there are some differences of the structural parameters such as the In―As average length,As―In―As angles,and the tube length for different p or k in the clusters.The mean bond lengths of nearest neighbor In―As(R),bond angle ofAs―In―As(θ), total length of the cluster(L),and the symmetry of these molecules(S)are all listed in Table 1.As is shown in Table 1,the cluster In4As4holds the largest In-As bond length of 0.278 nm and the smallest As―In―As bond angle of 106°,which indicates that the cluster of In4As4is less stable and more reactive than the others.That would be the reason why In4As4can be considered as the structure of evolutionary origination for this system.When the number of layers k≥4 and if it is fixed,the value of R for the tublike cluster with p=4(TLCP4)is larger than the others,and the total length L order is L(p=4)>L(p=6)>L(p=8)>L(p=10)>L(p=12).Hence,one can also conjecture that the TLCP4 are quite unstable compared with TLCP6(p= 6),TLCP8(p=8),TLCP10(p=10),and TLCP12(p=12).Further proof will be presented in the later discussion of binding energies.Moreover,the mean angle of As―In―As in the structure is all about 119°,which is very close to the 120°of sp3.For TLCP12,when k=13,14,15,the mean In―As bond length is equal to 0.263 nm which is very close to the 0.262 nm of the length in InAs crystal.36

    3.2 Size dependence of structural stability and electronic properties

    Based on the optimized tubelike structures of InnAsnclusters, the average binding energy(Eb)are calculated to measure the relative stability of the clusters as well as the influence of the length and width.Ebis defined as the energy gained in assembling the Inpk/2Aspk/2cluster from its isolated constituent atoms. It can be calculated by,

    where Et(In),Et(As),and Et(Inpk/2Aspk/2)represent the total energies of In atom,As atom,and Inpk/2Aspk/2cluster,respectively.

    Fig.2 Average binding energy of the clusters InnAsnas a function of size k

    Table 1 Structural parameters of InnAsn(4≤n≤90)tubelike clusters

    Fig.2 shows the binding energy Eb(k)as a function of size k. As is illustrated in Fig.2,the binding energy of the tubelike cluster increases gradually as the length increases for a certain p.This correlation indicates that the cluster becomes more stable as it becomes longer.However,binding energy of the longest cluster,relative to that of the InAs bulk state(4.487 eV37), is still very small.It is well known that 6MR is the most frequent structural motif in an immense variety of bulk III-V compound materials38.The optimized structures in this paper also possess the same structural motif,and when the tubelike cluster becomes longer the number of 6MRs h will be increased, hence the increasing of h may be beneficial for the tubes?stability.On the other hand,the stabilities of the tubes do not depend linearly on the tubes?radii,which are represented by p.For any k,except k=3,the most stable tube is the TLCP8,while the most unstable tube is TLCP4 lagging far behind the others.Furthermore,for all kinds of tubes(with different p),there is a transition of the curves at k=4,where the proportion between p and h is 1:1,i.e.,the number of 4MR is equal to that of 6MR in the structures.When k≤4,the proportion p:h is less than 1,the slope of curve is abrupt.Whereas starting from k=5,the proportion of p:h is beyond 1,the ascending tendency of the curve becomes smooth.This is another evidence of the fact that the content of 6MRs in the structures will affect the stability of the tube.It is worthy to mention that the binding energy of TLCP6, TLCP8,and TLCP10 are almost overlap each other when k>4, which indicates that their stabilities are similar.This similarity could arise from their similar structural parameters,as bond length(about(2.65±1)nm)and As―In―As bond angle(about 119°±1°).

    In order to understand the electronic properties of these tubelike clusters the size-dependent HOMO-LUMO energy gaps (Eg),Fermi energy(EF),and some energy levels nearby frontier orbits are calculated and plotted in Fig.3.The Egand EFare respectively de ned as

    where the EHOMOrepresents the energy of the highest occupied molecular orbital,and the ELUMOis the energy of the lowest unoccupied molecular orbital.As is seen in Fig.3,when the layer of k increases,the distance between the neighboring energy levels decreases,and the energy levels are gradually approaching the level of EHOMOor ELUMO.In addition,for all sorts of the tubes,there exists an obvious HOMO-LUMO energy gap,and the Fermi energy EFis all around a constant of-5.1 eV.Thereby,the stability of the tubelike clusters may be attributed to the corresponding larger Eband Eg.In Fig.3,one can also find that there are some differences of electronic structure among these various tubes.As is shown in Fig.3(a),with the increase of the length there is a stair-like gradual increase for the energy gaps between HOMO and LUMO,while for all of the other tubes there is also an obvious transition at k=4 resembling their Eb. When k>4,the trends are different,there is a stair-like gradual increase of the Eg,yet as for TLCP8 the curve of gaps almost approaches to a horizontal line with a small oscillation behavior;for both TLCP10 and TLCP12 there is a trend of decrease (when 4≤k≤8)and after k=8 the gaps also tend to be flat with slight oscillation.These differences may remind us to adjust the electronic properties by forming different size cluster.Even though the electronic structures are different to some extent for different kinds of tubes,the large HOMO-LUMO energy gap for all of them ranging from 1.25 to 2.15 eV shows their semiconductor characteristics in common,which is different from the conductive characteristic of the synthesized InAsNTs in experiment.24This fundamental change stems from the quantum size effect,27that is because the largest tubelike cluster in this study have only about 0.2%length of the InAsNTs,and about 2%diameter.

