• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    咪唑氟硼酸類離子液體熔點(diǎn)與分子內(nèi)相互作用能的關(guān)系

    2011-11-30 10:56:46戚傳松吳新民龔良發(fā)
    物理化學(xué)學(xué)報(bào) 2011年9期
    關(guān)鍵詞:熔點(diǎn)硼酸新民

    李 巍 戚傳松 吳新民 榮 華 龔良發(fā)

    (北京石油化工學(xué)院化學(xué)工程學(xué)院,北京102617)

    咪唑氟硼酸類離子液體熔點(diǎn)與分子內(nèi)相互作用能的關(guān)系

    李 巍*戚傳松 吳新民 榮 華 龔良發(fā)

    (北京石油化工學(xué)院化學(xué)工程學(xué)院,北京102617)

    運(yùn)用密度泛函理論B3LYP方法及6-311++G(d,p)基組對(duì)11種咪唑氟硼酸離子液體進(jìn)行了研究.選擇相應(yīng)化合物的離子體系{[XIM][BF4]n}(n-1)-(n=2,3)作為研究對(duì)象,即研究體系由一個(gè)烷基咪唑陽(yáng)離子X(jué)IM+和2-3個(gè)BF4-陰離子構(gòu)成,對(duì)其進(jìn)行結(jié)構(gòu)優(yōu)化.在優(yōu)化得到的最低能量構(gòu)型的基礎(chǔ)上計(jì)算了分子內(nèi)陽(yáng)離子與陰離子間的相互作用能,同時(shí)考慮了基組重疊誤差的修正.結(jié)果表明所研究離子體系的離子間相互作用能與離子液體的實(shí)驗(yàn)熔點(diǎn)之間存在明確的線性關(guān)系,并且所得到的線性方程與氨基酸陽(yáng)離子型離子液體中存在的線性關(guān)系相近.我們的工作為今后借助量子化學(xué)方法設(shè)計(jì)功能化離子液體提供了一定的理論基礎(chǔ).

    密度泛函理論;咪唑氟硼酸鹽;相互作用能;離子液體;熔點(diǎn)

    1 Introduction

    Ionic liquids(ILs)are considered a most important new family of green solvents.They have drawn more and more attention from experimentalists and theoreticians for their well known advantages,such as low vapor pressure,excellent solvability,high thermal stability,good recyclability,and wide applications.1-4The possibility of designing ILs with special functions is also an important reason for the tremendous interest in these compounds.Theoretical study of the quantitative structure-property relationships(QSPR)is an ideal way to design ILs according to needs;it also has the advantage of saving materials and energy.In the past decade,QSPR studies have de-veloped quickly.5-9Different QSPR models have been established by introducing constitutional,topological,geometric, electrostatic,and thermodynamic descriptors.These models have been used to predict the common physical properties of ILs such as melting point,viscosity,density,conductivity,and surface tension.Although in most QSPR research,low precision theoretical methods of molecular geometry optimization (such as semiempirical methods)were adopted,effective predictions for some particular series of ILs have been made.

    Quantum chemistry calculation is a more reliable way to study the molecular structure,but it is still not efficient enough to be used as a precise method for condensed phase systems, so it can only be used to study the electronic structure of gas phase ion pairs from ILs.Compared with the QSPR work, there is very little quantitative study on the relationship between physical properties and molecular structure just using quantum chemistry methods.Katsyuba and coworkers10have studied several imidazolium(IM)based ILs by investigating their neutral molecules(composed of one cation and one anion)with B3LYP/6-31G*calculations.In their conclusion,no correlation was found between the melting points and the intramolecular interactions.Turner and coworkers11have used ab initio calculations to fully study the ion pair structures of ILs based on 1-alkyl-3-methylimidazolium halides.They found some of the optimized geometries were different from those in the crystal structures.They also tried to explore the interaction energy-melting point relationship,but only gross trends were discovered.Our group12,13has performed a quantum chemistry study on single molecules of some amino acid cation based ILs (AAILs),and we found a linear relationship between the interaction energies and the experimental melting points.In this work,the relationships between the interaction energies and the melting points of imidazolium ILs were investigated with B3LYP/6-311++G(d,p)calculations.Although there have been detailed quantum chemistry research on these kinds of compounds,10,11,14-19the researchers have only studied single molecules composed of one cation and one anion.In this work,ions composed of one imidazolium cation and 2 or 3 anions were studied.Based on these models,the relationship between the interaction energy and the melting point was investigated.

    2 Computational details

    All the calculations were performed using the Gaussian 03 program package20on a Dawning computer cluster.The hybrid DFT method B3LYP,together with the basis set 6-311++G(d, p),was used throughout the calculations.All stationary geometries have been optimized without constraints,and the convergence criteria of a maximum step size of 0.0018 a.u.and a root mean square(RMS)force of 0.0012 a.u.were adopted.The supermolecular method was used in the calculation of interaction energies between cation and anion,i.e.,the interaction energy is given by ΔE(R)=EAB(R)-EA-EB,in which EAB(R)is the energy of optimized AB molecule,EAand EBrepresent the energies of the optimized cation and anion,respectively.21The basis set superposition error(BSSE)22-24was also considered with the counterpoise(CP)corrections.

