• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development and optimization of an antibody array method for potential cancer biomarker detection☆

    2011-11-02 07:26:44ShungshungWngPingZhoBrinCo
    THE JOURNAL OF BIOMEDICAL RESEARCH 2011年1期

    Shungshung Wng, Ping Zho, Brin Co,*

    aKey Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China;

    bAntibody Technology Laboratory, Van Andel Research Institute, Grand Rapids, MI 49503, USA.

    INTRODUCTION

    In cancer, a biomarker refers to a substance or process that is indicative of the presence of cancer in the body. Great efforts have been put forth to develop new methods for rapid, sensitive and accurate detection of biomarkers. A biomarker could be either a molecule secreted by tumor or a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic,glycomic and imaging biomarkers can be used for cancer diagnosis, prognosis and epidemiology study[1].Biomarkers measured in a variety of patient samples,including blood, tissue, urine and cerebrospinal fluid,are used in a diverse array of clinical settings. The application of biomarkers to cancer is leading the way because of the unique association of genomic changes in cancer cells with the disease process.

    Pancreatic cancer is the sixth highest cause of mor-tality from malignant tumors in Europe and the fourthhighest in the United States[2,3]. The dismal prognosis of pancreatic cancer is due to the late stage at which it is usually diagnosed because pancreatic cancer patients seldom exhibit disease-specific symptoms until late in the course of the disease[4,5], and the high invasive and metastatic potential of pancreatic tumors result in a low rate of curative resections and a high frequency of relapse. Long-term survival from pancreatic cancer is possible if the disease is identified at an early stage[6,7]. Therefore, biomarkers play an important role in the detection at an early stage. Several serum markers have been investigated for pancreatic cancer. Elevated CA19-9 level has been cited as a potential marker of the disease[8-12], and other existing biomarkers relate to the inflammation that associates with the tumor and other pancreatic diseases that may be present[13-15].

    Recently, various microarray formats have been utilized for studying glycosylation patterns[16,17]. In one study examining serum samples from patients with colon and pancreatic cancers, glycoproteins extracted from the serum were printed on glass slides and hybridized against various lectins to study changes in the glycan patterns during cancer progression[18,19]. The antibody microarray is a favorable format for high throughput analysis, with high specificity and reproducibility[20-22].

    In 2007, the Lustgarten Foundation undertook an extensive bioinformatics analysis of the published literature to identify the top 60 most promising biomarkers for pancreatic cancer. In the present study, we selected four biomarkers Hippocalcin-like 1 (HPCAL1),phosphatidylethanolamine binding protein 1 (PEBP1),lectin galactoside-binding soluble 7 (LGALS7)and serpin peptidase inhibitor clade E member 2 (SERPINE2)to develop an antibody microarray system that could have potential clinical diagnostic applications.The current study focused on two areas: one was to optimize the standard curves of these four biomarkers so that they can be used to calculate the concentration of biomarkers quantitatively; the other was to investigate the cross-reactivity and to further develop array-based assay so that multiple biomarkers can be detected in a single assay.

    MATERIALS AND METHODS

    Materials

    HPCAL1, PEBP1, LGALS7 and SERPINE2 proteins and corresponding antibodies were generated as previously described[23]. Antibody microarrays were prepared as previously described[24].

    Methods

    An outline of the experiment flow of microarray proecessing is described in Fig 1. A piezoelectric contact printer (Auson 2470 Arrayer)was used to spot approximately 260 pL of each antibody solution at a certain concentration on the surfaces of nitrocellulosecoated glass microscope slides (PATH slides; GenTel Biosciences, Madison, USA). Forty-eight identical arrays were printed on each slide, with each array consisting of two different antibodies at first. When the conditions were optimized, then coated four antibodies were coated to detect the cross-reactivity. All of the antibodies were mouse monoclonal antibodies targeting human proteins HPCAL1, PEBP1, LGALS7 and SERPINE2. Each capture antibody was printed in triplicate, and biotinylated BSA was printed as control(Fig. 2). A wax border was imprinted around each of the arrays to define hydrophobic boundaries (SlideImprinter, The Gel Company, San Francisco, CA, USA).The printed slides were stored at 4°C in a desiccated,vacuum-sealed slide box until use.