    Fig.3 Energy gaps,Fermi energies,and energy levels nearby frontier orbital of InnAsntubelike clustersThe energy level nearby frontier obitals are HOMO-6,…,HOMO-1,HOMO,LUMO,LUMO+1,…,and LUMO+6.

    Fig.4 The frontier molecular orbital surfaces of(a)the HOMO of TLCP6(k=15),(b)the LUMO of TLCP6(k=15),(c)the HOMO of TLCP8(k=15),and(d)the LUMO of TLCP8(k=15)

    Besides,we have generated the HOMO and LUMO molecular orbital surfaces for all of the tubelike clusters.To give the surfaces of In45As45and In60As60as examples Fig.4 shows that the main components of the HOMO and LUMO comes from 4p-orbital of As atom and 5p-orbital of In atom.For instance, the HOMO of TLCP4 is contributed by the pure p-orbital of In except In6As6,and the LUMO of TLCP4 comes from pure p-orbital of As.In the case of the HOMO of TLCP6,As p-orbital forms a σ-bond with In p-orbital,the LUMO consists of pure p-orbital of In and small p-orbital ofAs.In TLCP8,the p-orbital of As is the main contributor to HOMO,while for the LUMO there is a π-bond comprised of p-orbitals of In and As atom.As for TLCP10 and TLCP12 the results are the same,As p-orbital for HOMO and a π-bond for LUMO.According to these results,it suggests that the poor stability of TLCP4 may come from the absence of a molecular bond between In p-orbital and As p-orbital.For the other kinds of nanotube clusters the similar stability is found(shown in Fig.2),and the relative high stability may come from the π-bond or σ-bond both consisting of p-orbitals of In andAs atom.

    Even though there are somewhat differences for both HOMO and LUMO among these various tubes,the characteristics of changes in common can be summarized as follows:with the tubes?length increasing,the HOMO and LUMO gradually transfer from the central toward the two terminals of the structure.The electron density distributions of HOMO and LUMO indicate that the chemical activity of the tubelike clusters at the two ends are stronger,which makes the cluster propitious to grow longer.That is why we can successfully attain the long stable tubelike clusters.Moreover,the experiment results of synthesized multi-walled InAs nanotubes show that the nanotubes are highly uniform with well-defined size and shape:the length of 2 μm,inner diameter of 70 nm,and the wall thickness of 10 nm.24Although the tubelike clusters are different in size,all of them belong to one-dimensional nanostructure.It is supposed that these one-dimensional nanostructures have the same microscopic growth mechanism:the chemical activity of the tubes at the two ends are stronger,which makes the system being propitious to grow longer in one dimension.In fact,using the frontier molecular orbital theory to study the growth behavior of clusters is a simple and effective method,which have been developed into an optimum valence bond scheme.39

    As for bonding characteristics of the clusters,the Mulliken population analysis40is conducted,and the average on-site charge on In or As atoms are all listed in Table 2.One can see that for a determinate number of k,the charge grows larger with the increasing of p.It means that the charge transfer from In to As is increasing with the broaden tube radius,since the electronegativity of As(2.18)is higher than that of Indium (1.78).As we have discussed,when p is the smallest one the In―As bond length is the largest one for a certain k.Thereby, the bond lengths of the tubelike cluster are affected by the charge distribution on the atoms.Furthermore,the increase of the on-site charge leads to the increase of ionicity of the cluster.When p is fixed the charge begins to increase and then decrease with the increasing numbers of the layer k,approaching the corresponding infinite InAsNTs?value(0.420,0.475,0.503, 0.520,and 0.530).

    3.3 Infinite InAsNTs

    The increasing stability of the tubelike clusters with an increase of the number of layers k allows us to examine furtherstability of the corresponding infinite nanotubes with a stoichiometric InnAsn.These infinite nanotubes(InAsNT)are built from the homologous tubelike Inpk/2Aspk/2(k=4)clusters with a removal of two parallel polygons at the two ends of the structures to form the corresponding repeated unit.These units, with wire axis lying in the center,can be repeated by translation vector along the axis.The values of the translation vectors are given by 0.433,0.434,0.435,0.437,and 0.438 nm for InAsNTP4(p=4),InAsNTP6(p=6),InAsNTP8(p=8), InAsNTP10(p=10),and InAsNTP12(p=12),respectively. Fig.5 shows the four repeated cells of the infinite tubes with different radii.All of these structures have the 6MR organizational units in common.Full structure relaxation indicates that the infinite InAsNTs have similar geometric structures to finite tubelike clusters,but some structural parameters have slight change.The bond length of In―As and angles of As―In―As with the atoms in two or three neighboring layers are listed in Table 3.Compared with Table 2,one can find that In―As bond lengths are almost the same as the finite tubelike clusters, but the tube lengths are different to a certain extent for the same layers(k=8).The lengths of tubelike clusters gradually decrease with the radii increasing from 1.536 to 1.339 nm, while the lengths of InAsNTs increase from 1.518 to 1.530 nm. In addition,the length of InAsNTP4 becomes 0.018 nm longer than the TLCP4,but for InAsNTP6,InAsNTP8,InAsNTP10, and InAsNTP12,the length becomes 0.008,0.044,0.083,and 0.131 nm shorter.TheAs―In―As angle with the atoms on two neighboring layers is decreasing(from 109°to 112°)with the increase of p,while the angle with the atoms on three neighboring layers is increasing(from 125°to 120°),all of which are approaching the 120°of sp3.

