韋麗蘭, 黃力人
(華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,廣東廣州 510631)
變分不等式理論是當(dāng)今非線性分析的重要組成部分,它在力學(xué)、微分方程、控制論、數(shù)理邏輯、對策論和非線性規(guī)劃等理論和應(yīng)用學(xué)科都有廣泛的應(yīng)用.
(1)
(2)
研究變分不等式問題和非線性互補(bǔ)問題的一個基本問題是討論解的存在性.研究變分不等式問題和非線性互補(bǔ)問題解的存在性有很多方法,例如Browder不動點定理、KKM定理、拓?fù)涠壤碚摵蛷?qiáng)制性條件等.
SMITH在文獻(xiàn)[2]中引入“例外序列”的概念來研究非線性互補(bǔ)問題解的存在性問題,但只限于K=的情形.ISAC注意到例外序列和拓?fù)涠鹊穆?lián)系,在文獻(xiàn)[3]中提出例外簇的概念并借助拓?fù)涠鹊睦碚搧硌芯恳话惴蔷€性互補(bǔ)問題解的存在性.
在例外簇概念提出以后,很多學(xué)者用例外簇的概念研究變分不等式問題和非線性互補(bǔ)問題解的存在性,使例外簇概念得到了豐富和發(fā)展,可參見文獻(xiàn)[1]、[4]-[14].ISAC和ZHAO[4]首次把例外簇的概念從n空間推廣到更一般的無限維Hilbert空間.2006年,BIANCHI[1]等在賦范空間中引入一個強(qiáng)變分不等式SVIP的例外簇的概念,推廣了文獻(xiàn)[12]和文獻(xiàn)[13]例外簇的概念.
本文的第2部分給出一些定義和基本概念.第3部分在賦范空間中提出一個強(qiáng)變分不等式SVIP的α-例外簇的概念,推廣文獻(xiàn)[1]所給出的例外簇的概念,并給出相應(yīng)的解的存在性定理,得到擇一型“強(qiáng)變分不等式或者有解,否則存在一個α-例外簇”.
正規(guī)對偶映射J:X→2X*定義如下:
注1[1]若X是Hilbert空間H,記H=H*,則J(x)=x.
即
于是
因此,〈x*,x〉≥‖x*‖‖x‖.另一方面,〈x*,x〉≤‖x*‖‖x‖.所以
〈x*,x〉=‖x*‖‖x‖.
(3)
〈x*,y〉≤‖x*‖‖y‖≤‖x*‖‖x‖=〈x*,x〉.
下面給出文獻(xiàn)[1]中例外簇的定義.
注2 BIANCHI在文獻(xiàn)[1]中研究0-例外簇.
(4)
(5)
(6)
由條件(d4)和tr>0,有
(7)
參考文獻(xiàn):
[1] BIANCHI M,HADJISAVVAS N,SCHAIBLE S.Exceptional families of elements for variational inequalities in Banach spaces[J].J Optim Theory Appl,2006,129(1):23-31.
[2] SMITH T E.A solution condition for complementarity problems,with an application to spatial price equilibrium[J].Appl Math Computation,1984,15:61-69.
[3] ISAC G,BULAVASKI V,KALLSHNIKOV V.Exceptional families,topological degree and complementarity problems[J].J global optim,1999,14(2):207-225.
[4] ISAC G,ZHAO Y B.Exceptional family of elements and the solvability of variational inequalities for unbounded sets in infinite dimensional Hilbert spaces[J].J Math Anal Appl,2000,246:544-556.
[5] DANIILIDIS A,HADJISAVVAS N.Coercivity conditions and variational inequalities[J].Math Program,1999,86:433-438.
[6] CROUZEIX J P.Pseudomonotone variational inequality problems:existence of solutions[J].Math Programming,1997,78(3):305-314.
[7] AUSSEL D,HAOJISAVVAS N.Technical note on quasimonotone variational inequalities[J].J Optim Theory Appl,1999,102(2):475-495.
[8] ZHANG L P,HAN J Y,XU D C.Existence theorems of solution to variational inequality problems[J].Sci China Ser A,2001,44(2):212-219.
[9] BIANCHI M,HADJISAVVAS N,SCHAIBLE S. Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities[J].J Optim Theory Appl,2004,122(1):1-17.
[10] ZHOU S Z,BAI M R.A new exceptional family of elements for a variational inequality problem on Hilbert space[J].Appl Math Lett,2004,17:423-428.
[11] TAN L,HUANG L.Exceptional families of elements for a variational inequality problem [J].Appl Math Lett,2007,20:599-604.
[12] ISAC G,KALLSHNIKOV V.Exceptional family of elements,Leray-Schauder alternative,pseudomonotone operatora,and complementarity[J].J Optim Theory Appl,2001,109:69-83.
[13] HAN J,HUANG Z H,FANG S C.Solvability of variational inequality problems[J].J Optim Theory Appl,2004,122:501-520.
[14] 譚露琳.空間中變分不等式問題解的存在性與例外簇[J].華南師范大學(xué)學(xué)報:自然科學(xué)版,2009(3):22-24.
TAN Lulin.Exceptional families of elements for a variational inequality problem on Hilbert space[J].South China Normal University:Natural Science Edition,2009(3):22-24.
[15] AUBIN J P,EKELAND I.Applied nonlinear analysis[M].New York:John Wiley and Sons,1984.