    In the previous quantum chemistry study of imidazolium tetrafluoroborate,only structures of electrically neutral molecules were investigated.In this work,the ions consisting of one imidazolium cation and two or three BF-4anions were studied.Crystallographic experiments on 1-ethyl-3-methylimidazolium (EMIM)compounds[EMIM]X(X=Cl,Br,I,AlBr4)25have shown that one cation is hydrogen bonded to three anions.The studies based on ion pairs only considered one type of hydrogen bond.Therefore,to consider as much as possible the above-mentioned structural characteristics of IM compounds, we took the ion composed of one cation and multiple anions as the minimal structural unit to be studied.1-ethyl-3-methylimidazolium chloride was studied for testing,its optimized most stable structure{[EMIM]Cl3}2-is shown in Fig.1(l).The distances of Cl-from its three nearest ring carbon atoms are 0.3379, 0.3682,and 0.3657 nm;the average value of the three distances is 0.3573 nm,which is consistent with the experimental value of 0.355 nm.26The three Cl atoms are almost in the plane of the imidazolium ring,which is also consistent with the experimental results.26But in the optimized structures of the electrically neutral ion pair[EMIM]Cl,the Cl atom is not located in the plane of the imidazolium ring.

    During the optimizations of the compounds containing side chains with more than two C atoms,different stable conformations probably exist.To make sure that the most stable geometries were obtained,different initial guesses of geometry were considered.Taking 1-n-butyl-3-methylimidazolium cation [BMIM]+as an example,and following the research of Turner et al.,11the optimizations were performed from ten initial geometries.It was found that the{[BMIM][BF4]3}2-structure based on a similar structure to that reported in the literature for“Bmim 5”11is the most stable.

    3 Results and discussion

    3.1 Optimized geometries

    First,we optimized the ion geometries of 11 tetrafluoroborate compounds with alkyl imidazolium type cations,including imidazolium(IM),1-methylimidazolium(MIM),1-methyl-3-methylimidazolium (DMIM), 1-ethyl-3-methylimidazolium (EMIM),1-n-propyl-3-methylimidazolium(PMIM),1-n-butyl-3-methylimidazolium(BMIM),1,3-diethylimidazolium(DEIM),1-ethyl-2,3-dimethylimidazolium(EDMIM),1-n-butyl-2, 3-dimethylimidazolium(BDMIM),1,3-diisopropyl-4,5-dimethylimidazolium(DIP-DMIM),and 1-allyl-3-methylimidazolium (AMIM).The following ions were studied in detail:8 divalent negative ions,including{[IM][BF4]3}2-,{[MIM][BF4]3}2-, {[DMIM][BF4]3}2-,{[EMIM][BF4]3}2-,{[PMIM][BF4]3}2-, {[BMIM][BF4]3}2-,{[DEIM][BF4]3}2-,and{[AMIM][BF4]3}2-; and 3 univalent negative ions,including{[BDMIM][BF4]2}-, {[EDMIM][BF4]2}-,and{[DIP-DMIM][BF4]2}-.In the cations [BDMIM]+or[EDMIM]+,there is a methyl substituent on the C2 atom(where the N ring atom linked to the longer side chain is labeled as N1 and the other N ring atom is labeled as N3)of the imidazolium ring.Because of the steric hindrance of this substituent on the C2 atom,the{[XIM][BF4]2}-structure would be preferred compared with the{[XIM][BF4]3}2-structure for BDMIM and EDMIM compounds.For DIP-DMIM, the interaction energies of{[DIP-DMIM][BF4]},{[DIP-DMIM] [BF4]2}-,and{[DIP-DMIM][BF4]3}2-are-330.62,-429.49, and-355.34 kJ·mol-1,respectively.These energy data indicate that the structure of one cation with three anions was less stable than{[DIP-DMIM][BF4]2}-.

    Fig.1 Optimized geometries of imidazolium tetrafluoroborate ILcompounds(a){[IM][BF4]3}2-,(b){[MIM][BF4]3}2-,(c){[DMIM][BF4]3}2-,(d){[EMIM][BF4]3}2-,(e){[PMIM][BF4]3}2-,(f){[BMIM][BF4]3}2-,(g){[DEIM][BF4]3}2-, (h){[AMIM][BF4]3}2-,(i){[DIP-DMIM][BF4]2}-,(j){[EDMIM][BF4]2}-,(k){[BDMIM][BF4]2}-,(l){[EMIM]Cl3}2-;bond length in nm

    The choice of the 11 studied compounds was not arbitrary; the approach to IL selection is now presented.First,by searching the data from the Reaxys database27(which integrate data from the Beilstein,Patent,and Gmelin databases),tetrafluorob-orate compounds containing alkyl imidazolium rings with known melting points were collected.Then,from these collected compounds,those contained side chains with more than four carbon atoms were removed,since there would be too many isomers which would need to be considered,and furthermore the effect of side chain on the experimental melting point has already been qualitatively analyzed systematically.28The final determination was made by considering the computational costs and the size of the problem needing to be solved.

    The most stable conformations found among the optimization results are shown in Fig.1,and some important structural parameters are also listed on the figure.Fig.1 shows that there are some common characteristics of these most stable geometries.First,compared with the isolated cation structures,the geometries of the cation part are essentially retained.The differences in the values of selected bond lengths(the bond lengths between the five ring atoms and also between the ring atom and its closest side atom)in the isolated cation and in the compound ion are less than 0.0012 nm.It has been reported,based on crystallographic data,that the carbon-nitrogen skeleton structures of[EMIM]+cations do not vary significantly for[EMIM] Br,[EMIM]I,and[EMIM][AlBr4];25our theoretical results are consistent with these experiments.This finding can also be used to simplify searching for the most stable configuration of imidazolium compounds for further quantum chemistry studies.Second,with the exception of{[DIP-DMIM][BF4]2}-,the imidazolium ring atoms and B atoms of the BF4-anions are almost in the same plane,in other words,the cation is in a planar cage of BF4-anions.