    Fig. 1 An outline of the experiment flow of microarray processing.

    Fig. 2 Microarray slides. The microarray was patterned as follows: 1) the first row with anti-HPCAL1 (5A5), diluted in PBST0.05; 2)the second row with anti-HPCAL1 (5A5), diluted in PBS; 3)the third row with anti-PEBP1 (8E2), diluted in PBST0.05; and 4)the last row with anti-PEBP1 (8E2), diluted in PBS. The antibody concentration was 250 μg/mL.

    For condition optimization, capture antibodies printed on slides were diluted in two different buffers: PBS and PBST0.05 (PBS with 0.05% Tween-20),and with three different concentrations: 250 μg/mL,500 μg/mL, and 750 μg/mL. For multi-marker detection system, capture antibodies were only diluted in PBST0.05 with one concentration at 500 μg/mL. First,vacuum sealed arrays were equilibrated with ambient temperature for 30 min before use. Slides were washed in PBST0.5 (PBS with 0.5% Tween-20)for 3 min with gentle shaking, and dried by centrifuging for 2 min at 900 g. Then, the slides were blocked with 1% BSA in PBST0.5 for 1 h in a humidified chamber to prevent from evaporating. Excess capture antibodies were washed away with the blocking buffer by shaking. A serial dilution of protein or protein mixture samples containing 0.1% Brij-35 (Pierce, Rockford, IL, USA)in PBST0.1 (PBS with 0.1% Tween-20)were applied and incubated for 1 h at room temperature (RT)or overnight at 4°C with gentle agitation. Excess protein was removed by three washes with PBST0.5, each for 3 min with shaking. Then biotinylated detection antibodies either along or mixed together, were diluted to 3 μg/mL with 0.1% BSA/PBST0.1 and added to the corresponding blocks, incubating for 1 h at RT. The arrays were washed with PBST0.5 and blocked briefly with 1% BSA/PBS before probing with streptavidin-PE. The streptavidin-PE was diluted to 2 μg/mL with PBST containing 0.1% BSA and probed to the array for 1 h. The labeled slide was washed with PBST0.5 for three times, and dried by centrifugation. The slides were scanned using a GenePix 4000B microarray scanner, and the data were processed using GenePix Pro 3.0 software[25].

    RESULTS

    Comparison of capture antibodies diluted in PBS and PBST0.05

    Using the microarray format, we compared the conditions of the experiment. First, we printed two capture antibodies anti-HPCAL1 5A5 and anti-PEBP1 8E2 in two different buffers, PBS and PBS with 0.05%Tween-20. After blocking and washing away the excess antibodies, serially diluted HPCAL1 and PEBP1 proteins were applied to the multiplexed arrays. Following incubation and washes, the arrays were probed with the respective biotinylated detection antibodies anti-HPCAL1 1E10 and anti-PEBP1 4F10. Fluorescent signal was generated by incubating the arrays with streptavidin-PE. The experiment was repeated for confirmation. The results in Fig. 3 showed that antibodies in PBST0.05 had much stronger signals than in PBS.

    Concentration comparison of capture antibodies

    To optimize the concentrations of the capture antibodies, we printed slides with 3 different concentrations of the two capture antibodies, anti-HPCAL1 5A5 and anti-PEBP1 8E2 at 250 μg/mL, 500 μg/mL and 750 μg/mL. Serially diluted HPCAL1 and PEBP1 were applied to the arrays, respectively. The results showed, that the concentrations of 500 μg/mL and 750 μg/mL had no significant impact on fluorescent signal; signals might be saturated at the concentration of 750 μg/mL. So the optimal concentration for the capture antibodies was set to 500 μg/mL (Fig. 4).

    Incubation temperature comparison

    To optimize the incubation temperature conditions of the antibody array, after HPCAL1 and PEBP1 proteins were applied to the arrays, the slides were incubated either overnight (O/N)at 4°C, or for 1 h at RT separately with the same other conditions. The results showed that the signal of overnight incubation at 4°C is much stronger than 1 h at RT (Fig. 5).