    Table 2 Average on-site charges on In orAs atoms in InnAsn(4≤n≤90)clusters

    Fig.5 Geometry-optimized structures of the(a)InAsNTP4,(b) InAsNTP6,(c)InAsNTP8,(d)InAsNTP10,(e)and InAsNTP12

    Table 3 Structural parameters of InAs nanotubes

    The binding energies of the infinite tubes shown in Fig.6 are slightly larger than those of finite tubelike clusters,which means that it is possible to synthesize tubes long enough.It should be mentioned that the binding energies of NTP8 is larger than those of the other tubes with different sizes,while that of NTP4 is smaller,which is similar to the case of tubelike cluster.

    Fig.6 Binding energy of infinite InAsNTs including NTP4, NTP6,NTP8,NTP10,and NTP12

    Fig.7 Energy band structures(dispersion along Γ-X direction of the Brillouin zone)of the five sorts of InAsNTs (a)NTP4,(b)NTP6,(c)NTP8,(d)NTP10,(e)NTP12;The Fermi level is set to zero energy and indicated by the horizontal dashed line.

    As for the electronic energy band structures of InAs nanotubes,Fig.7 indicates that the five-band structures clearly show the finite gap,the widths of which are 2.052 eV for Fig.7(a), 2.036 eV for Fig.7(b),2.203 eV for Fig.7(c),2.127 eV for Fig.7 (d),and 2.061 eV for Fig.7(e).This implies that these nanotubes are indirect wide gap semiconductor.In fact,all of these gaps are a lot larger than that of InAs bulk state(B3LYP theory value:0.55 eV41or the values of experiment:0.417 eV,42narrow gap semiconductor).But compared with HOMO-LUMO energy gap widths of the tubelike clusters shown in Fig.3,there are not essential changes for the similar structures.These results present a good way to adjust the gap width by forming different nanostructures.In order to further explain that the different structures will have different electrical conductivities,the comparison are made with the hybrid density functional study of armchair SiC single-wall nanotubes.43In the study,singlewalled type 1(4,4)SiC nanotube corresponding to NTP8 have narrower tube diameters(0.702 nm)than NTP8(1.062 nm), and larger band gap(2.889 eV)than NTP8(2.203 eV).

    4 Conclusions

    This paper reports the results of an investigation of InAs tubelike clusters and infinite InAsNTs.The different properties of the optimized clusters and nanotubes,such as the structures, binding energy,Mulliken charge population,HOMO-LUMO energy gaps,frontier molecular orbital surface,and the energy band structures were analyzed.Based on the results,several points can be summarized as follows,

    (1)A family of stable tubelike InnAsnclusters is observed when n≥4.The molecular formula of these clusters can be classified as Inpk/2Aspk/2.During the course of the clusters?growth, the two parallel polygons and p 4MRs should be considered as the skeleton of the structures,and 6MRs should be regarded as the building blocks.

    (2)The analysis of binding energies shows that when p=8, the systems are more stable than other sizes for both of tubelike clusters and infinite nanotubes.The finite tubes have large HOMO-LUMO energy gaps.In addition,the electron density distributions of HOMO and LUMO indicate that the chemical activity of the tubelike clusters at the two ends is strong,which makes the clusters being conducive to grow longer.

    (3)Infinite InAsNTs have similar geometric structures to the finite tubelike clusters and present wide gap semiconductivity due to their large band gaps.

    (1)Neumann,W.Mater.Chem.Phys.2003,81,364.

    (2)Dobrowolski,W.;Kossut,J.;Story,T.Handb.Magn.Mater. 2003,15,289.

    (3) Kamat,P.V.Chem.Rev.1993,93,267.

    (4) Cox,S.D.;Gier,T.E.;Stucky,G.D.;Bierlein,J.J.J.Am. Chem.Soc.1988,110,2986.

    (5)Wang,Y.;Herron,N.J.J.Phys.Chem.1988,92,4988.

    (6) Cooke,M.III-Vs Rev.2006,19,18.

    (7) Jenkins,P.P.;Macinnes,A.N.;Tabibazar,M.;Barron,A.R. Science 1994,263,1751.

    (8) Dick,K.A.;Caroff,P.;Bolinssonl,J.;Messing,M.E.; Johansson,J.;Deppert,K.;Wallenberg,L.R.;Samuelson,L. Semicond.Sci.Technol.2010,25,024009.

    (9) Cirlin,G.E.;Dubrovskii,V.G.;Samsonenko,Y.B.; Bouravleuv,A.D.;Durose,K.;Proskuryakov,Y.Y.;Mendes, B.;Bowen,L.;Kaliteevski,M.A.;Abram,R.A.;Zeze,D.Phys. Rev.B 2010,82,035302.

    (10) Perera,S.;Pemasiri,K.;Fickenscher,M.A.;Jackson,H.E.; Smith,L.M.;Yarrison-Rice,J.;Paiman,S.;Gao,Q.;Tan,H.H.; Jagadish,C.Appl.Phys.Lett.2010,97,023106.

    (11) Patriarche,G.;Glas,F.;Tchernycheva,M.;Sartel,C.;Largeau, L.;Harmand,J.C.;Cirlin,G.E.Nano.Lett.2008,8,1638.

    (12) Song,B.;Cao,P.L.Phys.Lett.A.2002,300,485.