    Hydrogen bond interactions were found to exist in all the optimized compounds.Hydrogen bonds were classified on the basis of their bond lengths and angles.For X H…Y,if the H…Y bond length is much longer than the normal covalent bond length(H F:0.0918 nm)29and is much shorter than the sum of van der Waals radii of the bonding atoms(the van der Waals radii of H and F are 0.120 nm and 0.135 nm,respectively),and the bond angle is around 180°,then X H…Y can be regarded as a hydrogen bond.Therefore,in Fig.1,only the bond lengths of F…H less than 0.255 nm were listed.

    The natural bond orbital(NBO)analysis was also performed to explore the charge distribution of the studied ions.The most important information obtained is that the NBO charges of the F atoms are almost equal to each other(the charge distribution values range from-0.56 a.u.to-0.59 a.u.).Since the B F bond lengths in the compound ions(which range from 0.139 nm to 0.145 nm)are very similar to those(0.142 nm)in the isolated BF4-,it is reasonable to choose the studied ions as the structural unit of the compounds:in the condensed phase structure,layers of cations and anions are interconnected by an extended network of hydrogen bonds;one anion should also be hydrogen bonded with three cations in a symmetric way.

    For comparison,the structures of the electrically neutral molecules of each compound were also studied at the same level of theory.The optimized structures are not listed in this article because most of them have been studied before.Apart from [EDMIM][BF4]and[BDMIM][BF4],in the most stable structures,the anion BF4-is close to the ring atom C2,and the B atom is not in the plane of the imidazolium ring.In the most stable structures of[EDMIM][BF4]and[BDMIM][BF4],the BF4-is close to the C5 ring atom,and the B atom is almost in the plane of the imidazolium ring.

    3.2 Interaction energies

    The interaction energy of each ion was obtained by subtracting the energies of the optimized isolated cation and anion from the energy of the optimized IL ion.The counterpoise corrected energies are also considered and the CP corrections were found to be small(the maximum correction value was 12.3 kJ·mol-1for{[DIP-DMIM][BF4]2}-).The interaction energy results with(ΔECP)and without CP corrections(ΔE)are all listed in Table 1.The interaction energies between the cation and the anion in the electrically neutral molecules of the studied systems(ΔE1-1)are also listed in Table 1.

    3.3 Relationship between the interaction energies

    and the experimental melting points

    We have found a linear relationship between the interaction energies and the experimental melting points for the amino ac-id cation based ILs.Although previous researchers did not find a relationship between interaction energy and melting point for imidazolium ILs,we wondered if this was possibly caused by their improper choice of structural units.

    Table 1 Energy data of ILions obtained by the B3LYP/6-311++G(d,p)method and experimental melting points(Tm( exp))

    Fig.2 Relationships between the interaction energies ΔE1-1,ΔE,ΔECPand the experimental melting points Tmof 11 imidazolium tetrafluoroborate ILcompounds

    Fig.3 Relationships between the interaction energies and the experimental melting points of imidazolium tetrafluoroborate ILcompounds(IM ILs)and amino acid based ILs(AAILs)

    The experimental melting point data listed in Table 1 were obtained from the Reaxys database.When different melting points or a melting range were reported,the average value was used in the following discussion.The relationship between the interaction energies ΔE1-1/ΔE/ΔECPand melting points Tmis shown in Fig.2.From Fig.2(a),no clear correlation was found between ΔE1-1and Tm.An obvious linear relation between ΔE and Tmis,however,shown in Fig.2(b).A linear equation was obtained by fitting the 11 data points in Fig.2(b):ΔECP= -336.5-0.2396Tm,with correlation coefficient R=0.84 and standard deviation SD=12.8.With this equation,except for the DEIM-BF4compound,the magnitude of the difference between the predicted Tmand the real Tmis less than 50 K,and the prediction works well.The relationship between ΔECPand Tmcan also be fitted with a linear equation:ΔECP=-322.9-0.2530Tmwith correlation coefficient R=0.84 and standard deviation SD=13.5(Fig.2(c)).

    It is interesting that the ΔE-Tmdata in this work also connect up with the linear ΔE-Tmcorrelation for AAILs obtained in our previous work12(Fig.3(a)),but the ΔE1-1-Tmdata do not (Fig.3(b)).Putting the 11 sets of ΔE-Tmdata for imidazolium tetrafluoroborate ILs and the 26 sets of data of AAILs from literature12together,a new linear relationship was obtained: ΔE=-289.3-0.4581Tm,with correlation coefficient R=0.85 and standard deviation SD=19.4.The explanation for this is that during the melting process of ILs,the particles move further away from one another,and the interaction between cations and anions should have an important effect on this,and can be used to predict the melting point.In Fig.3(a),the three points located farthest from the fitted line are{[DEIM][BF4]3}2-, {[DIP-DMIM][BF4]2}-,and{[IM][BF4]3}2-;the common feature of these three compounds is that they all have symmetric cations(4 of the 11 studied compounds have symmetric cations;the other one is DMIM-BF4).One possible explanation for the deviation is that the spatial arrangement of the ions would be more compact for these compounds with symmetric structure,so,in contrast to compounds containing asymmetric cations,the interaction energies calculated in this work would be lower than the real interaction energies.

    4 Conclusions

    This article reports quantum chemistry studies of 11 types of alkyl imidazolium tetrafluoroborate ILs.Geometry optimizations and interaction energy calculations of the gas-phase ion systems{[XIM][BF4]n}(n-1)-(n=2,3)were performed.It was found that the interaction energy-melting point relationship for{[XIM][BF4]n}(n-1)-(n=2,3)is clearer than that for the neutral molecule[XIM][BF4]systems.It was also found that the ΔE-Tmdata of the studied imidazolium tetrafluoroborate ILs and theAAILs follow a similar linear correlation.The fitted linear ΔE-Tmequation of the two series of ILs could help direct further design of ILs.Compared with the commonly used QSPR method,the advantage of this method is that there is only one structural descriptor(the interaction energy)needed;the melting points can be predicted from the calculated interaction energy and the physical meaning is clear,so it can be used for different categories of compounds directly.The difficulties of this method are the need to choose the proper structural unit and to take into account intermolecular interactions.So,further theoretical work is required.More experimental work to improve the reliability and coverage of the melting point data is also needed.