    Antibody specificity and cross-reactivity test

    After the conditions were optimized (the capture antibody at 500 ng/mL in PBST0.05, and incubation overnight at 4°C), we next investigated the specificities of each antibody, and whether there were crossreactivity among antibodies to different proteins. In this experiment, four sets of capture and detection antibodies against four different antigens (HPCAL1,PEBP1, LGALS7 and SERPINE2)were compared and analyzed in all possible combinations. As shown in Fig. 6, for example, when HPCAL1 protein was present, HPCAL1 capture Ab 5A5 only captured HPCAL1, and its detection Ab 1E10 only detected HPCAL1 protein. These results demonstrated that each capture and detection antibody were specific to their corresponding protein, and the cross-reactivity to other proteins was either none or extremely low. The protein concentrations were set to high at 125 ng/mL or 256 ng/mL to avoid background interference.

    Simultaneous detection of HPCAL1, PEBP1,LGALS7 and SERPINE2

    Our final goal was to establish an assay system which allowed detecting multiple biomarkers in a single setting. We proved that the antibodies to each protein were specific and did not cross-react with any other proteins (Fig. 6). In this experiment, capture antibodies were printed onto slide separately; four different proteins were mixed and incubated with capture antibodies on the slide followed by incubating with mixed detection antibodies. The results in Fig. 7(A-H)showed that the sensitivity reached to 2 ng/ml. When the concentrations of these four biomarkers were below 256 ng/ml, the fluorescence and biomarker concentration displayed a liner correlation shown in Fig.7(I-L).

    Fig. 3 Comparison of capture antibodies diluted in PBS and PBST0.05. Microarray slides were patterned as in Fig 1. The two proteins were applied to the arrays, respectively, followed by detecting with detection antibodies and fluorescence labeling with PE.

    Fig. 4 Concentration comparison of the capture antibodies. (A)Serially diluted HPCAL1 in PBST0.1 containing 0.1% Brij were applied to the arrays which were printed with different concentrations of the capture antibody anti-HPCAL1 5A5. (B)Serially diluted PEBP1 in PBST0.1 containing 0.1% Brij were applied to the arrays which were printed with different concentrations of the capture antibody anti-PEBP1 8E2.

    Fig. 5 Comparison of protein incubation for 1 h at room temperature and overnight at 4°C. The results showed that the signal of overnight at incubation 4°C was much stronger than that of 1 h at room temperature. A: HPCAL1; B: PEBP1.

    Fig. 6 Antibody specificity tests. Firstly, the cross-reactivity was tested between HPCAL1 and PEBP1, and the results (A-E)showed that there was no cross-reactivity observed. A: HPCAL1 protein was added and the detection antibody was HPCAL1 1E10.B: PEBP1 protein was added and the detection was PEBP1 4F10. C: HPCAL1 protein was added, and the detection antibody was PEBP1 4F10. D: PEBP1 protein was added, and the detection antibody was HPCAL1 1E10. Secondly, the cross-reactivity tests were conducted among HPCAL1-5A5, PEBP1-8E2, LGALS7-2A7 and SERPINE2-2G4. The results showed that there were no crossreactivities betweeh each two of the four proteins. E: cross-reactivity tests between HPCAL1 and PEBP1. F: cross-reactivity tests between HPCAL1 and LGALS7. G: cross-reactivity tests between HPCAL1 and SERPINE2. H: cross-reactivity tests between LGALS7 and PEBP1. I: cross-reactivity tests between LGALS7 and SERPINE2. J: cross-reactivity test between PEBP1 and SERPINE2. Cap:Capture antibody; Det: Detection antibody.

    Fig. 7 Simultaneous detection of HPCAL1, PEBP1, LGALS7 and SERPINE2 by detection cocktail antibodies. Serially diluted mixture of HPCAL1, PEBP1, LGALS7 and SERPINE2 (A: blank control. B: 2 ng/mL. C: 4 ng/mL. D: 16 ng/mL. E: 32 ng/mL. F: 64 ng/mL. G: 128 ng/mL. H: 256 ng/mL)were probed, followed by detection with antibody cocktail. The other spots not underlined were other different proteins not shown in this paper. I-L showed that when the concentration of these four markers were below 256 ng/mL, the fluorescence and biomarker concentration displayed a linear correlation (I: HPCAL. J: PEBP1. K: LGALS7. L:SERPINE2).