    (13)Gutsev,G.L.;O?Neal,R.H.;Saha,B.C.;Mochena,M.D.; Johnson,E.;Bauschlicher,C.W.,Jr.J.Phys.Chem.A 2008, 112,10728.

    (14) Bai,Q.G.;Song,B.;Hou,J.Y.;He,P.M.Phys.Lett.A 2008, 372,4545.

    (15) Goldberger,J.;He,R.;Zhang,Y.;Lee,S.;Choi,H.J.;Yang,P. Nature 2003,422,599.

    (16) Xu,Z.;Golberg,D.;Bandoa,Y.Chem.Phys.Lett.2009,480, 110.

    (17) Guo,Y.H.;Yan,X.H.;Yang,Y.R.Phys.Lett.A 2009,373,367.

    (18) Louail,L.;Maouche,D.;Hachemi,A.Mater.Lett.2006,60, 3269.

    (19) Bolshakova,I.;Kost,Y.;Makido,O.;Shurygin,F.J.Cryst. Growth 2008,310,2254.

    (20) Wernersson,L.E.;Lind,E.;Lembke,J.;Martinsson,B.;Seifert, W.J.Cryst.Growth 2005,280,81.

    (21) Tomioka,K.;Mohan,P.;Noborisaka,J.;Hara,S.;Motohisa,J.; Fukui,T.J.Cryst.Growth 2007,298,644.

    (22) Persson,A.I.;Fr?berg,L.E.;Samuelson,L.;Linke,H. Nanotechnology 2009,20,225304.

    (23) Cirlin,G.E.;Dubrovskii,V.G.;Petrov,V.N.;Polyakov,N. K.;Korneeva,N.P.;Demidov,V.N.;Golubok,O.;Masalov,S. A.;Kurochkin,D.V.;Gorbenko,O.M.;Komyak,N.I.; Ustinov,V.M.;Egorov,A.Y.;Kovsh,A.R.;Maximov,M.V.; Tsatsul?nikovz,A.F.;Volovikz,B.V.;Zhukov,A.E.;Kop?ev,P. S.;Alferov,Z.I.;Ledentsov,N.N.;Grundmann,M.;Bimberg, D.Semicond.Sci.Technol.1998,13,1262.

    (24) Mohan,P.;Motohisa,J.;Fukui,T.Appl.Phys.Lett.2006,88, 013110.

    (25) Costales,A.;Kandalam,A.K.;Franco,R.;Pandey,R.J.Phys. Chem.B 2002,106,1940.

    (26) Costales,A.;Pandey,R.Chem.Phys.Lett.2002,362,210.

    (27) Sarkar,P.;Springborg,M.Phys.Rev.B 2003,68,235409.

    (28) Becke,A.D.Phys.Rev.A 1988,38,3098.

    (29) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (30) Wadt,W.R.;Hay,P.J.J.Chem.Phys.1985,82,284.

    (31) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision B.03;Gaussian Inc.:Wallingford,CT,2004.

    (32) Zhao,J.J.;Hou,X.L.;Xie,R.H.Phys.Rev.B 2006,74, 035319.

    (33) Guo,L.Comput.Mater.Sci.2008,42,489.

    (34) Wang,L.;Zhao,J.J.J.Mol.Struct.-Theochem 2008,862,133.

    (35) Zhao,J.J.;Wang,L.;Jia,J.M.;Chen,X.S.;Zhou,X.L.;Lu, W.Chem.Phys.Lett.2007,433,29.

    (36) Phillips,J.C.Bond and Bands in Demiconductors;Academic: New York,1973.

    (37) Hellwege,K.H.;Madelung,O.Landolt-B?rnstein,New Series, Group III;Springer:Berlin,1982;p 17.

    (38) Zhang,S.L.;Zhang,Y.H.;Huang,S.P.;Liu,H.;Tian,H.P. Chem.Phys.Lett.2010,498,172.

    (39)Shen,X.Y.;Xu,Y.G.;He,C.L.;Liu,H.T.;Li,J.M.Eur.Phys. J.D 2005,34,109.

    (40) Mulliken,R.S.J.Chem.Phys.1955,23,1841.

    (41) Tomic,S.;Montanari,B.;Harrisona,N.M.Physica E 2008,40, 2125.

    (42)Lacroix,Y.;Tran,C.A.;Watkins,S.P.;Thewalt,M.L.W. J.Appl.Phys.1996,80,6416.

    (43)Alam,K.M.;Ray,A.K.Phys.Rev.B 2008,77,035436.

    May 16,2011;Revised:July 1,2011;Published on Web:July 7,2011.

    Structures,Stabilities and Electronic Properties of InAs Tubelike Clusters and Single-Walled InAs Nanotubes

    LIU Zhi-Feng ZHU Heng-Jiang*CHEN Hang LIU Li-Ren
    (School of Physics and Electronic Engineering,Xinjiang Normal University,Urumchi 830054,P.R.China)

    The geometric structures,stabilities,and electronic properties of InnAsntubelike clusters at up to n=90 and single-walled InAs nanotubes(InAsNTs)were studied by density functional theory(DFT) calculations.The lowest-energy structures and electronic properties of the small InnAsn(n=1-3)clusters are consistent with those found in earlier studies.A family of stable tubelike structures with In-As alternating arrangement was observed when n≥4 and their structural units(four-membered rings and sixmembered rings)obey the general developing formula.The average binding energies of the clusters show that the tubelike cluster with eight atoms in the cross section is the most stable cluster.The sizedependent properties of the frontier molecular orbital surfaces explain why we can successfully obtain long and stable tubelike clusters.They also illustrate the reason why InAsNTs can be synthesized experimentally.We also found that the single-walled InAsNTs can be prepared by the proper assembly of tubelike clusters to form semiconductors with large bandgap.