    (1) Katritzky,A.R.;Jain,R.;Lomaka,A.;Petrukhin,R.;Karelson, M.;Visser,A.E.;Rogers,R.D.J.Chem.Inf.Comput.Sci. 2002,42,225.

    (2) Rogers,R.D.;Seddon,K.R.Science 2003,302,792.

    (3) Li,R.X.Green Solvent-the Synthesis and Application of Ionic Liquids;Chemical Industry Press:Beijing,2004. [李汝雄.綠色溶劑——離子液體的合成與應(yīng)用.北京:化學(xué)工業(yè)出版社, 2004.]

    (4) Zhang,S.J.;Lü,X.M.Ionic Liquids-from Fundamentals to Applications;Scientific Publish Ltd.:Beijing,2006.[張鎖江,呂興梅.離子液體——從基礎(chǔ)研究到工業(yè)應(yīng)用.北京:科學(xué)出版社,2006.]

    (5) Katritzky,A.R.;Lomaka,A.;Petrukhin,R.;Jain,R.;Karelson, M.;Visser,A.E.;Rogers,R.D.J.Chem.Inf.Comput.Sci. 2002,42,71.

    (6) Varnek,A.;Kireeva,N.;Tetko,I.V.;Baskin,I.I.;Solovev,V.P. J.Chem.Inf.Model.2007,47,1111.

    (7) López-Martin,I.;Burello,E.;Davey,P.N.;Seddon,K.R.; Rothenberg,G.ChemPhysChem 2007,8,690.

    (8)Ren,Y.Y.;Qin,J.;Liu,H.X.;Yao,X.J.;Liu,M.C.QSAR Comb.Sci.2009,28,1237.

    (9)Yan,C.Q.;Han,M.J.;Wan,H.;Guan,G.F.Fluid Phase Equilibria 2010,292,104.

    (10) Katsyuba,S.A.;Zvereva,E.E.;Vidis,A.;Dyson,P.J.J.Phys. Chem.A 2007,111,352.

    (11) Turner,E.A.;Pye,C.C.;Singer,R.D.J.Phys.Chem.A 2003, 107,2277.

    (12)Li,W.;Wu,X.M.;Qi,C.S.;Rong,H.;Gong,L.F.J.Mol. Struct.-Theochem 2010,942,19.

    (13)Li,W.;Rong,H.;Chen,Z.Y.;Wu,X.M.Acta Phys.-Chim.Sin. 2008,24,868.[李 巍,榮 華,陳中元,吳新民.物理化學(xué)學(xué)報(bào),2008,24,868.]

    (14) Lü,R.Q.;Cao,Z.G.;Shen,G.P.J.Natural Gas Chem.2007, 16,428.

    (15)Umebayashi,Y.;Hamano,H.;Tsuzuki,S.;Lopes,J.N.C.; Pádua,A.A.H.;Kameda,Y.;Kohara,S.;Yamaguchi,T.;Fujii, K.;Ishiguro,S.J.Phys.Chem.B 2010,114,11715.

    (16) Tsuzuki,S.;Katoh,R.;Mikami,M.Mol.Phys.2008,106,1621.

    (17) Shukla,M.;Srivastava,N.;Saha,S.J.Mol.Struct.2010,975, 349.

    (18)Xuan,X.;Guo,M.;Pei,Y.;Zheng,Y.Spectrochimica Acta A 2011,78,1492.

    (19) deAndrade,J.;B?es,E.S.;Stassen,H.J.Phys.Chem.B 2009, 113,7541.

    (20) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision E.01;Gaussian Inc.:Wallingford,CT,2004.

    (21) Morrow,T.I.;Maginn,E.J.J.Phys.Chem.B 2002,106,12807.

    (22) van Duijneveldt,F.B.;van Duijneveldt-van de Rijdt,J.G.C. M.;van Lenthe,J.H.Chem.Rev.1994,94,1873.

    (23) Jansen,H.B.;Ros,P.Chem.Phys.Lett.1969,3,140.

    (24) Boys,S.F.;Bernardi,F.Mol.Phys.1970,19,553.

    (25) Elaiwi,A.;Hitchcock,P.B.;Seddon,K.R.;Srinivasan,N.;Tan, Y.M.;Welton,T.;Zora,J.A.J.Chem.Soc.Dalton Tran.1995, 3467.

    (26) Dymek,C.J.;Grossie,D.A.;Fratini,A.V.J.Mol.Struct.1989, 213,25.

    (27) The Reaxys Database.http://www.reaxys.com(accessed Jan 20, 2011).

    (28) Jiang,D.;Wang,Y.Y.;Liu,J.;Dai,L.Y.Chemistry 2007,70, 371.[蔣 棟,王媛媛,劉 潔,戴立益.化學(xué)通報(bào),2007,70, 371.]

    (29) Atkins,P.W.;Jones,L.L.Chemical Principles:The Quest for Insight;W.H.Freeman and Company:New York,2002.

    April 26,2011;Revised:June 29,2011;Published on Web:July 11,2011.