    DISCUSSION

    In this study we optimized the conditions of antibody arrays. Four potential biomarkers for pancreatic cancer diagnosis were chosen, and their correspond-ing antibodies were printed on coated glass slides. We found that when the concentration of the capture antibodies was at 500 μg/ml in PBST0.05 and the slides were incubated overnight at 4°C, the arrays gave the strongest signals. Simultaneous detection of these four markers worked very well with almost no crossreactivity. Moreover, the fluorescence and biomarker concentration displayed a linear correlation.

    The experimental features of microarrays have advantages for cancer research. The advantage of low sample volume results in the consumption of small amounts of both precious clinical samples and expensive antibodies. The assays can be run efficiently in parallel, enabling studies on large populations of samples that are necessary for biomarker discovery and validation. In addition, the assays have good reproducibility, high sensitivity and quantitative accuracy over large concentration ranges[26].

    In the future, we hope to establish collaboration with hospitals or clinical diagnostic laboratories, run pancreatic cancer serum samples using antibody array format to identify differences in these potential biomarkers compared to normal and pancreatitis serum samples. Patient sera with different types and stages of pancreatic cancer will also be examined. Pancreatic cancer continues to have a high mortality rate due to detection at a late stage of the disease. We hope that the antibody array technology would eventually be able to provide a practical means to characterize patterns of variation in hundreds of thousands of different proteins in clinic and research applications.

    Acknowledgements

    We thank Drs. Brian Haab and Tingting Yue at Van Andel Research institute for their advices and help with the antibody array technology and Ms. Amy Nelson for her administrative assistance.

    [1]Mishra A, Verma M. Cancer Biomarkers: Are We Ready for the Prime Time? Cancers 2010;2:190-208.

    [2]Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer.The Lancet 2004;363:1049-1057.

    [3]Wu XC, Hotes JL, Fulton PJ. Cancer in North America-1999, North American Association of central cancer Registries, Springfield, IL (1995), P.2002.

    [4]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ.Cancer statistics, 2007. CA Cancer J Clin 2007;57:43-66.

    [5]S.S.Nitecki, M.G. Sarr, T.V. Colby, J.A. Van Heerden.Long term survival after resection of ductal adenocarcinoma of the pancreas: is it really improving? Ann Surg 1995;59-66.

    [6]Cleary SP, Gryfe R, Guindi M, Greig P, Smith L, Mackenzie R, et al. Prognostic factors in resected pancreatic adenocarcinoma: analysis of actual 5-year survivors. J Am Coll Surg 2004;198:722-31.

    [7]Tanase CP, Neagu M, Albulescu R, Hinescu ME. Advances in Pancreatic cancer detection. Adv Clin Chem 2010;51:145-80.

    [8]Mann DV, Edwards R, Ho S, Lau WY, Glazer G. Elevated tumour marker CA19-9: clinical interpretation and influence of obstructive jaundice. Oncol 2000;26:474-479.

    [9]Ferrone CR, Finkelstein DM, Thayer SP, Muzikansky A,Fernandez-delCastillo C, Warshaw AL. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 2006;24:2897-2902.

    [10]Boeck S, Stieber P, Holdenrieder S, Wilkowski R, Heinemann V. Prognostic and therapeutic significance of carbohydrate antigen 19-9 as tumor marker in patients with pancreatic cancer. Oncology 2006;70:255-264.

    [11]Chang CY, Huang SP, Chiu HM, Lee YC, Chen MF, Lin JT. Low efficacy of serum levels of CA 19-9 in prediction of malignant diseases in asymptomatic population in Taiwan. Hepatogastroenterology 2006;53:1-4.

    [12]Buxbaum JL, Eloubeidi MA. Molecular and clinical markers of pancreas cancer. JOP 2010;11:536-44.

    [13]Wigmore SJ, Fearon KC, Sangster K, Maingay JP, Garden OJ, Ross JA. Cytokine regulation of constitutive production of interleukin-8 and -6 by human pancreatic cancer cell lines and serum cytokine concentrations in patients with pancreatic cancer. J Oncol 2002;21:881-886.

    [14]Fearon KC, Barder MD, Falconer JS, McMillan DC,Ross JA, Preston T. Pancreatic cancer as a model: inflammatory mediators, acute-phase response, and cancer cachexia. World J Surg 1999;23:584-8.