    InnAsntubelike cluster;InAs nanotube;Density functional theory;Geometric structure; Stability; Electronic property

    O641

    ?Corresponding author.Email:zhj@xjnu.edu.cn;Tel:+86-13999940158;Fax:+86-991-4332557.

    The project was supported by the Key Subject of Theoretical Physics of Xinjiang Uygur Autonomous Region,China,Natural Science Foundation of Xinjiang UygurAutonomous Region,China(2010211A21),and Key Project of Xinjiang UygurAutonomous Region Higher Education,China

    (xjedu2009i27).

    理論物理新疆維吾爾自治區(qū)重點學(xué)科基金,新疆維吾爾自治區(qū)自然科學(xué)基金(2010211A21)和新疆維吾爾自治區(qū)高校教育重點項目基金

    (xjedu2009i27)資助項目

    猜你喜歡
    單壁新疆師范大學(xué)新疆維吾爾自治區(qū)
    單壁碳納米管內(nèi)1,4-萘琨電池電極材料性能的研究
    云南化工(2021年7期)2021-12-21 07:27:38
    2017年新疆維吾爾自治區(qū)一般公共預(yù)算收支決算總表
    呂蓓佳作品
    屈慧作品
    2015年新疆維吾爾自治區(qū)一般公共預(yù)算收支決算總表
    多巴胺和腎上腺素在單壁碳納米管修飾電極上的電化學(xué)行為
    新疆維吾爾自治區(qū) 第五屆青少年科技節(jié)圓滿落幕
    新疆維吾爾自治區(qū)關(guān)工委主任(擴大)會議暢談學(xué)習(xí)三中全會精神感想
    中國火炬(2014年1期)2014-07-24 14:16:44
    單壁碳納米管對微穿孔板吸聲體吸聲性能的影響
    新疆師范大學(xué)美術(shù)學(xué)院研究生作品選
    美術(shù)界(2013年6期)2013-04-29 13:52:30
    男人和女人高潮做爰伦理| 国产有黄有色有爽视频| 好男人在线观看高清免费视频| 麻豆乱淫一区二区| 国产一级毛片在线| 性色avwww在线观看| 91精品伊人久久大香线蕉| 91久久精品国产一区二区成人| 69av精品久久久久久| 欧美zozozo另类| 美女内射精品一级片tv| 午夜免费激情av| 在线 av 中文字幕| 国产在视频线精品| 日本欧美国产在线视频| 亚洲国产精品成人久久小说| 午夜免费激情av| 久久99热6这里只有精品| 内地一区二区视频在线| 高清毛片免费看| 免费看日本二区| 亚洲怡红院男人天堂| 日本色播在线视频| 日韩大片免费观看网站| 亚洲av电影在线观看一区二区三区 | 国产精品久久视频播放| 中文乱码字字幕精品一区二区三区 | 久久精品久久久久久久性| 中文字幕亚洲精品专区| 国产在线一区二区三区精| kizo精华| av在线蜜桃| 男人舔女人下体高潮全视频| 日韩精品有码人妻一区| 国产成年人精品一区二区| 久久99热这里只频精品6学生| 久久午夜福利片| 免费在线观看成人毛片| 亚洲成人一二三区av| 欧美丝袜亚洲另类| 国产精品久久久久久久久免| 色播亚洲综合网| 久久久久久国产a免费观看| 好男人在线观看高清免费视频| 淫秽高清视频在线观看| 午夜亚洲福利在线播放| 午夜福利视频精品| 日本一二三区视频观看| 久久久久精品性色| 国产精品一二三区在线看| 亚洲国产成人一精品久久久| 免费黄频网站在线观看国产| 国产精品人妻久久久久久| 精品少妇黑人巨大在线播放| 三级经典国产精品| 麻豆久久精品国产亚洲av| 亚洲av国产av综合av卡| 亚洲美女视频黄频| 男女国产视频网站| 久久久久久国产a免费观看| av天堂中文字幕网| 国产麻豆成人av免费视频| 国产av在哪里看| 国产不卡一卡二| 国产精品一区二区三区四区久久| 国产成人精品婷婷| 激情 狠狠 欧美| 免费观看无遮挡的男女| 欧美日韩国产mv在线观看视频 | 两个人的视频大全免费| 黄片无遮挡物在线观看| 99久久精品热视频| 高清av免费在线| 亚洲av一区综合| 最后的刺客免费高清国语| 99热全是精品| 国产成人一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人| 欧美成人午夜免费资源| 天堂中文最新版在线下载 | 青春草亚洲视频在线观看| 成年免费大片在线观看| 欧美不卡视频在线免费观看| 高清日韩中文字幕在线| 国产精品一区www在线观看| 一级毛片aaaaaa免费看小| 纵有疾风起免费观看全集完整版 | 午夜久久久久精精品| 国产有黄有色有爽视频| 777米奇影视久久| 久久久久网色| 欧美高清成人免费视频www| 日产精品乱码卡一卡2卡三| 亚洲av电影在线观看一区二区三区 | 人妻系列 视频| 久久精品熟女亚洲av麻豆精品 | 夫妻午夜视频| 国产男人的电影天堂91| 嫩草影院精品99| 一二三四中文在线观看免费高清| 国产老妇伦熟女老妇高清| 久久99热6这里只有精品| 老女人水多毛片| 熟妇人妻久久中文字幕3abv| 欧美三级亚洲精品| 国产黄频视频在线观看| 最近最新中文字幕免费大全7| 国产黄色小视频在线观看| 男插女下体视频免费在线播放| 久久精品久久久久久久性| 国产日韩欧美在线精品| 欧美激情久久久久久爽电影| 亚洲成人中文字幕在线播放| 亚洲综合精品二区| 人人妻人人看人人澡| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 最近最新中文字幕大全电影3| 国产高潮美女av| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 久久久久精品久久久久真实原创| 亚洲四区av| 日韩欧美一区视频在线观看 | 国产久久久一区二区三区| 人体艺术视频欧美日本| 亚洲av.av天堂| 18禁在线播放成人免费| 亚洲丝袜综合中文字幕| 国产一级毛片在线| 非洲黑人性xxxx精品又粗又长| 久久精品国产鲁丝片午夜精品| 在线观看人妻少妇| 午夜视频国产福利| 在线a可以看的网站| 亚洲精品,欧美精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲内射少妇av| 嫩草影院入口| av女优亚洲男人天堂| 麻豆乱淫一区二区| 啦啦啦韩国在线观看视频| 啦啦啦韩国在线观看视频| 午夜福利在线观看免费完整高清在| 亚洲成人中文字幕在线播放| 欧美另类一区| 99久久精品国产国产毛片| 中文字幕亚洲精品专区| 一区二区三区高清视频在线| 亚洲av福利一区| 国产视频内射| 精品不卡国产一区二区三区| 男女边吃奶边做爰视频| 韩国av在线不卡| 免费看光身美女| 精品久久久久久电影网| 久久久久性生活片| av福利片在线观看| a级毛片免费高清观看在线播放| 啦啦啦啦在线视频资源| 熟女电影av网| 草草在线视频免费看| 高清午夜精品一区二区三区| 国产精品人妻久久久影院| av一本久久久久| 国产精品爽爽va在线观看网站| 国产黄色小视频在线观看| av女优亚洲男人天堂| 极品少妇高潮喷水抽搐| 伦精品一区二区三区| 日本欧美国产在线视频| 亚洲精品成人av观看孕妇| 中文在线观看免费www的网站| .国产精品久久| 久久精品久久久久久噜噜老黄| 亚洲最大成人av| 99久国产av精品国产电影| 又爽又黄a免费视频| 免费看光身美女| 哪个播放器可以免费观看大片| 欧美性感艳星| 成年人午夜在线观看视频 | 联通29元200g的流量卡| 欧美日韩综合久久久久久| 亚洲美女视频黄频| 少妇猛男粗大的猛烈进出视频 | 成人亚洲欧美一区二区av| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 国产精品一区二区在线观看99 | 午夜久久久久精精品| 婷婷色麻豆天堂久久| 啦啦啦中文免费视频观看日本| 中文在线观看免费www的网站| 亚洲av国产av综合av卡| 国产亚洲精品久久久com| 国产成人一区二区在线| 国产黄a三级三级三级人| 超碰97精品在线观看| 全区人妻精品视频| 少妇裸体淫交视频免费看高清| 久久精品国产鲁丝片午夜精品| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 一级爰片在线观看| 久久热精品热| 欧美激情国产日韩精品一区| 亚洲最大成人av| 国产精品女同一区二区软件| 亚洲av免费高清在线观看| 免费看日本二区| 久久久久国产网址| 欧美日韩在线观看h| 夫妻午夜视频| 国产精品久久久久久精品电影小说 | 插逼视频在线观看| 国内揄拍国产精品人妻在线| 国产精品日韩av在线免费观看| 成年人午夜在线观看视频 | 男女边摸边吃奶| 搡老妇女老女人老熟妇| 联通29元200g的流量卡| 国产成人91sexporn| 亚洲精品成人av观看孕妇| 欧美日韩综合久久久久久| 乱人视频在线观看| 国产探花在线观看一区二区| 亚洲伊人久久精品综合| 嘟嘟电影网在线观看| 国产午夜福利久久久久久| 久久综合国产亚洲精品| 亚洲丝袜综合中文字幕| 美女黄网站色视频| 成年av动漫网址| 国产永久视频网站| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线观看播放| av免费在线看不卡| 欧美日韩亚洲高清精品| 亚洲欧美精品专区久久| 男人爽女人下面视频在线观看| 国内精品一区二区在线观看| 免费大片18禁| 18+在线观看网站| 美女国产视频在线观看| 亚洲成人一二三区av| 国产高潮美女av| 亚洲高清免费不卡视频| 一个人看视频在线观看www免费| 国产av不卡久久| 极品教师在线视频| 国产免费福利视频在线观看| 97超视频在线观看视频| www.av在线官网国产| 成人亚洲精品一区在线观看 | 99热网站在线观看| 日韩av在线大香蕉| 欧美成人午夜免费资源| 人妻制服诱惑在线中文字幕| 亚洲精品日韩在线中文字幕| 视频中文字幕在线观看| 欧美 日韩 精品 国产| 黄色配什么色好看| 国产不卡一卡二| av卡一久久| 中文在线观看免费www的网站| 大陆偷拍与自拍| 国产 一区精品| 久久综合国产亚洲精品| 国产单亲对白刺激| av天堂中文字幕网| 一级a做视频免费观看| 亚洲av电影不卡..