    Relationship between Melting Point and the Interaction Energy of Alkyl Imidazolium Tetrafluoroborate Ionic Liquids

    LI Wei*QI Chuan-Song WU Xin-Min RONG Hua GONG Liang-Fa
    (College of Chemical Engineering,Beijing Institute of Petro-chemical Technology,Beijing 102617,P.R.China)

    Eleven types of alkyl imidazolium tetrafluoroborate ionic liquids(ILs)have been investigated using the density functional theory(DFT)B3LYP method together with basis set 6-311++G(d,p).First,we performed geometry optimization of the ion system{[XIM][BF4]n}(n-1)-(n=2,3),which is composed of one alkyl imidazolium cation XIM+and two or three BF4-anions.Then the intramolecular interaction energies were calculated for those structures with the lowest energies,and the basis set superposition error was corrected by the counterpoise method.The relationship between the experimental melting points and the interaction energies was also investigated.A linear correlation was found for the alkyl imidazolium tetrafluoroborate compounds studied,which was also consistent with the linear correlation previously found for amino acid cation based ILs.Our work shows the possibility of designing ILs with the help of quantum chemistry in the future.

    Density functional theory;Imidazolium tetrafluoroborate;Interaction energy; Ionic liquid; Melting point

    O641

    ?Corresponding author.Email:liwei77@bipt.edu.cn;Tel:+86-10-81292127.

    The project was supported by the Training Foundation for Backbone Teachers of Beijing Universities,China(PHR201008349).北京市屬高等學(xué)校人才強(qiáng)教深化計(jì)劃(PHR201008349)資助項(xiàng)目