    [15]Dube DH, Bertozzi CR. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005;4:477-88.

    [16]Li C, Simeone DM, Brenner DE, Anderson MA, Shedden KA, Ruffin MT, et al. Pancreatic cancer serum detection using a lectin/glycol-antibody array method.Journal of Proteome Research 2009;8:483-92.

    [17]KunoA, Uchiyama N, Koseki-kuno S, Ebe Y, Takashima S, Yamada M. et al. Evanescent-field fluorescenceassisted lectin microarray: a new strategy for glycan profiling. Nat Mathods 2005;2:851-6.

    [18]Zhao J, Patwa TH, Qiu W, Shedden K, Hinderer R, Misek DE, et al. Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. Journal of Proteome Research 2007;5:1864-74.

    [19]Qiu Y, Patwa TH, Xu L, Shedden K, Misek DE, Tuck M,et al. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. Journal of Proteome Research 2008;7:1693-1703.

    [20]Ingvarsson J, Wingren C, Carlsson A, Ellmark P, Wahren B, Engstrom G, et al. Detection of pancreatic cancer using antibody microarray-based serum protein profiling.Proteomics 2008;11:2211-9.

    [21]Haab BB. Applications of antibody array platforms. Current Opinion in Biotechnology 2006;4:415-21.

    [22]Orchekowski R, Hamelinck D, Li L, Gliwa E, vanBrocklin M, Marrero JA, et al. Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Research 2005;23:11193-202.

    [23]Wang X, Wang S, Tang X, Zhang A, Grabinski T, Guo Z,et al. Development and evaluation of monoclonal antibodies against phosphatidylethanolamine binding protein 1 in pancreatic cancer patients. Journal of Immunological Methods 362 (2010)151-160

    [24]Zhou H, Bouwman K, Schotanus M, Verweij C, Marrero JA, Dillon D, et al. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol 2004;5:R28.

    [25]Lian W, Wu D, Lim DV, Jin S. Sensitive detection of multiplex toxins using antibody microarray. Analytical Biochemistry 2010;401:271-9

    [26]Haab, BB, Dunham MJ, Brown PO. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2001;2:1-13