在线观看| 在线a可以看的网站| 欧美另类一区| 夜夜爽夜夜爽视频| 菩萨蛮人人尽说江南好唐韦庄| 青春草国产在线视频| 国产一级毛片七仙女欲春2| 一二三四中文在线观看免费高清| 天天一区二区日本电影三级| 一个人免费在线观看电影| 久久精品熟女亚洲av麻豆精品 | 久久久久久久国产电影| 美女主播在线视频| 国产一级毛片在线| 深夜a级毛片| 国产精品美女特级片免费视频播放器| 国产成人精品久久久久久| 好男人视频免费观看在线| 免费看光身美女| 国产视频首页在线观看| 人人妻人人看人人澡| 亚洲av成人av| 精品久久久久久久久久久久久| 自拍偷自拍亚洲精品老妇| 午夜爱爱视频在线播放| 精品一区二区三区人妻视频| 午夜福利视频1000在线观看| 你懂的网址亚洲精品在线观看| 两个人视频免费观看高清| 中国美白少妇内射xxxbb| 又粗又硬又长又爽又黄的视频| 直男gayav资源| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| 日韩一本色道免费dvd| 美女cb高潮喷水在线观看| 2018国产大陆天天弄谢| 干丝袜人妻中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添av毛片| av在线天堂中文字幕| 波多野结衣巨乳人妻| 亚洲精品乱久久久久久| 国产 一区 欧美 日韩| 99久久精品热视频| 成年av动漫网址| 亚洲乱码一区二区免费版| 亚洲精品第二区| 麻豆久久精品国产亚洲av| 婷婷色综合www| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 一个人看的www免费观看视频| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| 超碰av人人做人人爽久久| 国产精品不卡视频一区二区| 美女xxoo啪啪120秒动态图| 黄色欧美视频在线观看| 日韩av免费高清视频| 最近最新中文字幕大全电影3| 亚洲综合色惰| 国产色爽女视频免费观看| 七月丁香在线播放| 日韩欧美国产在线观看| 美女黄网站色视频| 日韩视频在线欧美| 午夜激情久久久久久久| 国产欧美日韩精品一区二区| 久久久精品94久久精品| 赤兔流量卡办理| 国产一区二区亚洲精品在线观看| 中文字幕av在线有码专区| 国产男人的电影天堂91| 秋霞伦理黄片| 欧美另类一区| 国产精品不卡视频一区二区| 少妇裸体淫交视频免费看高清| 色5月婷婷丁香| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www| 男女国产视频网站| 日日摸夜夜添夜夜添av毛片| 天美传媒精品一区二区| 少妇高潮的动态图| av在线播放精品| 日韩成人伦理影院| 亚洲av.av天堂| 亚洲精品国产av成人精品| 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件| 蜜桃亚洲精品一区二区三区| 国产黄片美女视频| 一级片'在线观看视频| 欧美成人精品欧美一级黄| 黄色一级大片看看| 美女黄网站色视频| 嘟嘟电影网在线观看| 精品熟女少妇av免费看| 色播亚洲综合网| 联通29元200g的流量卡| 欧美bdsm另类| 国产亚洲av嫩草精品影院| 亚洲欧美日韩东京热| 精品午夜福利在线看| 亚洲人与动物交配视频| 免费看光身美女| 国产成人精品婷婷| 欧美 日韩 精品 国产| 高清午夜精品一区二区三区| 久久综合国产亚洲精品| 日韩电影二区| 欧美日韩精品成人综合77777| 午夜爱爱视频在线播放| 网址你懂的国产日韩在线| 国产一区二区亚洲精品在线观看| 老女人水多毛片| 亚洲精品色激情综合| 99热这里只有是精品50| 久久久久久久午夜电影| 久久久欧美国产精品| 国产精品国产三级国产av玫瑰| 亚洲久久久久久中文字幕| 亚洲欧美一区二区三区黑人 | 中文天堂在线官网| 天美传媒精品一区二区| av专区在线播放| 最新中文字幕久久久久| 午夜免费激情av| www.av在线官网国产| 一边亲一边摸免费视频| 国产91av在线免费观看| 国内少妇人妻偷人精品xxx网站| 国产av国产精品国产| 国产精品人妻久久久久久| 亚洲国产精品专区欧美| 嘟嘟电影网在线观看| 亚洲精品亚洲一区二区| 毛片女人毛片| 大香蕉久久网| 99九九线精品视频在线观看视频| 国产成人a区在线观看| 在线观看一区二区三区| 青春草国产在线视频| 纵有疾风起免费观看全集完整版 | 国产一区有黄有色的免费视频 | 亚洲aⅴ乱码一区二区在线播放| 少妇的逼水好多| 国产 亚洲一区二区三区 | 三级国产精品片| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片| 黄色一级大片看看| 一级毛片久久久久久久久女| 精品久久久久久久人妻蜜臀av| 男女下面进入的视频免费午夜| 国产精品久久久久久av不卡| 中文资源天堂在线| 亚洲欧美成人综合另类久久久| 日韩欧美精品免费久久| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 乱码一卡2卡4卡精品| 免费播放大片免费观看视频在线观看| 韩国高清视频一区二区三区| 日韩欧美 