    猜你喜歡
    熔點(diǎn)硼酸新民
    三門1#機(jī)組硼酸配比回路優(yōu)化
    高鋅低熔點(diǎn)低膨脹微晶玻璃性能的研究
    上海建材(2019年1期)2019-04-25 06:30:50
    低熔點(diǎn)瓷化粉表面處理及其效果表征
    電線電纜(2017年2期)2017-07-25 09:13:34
    硼酸、Li+摻雜對(duì)YAG:Ce3+熒光粉的影響
    薄帶連鑄低碳鋼中低熔點(diǎn)夾雜物控制研究
    上海金屬(2015年4期)2015-11-29 01:12:38
    含磷阻燃劑與硼酸鋅協(xié)效阻燃聚酰胺11的研究
    過(guò)硼酸鈉對(duì)高碳烯烴的環(huán)氧化
    Sn3.5Ag無(wú)鉛納米粒子的熔點(diǎn)降低及組織研究
    上海金屬(2013年6期)2013-12-20 07:57:53
    初中英語(yǔ)單項(xiàng)選擇練與析
    編結(jié)水繩
    東方娃娃(2004年5期)2004-07-22 06:41:10
    亚洲美女搞黄在线观看| 国产亚洲精品久久久久久毛片| 欧洲精品卡2卡3卡4卡5卡区| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品久久久com| 一级毛片久久久久久久久女| 91午夜精品亚洲一区二区三区| av在线蜜桃| 久久久久久国产a免费观看| 婷婷色综合大香蕉| 99国产极品粉嫩在线观看| 12—13女人毛片做爰片一| 成人特级黄色片久久久久久久| 国语自产精品视频在线第100页| 日韩在线高清观看一区二区三区| 日韩在线高清观看一区二区三区| 成人午夜精彩视频在线观看| 天堂av国产一区二区熟女人妻| 日韩欧美国产在线观看| 国产高清三级在线| 级片在线观看| 尤物成人国产欧美一区二区三区| 日本三级黄在线观看| 亚洲不卡免费看| 日本在线视频免费播放| 最近的中文字幕免费完整| 夜夜夜夜夜久久久久| 草草在线视频免费看| 亚洲欧美精品专区久久| 亚洲av二区三区四区| www.av在线官网国产| 国产免费男女视频| 国产亚洲av片在线观看秒播厂 | 简卡轻食公司| 久久午夜福利片| 99久国产av精品国产电影| 亚洲av免费高清在线观看| 欧美xxxx性猛交bbbb| 干丝袜人妻中文字幕| 午夜久久久久精精品| 天堂av国产一区二区熟女人妻| 国产午夜精品论理片| 波野结衣二区三区在线| 不卡一级毛片| 亚洲av中文av极速乱| 久久亚洲精品不卡| 国产私拍福利视频在线观看| 少妇的逼好多水| 亚洲经典国产精华液单| 毛片一级片免费看久久久久| 欧美xxxx黑人xx丫x性爽| 日本欧美国产在线视频| 国产黄色视频一区二区在线观看 | 18禁裸乳无遮挡免费网站照片| 高清毛片免费观看视频网站| 亚洲五月天丁香| videossex国产| 99久国产av精品国产电影| 亚洲国产精品成人久久小说 | 亚洲一区二区三区色噜噜| 免费观看在线日韩| 午夜福利高清视频| 久久99蜜桃精品久久| av国产免费在线观看| 男女下面进入的视频免费午夜| 精品国产三级普通话版| 久久精品久久久久久噜噜老黄 | 日韩精品青青久久久久久| 最好的美女福利视频网| 亚洲美女视频黄频| 久久久久久久久久黄片| 成人毛片a级毛片在线播放| 99久久无色码亚洲精品果冻| 变态另类丝袜制服| 色噜噜av男人的天堂激情| 日日撸夜夜添| 日日啪夜夜撸| 蜜臀久久99精品久久宅男| 黄片无遮挡物在线观看| 国产精品av视频在线免费观看| 亚洲综合色惰| 日韩欧美三级三区| 淫秽高清视频在线观看| 亚洲av免费在线观看| 天堂√8在线中文| 日韩制服骚丝袜av| 国产三级中文精品| 日本免费一区二区三区高清不卡| 亚洲自拍偷在线| 最好的美女福利视频网| 亚洲在线自拍视频| 国产精品蜜桃在线观看 | 欧美最黄视频在线播放免费| 小蜜桃在线观看免费完整版高清| 国产成人freesex在线| av福利片在线观看| 国产成人精品久久久久久| 亚洲av中文av极速乱| 18禁黄网站禁片免费观看直播| 一区福利在线观看| 久久精品国产清高在天天线| 97超视频在线观看视频| 精品久久国产蜜桃| 听说在线观看完整版免费高清| 一区二区三区四区激情视频 | 国产精品不卡视频一区二区| 搞女人的毛片| 亚洲av二区三区四区| 成人毛片60女人毛片免费| 午夜福利高清视频| 欧美日韩精品成人综合77777| 久久精品国产清高在天天线| 成年女人永久免费观看视频| 嫩草影院精品99| 日日干狠狠操夜夜爽| 午夜福利在线观看吧| 午夜老司机福利剧场| 在线免费十八禁| 男人狂女人下面高潮的视频| 久久精品国产亚洲av天美| 国产日韩欧美在线精品| 精品久久久久久久人妻蜜臀av| 亚洲欧美成人精品一区二区| av福利片在线观看| 日韩人妻高清精品专区| 亚洲精品自拍成人| 久久精品夜夜夜夜夜久久蜜豆| 国产国拍精品亚洲av在线观看| 免费观看人在逋| 禁无遮挡网站| 麻豆乱淫一区二区| 成熟少妇高潮喷水视频| 中文字幕人妻熟人妻熟丝袜美| 看黄色毛片网站| 伦理电影大哥的女人| 国内精品美女久久久久久| 成人三级黄色视频| 国产av不卡久久| av在线播放精品| 亚洲成人久久爱视频| 高清毛片免费看| 午夜视频国产福利| 黄色一级大片看看| 国产精品一区二区性色av| 国产一区二区三区av在线 | 精品久久久久久成人av| 成人综合一区亚洲| 久久鲁丝午夜福利片| 你懂的网址亚洲精品在线观看 | 99视频精品全部免费 在线| 91久久精品电影网| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影| 国产视频首页在线观看| 毛片一级片免费看久久久久| av女优亚洲男人天堂| 91精品国产九色| 亚洲在线观看片| 亚洲无线观看免费| 成人特级黄色片久久久久久久| 亚洲精品日韩av片在线观看| 亚洲熟妇中文字幕五十中出| 国产精品三级大全| av卡一久久| 亚洲人与动物交配视频| 国产日韩欧美在线精品| 国产精品一区二区三区四区免费观看| 日本-黄色视频高清免费观看| 天天躁夜夜躁狠狠久久av| 最新中文字幕久久久久| 综合色av麻豆| 国产成人影院久久av| 蜜桃亚洲精品一区二区三区| 99热精品在线国产| 高清午夜精品一区二区三区 | 日韩 亚洲 欧美在线| 日本三级黄在线观看| 久久久欧美国产精品| 国产成人精品久久久久久| 国产一区二区在线观看日韩| 亚洲国产欧美人成| 亚洲精品国产av成人精品| 国产69精品久久久久777片| 日韩欧美国产在线观看| 国产午夜精品一二区理论片| 