    国产极品粉嫩免费观看在线| 18禁动态无遮挡网站| 最近最新中文字幕免费大全7| 久久人妻熟女aⅴ| 黑人巨大精品欧美一区二区蜜桃| 高清不卡的av网站| 99香蕉大伊视频| 免费观看av网站的网址| 赤兔流量卡办理| 狂野欧美激情性bbbbbb| 人人妻人人添人人爽欧美一区卜| 波野结衣二区三区在线| 久久婷婷青草| 超碰97精品在线观看| 精品少妇内射三级| 日韩大片免费观看网站| 精品亚洲成国产av| 国语对白做爰xxxⅹ性视频网站| svipshipincom国产片| 日韩伦理黄色片| 极品人妻少妇av视频| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久成人aⅴ小说| 亚洲成人一二三区av| 美国免费a级毛片| 欧美精品av麻豆av| 亚洲伊人久久精品综合| 男女边摸边吃奶| www.av在线官网国产| 欧美97在线视频| 欧美成人精品欧美一级黄| 在线观看免费高清a一片| av网站在线播放免费| 美女主播在线视频| 亚洲一码二码三码区别大吗| 在线天堂中文资源库| 午夜影院在线不卡| 亚洲成人一二三区av| 老司机影院成人| 最近中文字幕高清免费大全6| 日韩中文字幕视频在线看片| 久久性视频一级片| 中文字幕另类日韩欧美亚洲嫩草| 人妻一区二区av| 天天躁狠狠躁夜夜躁狠狠躁| 激情视频va一区二区三区| 欧美乱码精品一区二区三区| 丰满迷人的少妇在线观看| 女人精品久久久久毛片| 街头女战士在线观看网站| 黑丝袜美女国产一区| 亚洲成人国产一区在线观看 | 午夜久久久在线观看| 国产国语露脸激情在线看| 久久天躁狠狠躁夜夜2o2o | 人妻 亚洲 视频| 国产深夜福利视频在线观看| 水蜜桃什么品种好| 啦啦啦视频在线资源免费观看| www.精华液| 久久这里只有精品19| 汤姆久久久久久久影院中文字幕| 免费高清在线观看日韩| 免费看不卡的av| tube8黄色片| 欧美日韩亚洲高清精品| 国产 精品1| 久久精品国产综合久久久| 久久人人爽av亚洲精品天堂| 亚洲精品国产一区二区精华液| 日本wwww免费看| 亚洲精品,欧美精品| 欧美在线一区亚洲| 久久女婷五月综合色啪小说| 深夜精品福利| 精品一品国产午夜福利视频| 丝瓜视频免费看黄片| 麻豆精品久久久久久蜜桃| 欧美 亚洲 国产 日韩一| 中文字幕av电影在线播放| av一本久久久久| 777米奇影视久久| 国产精品秋霞免费鲁丝片| 国产精品无大码| 久久免费观看电影| 一级毛片黄色毛片免费观看视频| 久久久久精品人妻al黑| 欧美变态另类bdsm刘玥| 欧美av亚洲av综合av国产av | 国产黄色免费在线视频| 精品国产一区二区三区久久久樱花| 国产一区二区三区综合在线观看| 久久久欧美国产精品| 国产淫语在线视频| 久久久国产欧美日韩av| 狠狠精品人妻久久久久久综合| 麻豆乱淫一区二区| 国产片特级美女逼逼视频| 咕卡用的链子| 国产成人免费无遮挡视频| 国产精品女同一区二区软件| 日本猛色少妇xxxxx猛交久久| 国产成人免费观看mmmm| 国产欧美日韩综合在线一区二区| 国产黄色免费在线视频| 欧美日韩综合久久久久久| 国产一区二区三区综合在线观看| 1024香蕉在线观看| videosex国产| 最新的欧美精品一区二区| 国产精品秋霞免费鲁丝片| 久久99热这里只频精品6学生| 欧美日韩av久久| 曰老女人黄片| 亚洲婷婷狠狠爱综合网| 国产99久久九九免费精品| 亚洲av电影在线观看一区二区三区| 国产亚洲午夜精品一区二区久久| 精品久久蜜臀av无| 亚洲精品乱久久久久久| 午夜老司机福利片| 观看av在线不卡| 亚洲熟女精品中文字幕| 只有这里有精品99| 婷婷色麻豆天堂久久| 一级片免费观看大全| 最近最新中文字幕大全免费视频 | 欧美老熟妇乱子伦牲交| 两个人免费观看高清视频| 国产色婷婷99| 国产精品久久久av美女十八| 亚洲少妇的诱惑av| 伊人久久国产一区二区| 亚洲伊人色综图| 亚洲伊人色综图| 日日啪夜夜爽| 亚洲伊人色综图| 高清在线视频一区二区三区| 伊人久久大香线蕉亚洲五| 自线自在国产av| 黑人巨大精品欧美一区二区蜜桃| 熟妇人妻不卡中文字幕| 嫩草影视91久久| 男人舔女人的私密视频| 久久人人97超碰香蕉20202| 免费黄网站久久成人精品| 999久久久国产精品视频| 18禁观看日本| 熟妇人妻不卡中文字幕| 韩国精品一区二区三区| 