国产精品| 好男人在线观看高清免费视频| 全区人妻精品视频| 97热精品久久久久久| 欧美激情国产日韩精品一区| 视频中文字幕在线观看| 人妻一区二区av| 亚洲精品国产成人久久av| 成年女人在线观看亚洲视频 | 三级国产精品片| 五月伊人婷婷丁香| 日本一本二区三区精品| 久久久精品欧美日韩精品| 久久鲁丝午夜福利片| 最后的刺客免费高清国语| 一区二区三区高清视频在线| 91精品伊人久久大香线蕉| 亚洲最大成人中文| 男插女下体视频免费在线播放| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 亚洲国产av新网站| 美女被艹到高潮喷水动态| 久久久精品欧美日韩精品| 大香蕉久久网| 五月天丁香电影| av在线观看视频网站免费| 日本-黄色视频高清免费观看| 好男人在线观看高清免费视频| 国产极品天堂在线| 九九爱精品视频在线观看| 日韩精品有码人妻一区| 午夜福利成人在线免费观看| av国产免费在线观看| 麻豆av噜噜一区二区三区| 人人妻人人澡欧美一区二区| 午夜激情福利司机影院| 边亲边吃奶的免费视频| 久久久色成人| 欧美日韩一区二区视频在线观看视频在线 | 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久久免费av| 亚洲精品国产成人久久av| 国产淫语在线视频| 国产 亚洲一区二区三区 | 精品99又大又爽又粗少妇毛片| 日韩欧美精品v在线| 免费看av在线观看网站| 黄片无遮挡物在线观看| 国产精品国产三级国产专区5o| 亚洲av日韩在线播放| 日本一二三区视频观看| 三级经典国产精品| av在线播放精品| 黄色一级大片看看| 毛片一级片免费看久久久久| 久久久久久久久久久免费av| 亚洲高清免费不卡视频| 老司机影院毛片| 久久久久九九精品影院| 亚洲成人av在线免费| 丰满少妇做爰视频| 免费av不卡在线播放| 一个人观看的视频www高清免费观看| 日本熟妇午夜| 青春草亚洲视频在线观看| 久久久久免费精品人妻一区二区| 免费大片18禁| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 亚洲最大成人中文| 日日摸夜夜添夜夜爱| 国产白丝娇喘喷水9色精品| 毛片一级片免费看久久久久| 波野结衣二区三区在线| 美女内射精品一级片tv| 波野结衣二区三区在线| 18禁裸乳无遮挡免费网站照片| 国内精品美女久久久久久| 人妻少妇偷人精品九色| 亚洲欧美一区二区三区黑人 | 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 日本欧美国产在线视频| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久久久按摩| 亚洲成人久久爱视频| 国产av在哪里看| 特大巨黑吊av在线直播| 亚洲欧洲国产日韩| 欧美极品一区二区三区四区| 久久这里只有精品中国| 国产综合懂色| 一边亲一边摸免费视频| 人人妻人人看人人澡| 欧美日韩视频高清一区二区三区二| 十八禁网站网址无遮挡 | 久久草成人影院| 少妇丰满av| 日韩欧美国产在线观看| 国产精品人妻久久久影院| 一级毛片aaaaaa免费看小| 精品一区在线观看国产| 18+在线观看网站| 久久久久久国产a免费观看| 日韩在线高清观看一区二区三区| 免费大片18禁| 国产成人精品福利久久| 天天躁日日操中文字幕| 国产熟女欧美一区二区| 久99久视频精品免费| 神马国产精品三级电影在线观看| 色视频www国产| 少妇人妻一区二区三区视频| 精品久久久久久成人av| 国产 亚洲一区二区三区 | 18禁动态无遮挡网站| 人人妻人人澡欧美一区二区| 一级av片app| 日本wwww免费看| 黄色欧美视频在线观看| 嫩草影院精品99| 岛国毛片在线播放| av国产久精品久网站免费入址| 日本免费在线观看一区| 久久久久精品性色| 久久99精品国语久久久| 免费黄网站久久成人精品| 亚洲av免费在线观看| 99久久精品一区二区三区| 国产精品女同一区二区软件| 看免费成人av毛片| 国语对白做爰xxxⅹ性视频网站| 亚洲av日韩在线播放| 少妇熟女欧美另类| 哪个播放器可以免费观看大片| 日日啪夜夜爽| 国产成人精品婷婷| 中文字幕av在线有码专区| 久久精品久久精品一区二区三区| 国产精品1区2区在线观看.| 亚洲最大成人手机在线| 精品人妻偷拍中文字幕| 又爽又黄无遮挡网站| 99久久精品热视频| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 岛国毛片在线播放| 插阴视频在线观看视频| 两个人的视频大全免费| 最近的中文字幕免费完整| 午夜福利在线在线| 欧美日韩亚洲高清精品| 日日撸夜夜添| 日韩一区二区视频免费看| 国产精品女同一区二区软件| 白带黄色成豆腐渣| 99久国产av精品国产电影| 亚洲精品乱码久久久久久按摩| 男人狂女人下面高潮的视频| 婷婷六月久久综合丁香| 成人一区二区视频在线观看| 久久久精品欧美日韩精品| 一个人看的www免费观看视频| 男人和女人高潮做爰伦理| 久久99精品国语久久久| 亚洲av不卡在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品日本国产第一区| 日本色播在线视频|