夫妻性生交免费视频一级片| 亚洲乱码一区二区免费版| 五月玫瑰六月丁香| 午夜老司机福利剧场| 欧美成人精品欧美一级黄| 国产探花在线观看一区二区| 日本成人三级电影网站| 久久99蜜桃精品久久| 有码 亚洲区| 男插女下体视频免费在线播放| 国产精品美女特级片免费视频播放器| 成年av动漫网址| 中文资源天堂在线| 婷婷亚洲欧美| 亚洲自拍偷在线| 一级毛片电影观看 | 亚洲精品乱码久久久久久按摩| 久久中文看片网| 亚洲七黄色美女视频| 免费在线观看成人毛片| 国产又黄又爽又无遮挡在线| 日本熟妇午夜| 日韩一本色道免费dvd| 久久精品久久久久久噜噜老黄 | 天堂√8在线中文| 卡戴珊不雅视频在线播放| 少妇人妻精品综合一区二区 | 少妇高潮的动态图| 亚洲精品乱码久久久久久按摩| 国产精品人妻久久久影院| 少妇猛男粗大的猛烈进出视频 | 成人午夜高清在线视频| 天堂网av新在线| 午夜福利在线在线| 美女脱内裤让男人舔精品视频 | 中文字幕久久专区| 国产久久久一区二区三区| 精品欧美国产一区二区三| 国产黄片视频在线免费观看| av在线蜜桃| 成人特级黄色片久久久久久久| 男的添女的下面高潮视频| 成年版毛片免费区| 亚洲欧美日韩东京热| 亚洲经典国产精华液单| 国产伦在线观看视频一区| 人体艺术视频欧美日本| 国产高潮美女av| 一区二区三区高清视频在线| 欧美精品一区二区大全| 国产三级中文精品| 国产真实伦视频高清在线观看| 搡女人真爽免费视频火全软件| 在线免费观看的www视频| 色综合站精品国产| 免费人成视频x8x8入口观看| 日韩欧美精品免费久久| 欧美成人a在线观看| 国产成人影院久久av| 少妇熟女欧美另类| 成熟少妇高潮喷水视频| 中文字幕久久专区| 一个人看视频在线观看www免费| 三级经典国产精品| 1000部很黄的大片| 人人妻人人澡欧美一区二区| 国产亚洲5aaaaa淫片| 看非洲黑人一级黄片| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕日韩| 男的添女的下面高潮视频| 中文精品一卡2卡3卡4更新| 91在线精品国自产拍蜜月| 久久久久性生活片| 啦啦啦啦在线视频资源| 真实男女啪啪啪动态图| 国产精品不卡视频一区二区| 岛国毛片在线播放| 亚洲精品自拍成人| av免费在线看不卡| 69人妻影院| 秋霞在线观看毛片| 国产精品麻豆人妻色哟哟久久 | 亚洲国产精品国产精品| 日韩欧美在线乱码| 在线a可以看的网站| 波多野结衣高清无吗| 国产精品一及| 亚洲av熟女| 可以在线观看的亚洲视频| 免费黄网站久久成人精品| 久久久久久久久中文| 国产极品精品免费视频能看的| 91久久精品电影网| eeuss影院久久| 国产精品爽爽va在线观看网站| 久久久久九九精品影院| 如何舔出高潮| 赤兔流量卡办理| 欧美最新免费一区二区三区| 2022亚洲国产成人精品| 色综合亚洲欧美另类图片| 中国国产av一级| 一边摸一边抽搐一进一小说| 少妇熟女欧美另类| 欧美成人精品欧美一级黄| 美女被艹到高潮喷水动态| 国产精品1区2区在线观看.| av在线老鸭窝| 中国美白少妇内射xxxbb| 亚洲色图av天堂| 中文欧美无线码| 黄色视频,在线免费观看| 日韩亚洲欧美综合| 啦啦啦啦在线视频资源| 国产亚洲精品av在线| 亚洲真实伦在线观看| 亚洲欧洲日产国产| av女优亚洲男人天堂| 午夜久久久久精精品| 亚洲在久久综合| 人人妻人人澡欧美一区二区| 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| 中出人妻视频一区二区| 亚洲在久久综合| 人人妻人人澡欧美一区二区| 欧美性猛交黑人性爽| 国产精品嫩草影院av在线观看| 精品99又大又爽又粗少妇毛片| 国产午夜精品论理片| 亚洲精品日韩在线中文字幕 | 国产精品嫩草影院av在线观看| 亚洲av成人精品一区久久| 免费av不卡在线播放| 丰满的人妻完整版| 午夜免费激情av| 色尼玛亚洲综合影院| 夫妻性生交免费视频一级片| 3wmmmm亚洲av在线观看| 成人午夜高清在线视频| 久久精品国产亚洲av天美| 亚洲成人av在线免费| 成人国产麻豆网| 午夜老司机福利剧场| 丝袜喷水一区| 亚洲人成网站在线播放欧美日韩| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 久99久视频精品免费| 精品少妇黑人巨大在线播放 | 三级国产精品欧美在线观看| 国产av不卡久久| 一进一出抽搐动态| 成人高潮视频无遮挡免费网站| 欧美bdsm另类| 亚洲精品久久国产高清桃花| 十八禁国产超污无遮挡网站| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 国产成人精品婷婷| 美女 人体艺术 gogo| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 亚洲婷婷狠狠爱综合网| 真实男女啪啪啪动态图| 国产女主播在线喷水免费视频网站 | 啦啦啦韩国在线观看视频| 看十八女毛片水多多多| 日韩欧美三级三区| 少妇熟女欧美另类| 亚洲av二区三区四区| 国产亚洲91精品色在线| 99热全是精品| 成人高潮视频无遮挡免费网站| 26uuu在线亚洲综合色| 一本一本综合久久| 天堂av国产一区二区熟女人妻| 欧美日本视频| 欧美变态另类bdsm刘玥| 九九爱精品视频在线观看| 美女内射精品一级片tv| 男女下面进入的视频免费午夜| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 少妇丰满av| 午夜老司机福利剧场| 午夜免费男女啪啪视频观看| 国产精品福利在线免费观看| 日韩av在线大香蕉| 国产在视频线在精品| 中文字幕av成人在线电影| 精品一区二区三区人妻视频| 国产精品av视频在线免费观看| 久久久久久大精品| 2021天堂中文幕一二区在线观| 91久久精品国产一区二区成人| 久久人妻av系列| 国产免费一级a男人的天堂| 成人午夜高清在线视频| 国产精品麻豆人妻色哟哟久久 | 久久韩国三级中文字幕| 国产亚洲av片在线观看秒播厂 | 久久午夜福利片| 国产探花在线观看一区二区| 国产三级在线视频| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 欧美bdsm另类| 99在线视频只有这里精品首页| 特级一级黄色大片| www.色视频.com| 欧美色视频一区免费| 在线播放无遮挡| 99久久精品热视频| 精品无人区乱码1区二区| 国产精品一区二区三区四区免费观看| 亚州av有码| 嘟嘟电影网在线观看| 国产老妇女一区| 国产精品爽爽va在线观看网站| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看 | 美女国产视频在线观看| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 久久中文看片网| 亚洲av电影不卡..在线观看| 免费观看在线日韩| 最近视频中文字幕2019在线8| 欧洲精品卡2卡3卡4卡5卡区| 国产高清不卡午夜福利| 成人特级av手机在线观看| 一本精品99久久精品77| 国产三级在线视频| 亚洲国产精品成人久久小说 | 69人妻影院| 成人欧美大片| 免费av毛片视频| 99热6这里只有精品| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 亚洲成a人片在线一区二区| 高清午夜精品一区二区三区 | 在线播放无遮挡| 久久久精品94久久精品| 日韩欧美精品v在线| 中国美女看黄片| 人人妻人人看人人澡| 免费观看a级毛片全部| 给我免费播放毛片高清在线观看| 天堂网av新在线| 黄片wwwwww| 非洲黑人性xxxx精品又粗又长| 变态另类成人亚洲欧美熟女| 精品久久国产蜜桃| 高清毛片免费看| av在线观看视频网站免费| 美女cb高潮喷水在线观看| av在线亚洲专区| 亚洲国产精品sss在线观看| 老司机影院成人| 日韩,欧美,国产一区二区三区 | 国产亚洲精品久久久久久毛片| 亚洲国产欧美在线一区| 久久久午夜欧美精品| 日韩av在线大香蕉| 少妇的逼水好多| 热99在线观看视频| 成人一区二区视频在线观看| 九草在线视频观看| 天堂√8在线中文| 亚洲精品456在线播放app| 成年女人看的毛片在线观看| 综合色丁香网| av在线老鸭窝| 蜜臀久久99精品久久宅男| 男人的好看免费观看在线视频| 亚洲性久久影院| 色吧在线观看| 夜夜夜夜夜久久久久| 国产精品一区二区三区四区免费观看| 亚洲精品久久久久久婷婷小说 | 国产精品久久久久久久电影| 亚洲av一区综合| 亚洲av成人精品一区久久| 看非洲黑人一级黄片| 亚洲国产精品成人久久小说 | 99九九线精品视频在线观看视频| av黄色大香蕉| 日日啪夜夜撸| 久久久久九九精品影院| 久久鲁丝午夜福利片| 少妇的逼好多水| 日本在线视频免费播放| 神马国产精品三级电影在线观看| 一区二区三区免费毛片| a级一级毛片免费在线观看| 国产成人91sexporn| 国产麻豆成人av免费视频| 午夜福利在线观看免费完整高清在 | 久久热精品热| 一级毛片我不卡| 国产成人freesex在线| 狂野欧美激情性xxxx在线观看| 直男gayav资源| 男人舔女人下体高潮全视频| 国产精品一二三区在线看| 国产极品精品免费视频能看的| 日韩强制内射视频| 亚洲av成人精品一区久久| 久久99精品国语久久久| 欧美成人a在线观看| 亚洲欧美成人精品一区二区| av又黄又爽大尺度在线免费看 | 一区二区三区免费毛片| 欧美+日韩+精品| 免费大片18禁| 亚洲人成网站在线观看播放| 国产成年人精品一区二区| 乱码一卡2卡4卡精品| 日韩精品青青久久久久久| 高清毛片免费观看视频网站| 午夜免费男女啪啪视频观看| 国产男人的电影天堂91| 久久久久久久久久久丰满| 午夜a级毛片| 欧美xxxx性猛交bbbb| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| 国产高清三级在线| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 少妇丰满av| 男人舔女人下体高潮全视频| 国产午夜福利久久久久久| 欧美在线一区亚洲| 久久亚洲国产成人精品v| 久久精品国产亚洲av香蕉五月| 在现免费观看毛片| 婷婷亚洲欧美| 国语自产精品视频在线第100页| 嫩草影院精品99| 青春草视频在线免费观看| 精品午夜福利在线看| 国产日韩欧美在线精品| 久久精品久久久久久噜噜老黄 | 欧美成人一区二区免费高清观看| 九草在线视频观看| 亚洲av第一区精品v没综合| 亚洲无线观看免费| 美女xxoo啪啪120秒动态图| 午夜免费男女啪啪视频观看| 国产成人福利小说| 亚洲av成人精品一区久久| 久久精品国产清高在天天线| 精品日产1卡2卡| 在线观看一区二区三区| 国产精品久久久久久久久免| 免费看a级黄色片| 亚洲一区高清亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 色哟哟哟哟哟哟| 一本久久中文字幕| 国语自产精品视频在线第100页| av视频在线观看入口| 伦理电影大哥的女人| 亚洲七黄色美女视频| 天天一区二区日本电影三级| 综合色av麻豆| 国产成人午夜福利电影在线观看| 男女做爰动态图高潮gif福利片| 国产日本99.免费观看| 精品一区二区三区人妻视频| 欧美色视频一区免费| 国产极品精品免费视频能看的| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av| 亚洲欧美日韩卡通动漫| 日韩,欧美,国产一区二区三区 | 欧美zozozo另类| 成年版毛片免费区| 欧美在线一区亚洲| 亚洲色图av天堂| 国产成人a∨麻豆精品| 久久久久久久久久久免费av| 嫩草影院新地址| 国产白丝娇喘喷水9色精品| 亚洲七黄色美女视频| 亚洲国产精品合色在线| 一个人观看的视频www高清免费观看| 国语自产精品视频在线第100页| 欧美xxxx性猛交bbbb| 亚洲精品亚洲一区二区| 午夜激情福利司机影院| 欧美+亚洲+日韩+国产| 欧美丝袜亚洲另类| 亚洲人成网站在线播放欧美日韩| 一本久久精品| 色哟哟哟哟哟哟| 国产成人aa在线观看| 欧美日本亚洲视频在线播放| 啦啦啦啦在线视频资源| 精品久久久久久久久亚洲| 亚洲精品乱码久久久v下载方式| 男女下面进入的视频免费午夜| 女的被弄到高潮叫床怎么办| 久久婷婷人人爽人人干人人爱| 国内久久婷婷六月综合欲色啪| 国产成人91sexporn| 欧美另类亚洲清纯唯美| av免费在线看不卡| 国产探花在线观看一区二区| 激情 狠狠 欧美| 欧美人与善性xxx| 99久久无色码亚洲精品果冻| 国产精品国产高清国产av| 在线观看美女被高潮喷水网站| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| 国产在线男女| 欧美性猛交黑人性爽| 中文字幕av在线有码专区| 一级毛片久久久久久久久女| 九草在线视频观看| 午夜免费激情av| 亚洲激情五月婷婷啪啪| 麻豆av噜噜一区二区三区|