嫩草影视91久久| 免费看av在线观看网站| 丰满饥渴人妻一区二区三| 久久久精品区二区三区| 热re99久久精品国产66热6| 亚洲精品在线美女| 婷婷色av中文字幕| 国产一级毛片在线| 中文字幕制服av| 韩国精品一区二区三区| 日日啪夜夜爽| 欧美av亚洲av综合av国产av | 国产麻豆69| av片东京热男人的天堂| 日日撸夜夜添| 国产精品人妻久久久影院| 精品久久蜜臀av无| 午夜久久久在线观看| 欧美精品av麻豆av| 青青草视频在线视频观看| 最近中文字幕高清免费大全6| 啦啦啦视频在线资源免费观看| 嫩草影院入口| 2021少妇久久久久久久久久久| www日本在线高清视频| 午夜激情av网站| 日韩中文字幕欧美一区二区 | 青春草国产在线视频| 激情视频va一区二区三区| 国产欧美日韩一区二区三区在线| 自线自在国产av| 少妇精品久久久久久久| avwww免费| 18禁国产床啪视频网站| 一区二区日韩欧美中文字幕| 成人午夜精彩视频在线观看| 亚洲成人国产一区在线观看 | 成人亚洲欧美一区二区av| 国产有黄有色有爽视频| 国产伦人伦偷精品视频| 日韩,欧美,国产一区二区三区| 狠狠精品人妻久久久久久综合| 一级毛片我不卡| svipshipincom国产片| 观看av在线不卡| 亚洲av国产av综合av卡| 日韩一区二区视频免费看| 亚洲三区欧美一区| 久久 成人 亚洲| 国产一区亚洲一区在线观看| 久久久精品国产亚洲av高清涩受| 亚洲av电影在线进入| 男人添女人高潮全过程视频| 一二三四在线观看免费中文在| 丰满迷人的少妇在线观看| 久久久久精品久久久久真实原创| 最近中文字幕2019免费版| 日韩 欧美 亚洲 中文字幕| 国产精品国产三级国产专区5o| 日韩欧美精品免费久久| 在线 av 中文字幕| 少妇 在线观看| 18禁动态无遮挡网站| 精品亚洲成国产av| 久久久精品免费免费高清| 欧美人与善性xxx| 久久久久久久久久久免费av| 亚洲欧美精品自产自拍| 日韩大码丰满熟妇| 中文字幕人妻熟女乱码| 成人国产av品久久久| 又大又爽又粗| 日韩精品有码人妻一区| 大码成人一级视频| 国产一区二区 视频在线| 毛片一级片免费看久久久久| 欧美人与性动交α欧美软件| 亚洲精品第二区| 三上悠亚av全集在线观看| 日本91视频免费播放| 国产午夜精品一二区理论片| 黄色视频不卡| 国产伦人伦偷精品视频| 最新的欧美精品一区二区| 免费在线观看黄色视频的| xxx大片免费视频| 久久久久人妻精品一区果冻| 美女福利国产在线| 国产片特级美女逼逼视频| 蜜桃国产av成人99| 日本91视频免费播放| 久久天堂一区二区三区四区| 久久精品人人爽人人爽视色| 亚洲七黄色美女视频| 免费人妻精品一区二区三区视频| 国产一区二区在线观看av| 免费av中文字幕在线| 美女福利国产在线| 国产精品99久久99久久久不卡 | 亚洲一区二区三区欧美精品| 少妇被粗大猛烈的视频| 777米奇影视久久| 久久久久久久精品精品| 2021少妇久久久久久久久久久| 建设人人有责人人尽责人人享有的| 老熟女久久久| 亚洲视频免费观看视频| 欧美最新免费一区二区三区| 一级,二级,三级黄色视频| 人人妻人人澡人人看| 欧美国产精品一级二级三级| 毛片一级片免费看久久久久| 亚洲欧美精品综合一区二区三区| 国产爽快片一区二区三区| 一区二区日韩欧美中文字幕| 看十八女毛片水多多多| 欧美精品一区二区大全| 最黄视频免费看| www.精华液| 好男人视频免费观看在线| 国产亚洲av高清不卡| 在线观看人妻少妇| 欧美人与善性xxx| 久久99一区二区三区| av福利片在线| √禁漫天堂资源中文www| 精品卡一卡二卡四卡免费| 麻豆乱淫一区二区| 欧美精品高潮呻吟av久久| 久久精品国产亚洲av涩爱| 午夜福利网站1000一区二区三区| 免费观看a级毛片全部| 美女扒开内裤让男人捅视频| av国产精品久久久久影院| 欧美日韩av久久| 乱人伦中国视频| 国产伦理片在线播放av一区| 亚洲第一区二区三区不卡| 亚洲美女黄色视频免费看| 色综合欧美亚洲国产小说| 久久青草综合色| 国产黄色视频一区二区在线观看| 国产在线一区二区三区精| 黄片小视频在线播放| 中文字幕人妻丝袜制服| 国产精品一国产av| 午夜久久久在线观看| netflix在线观看网站| 性色av一级| 国产亚洲一区二区精品| 亚洲国产精品国产精品| 亚洲男人天堂网一区| 亚洲七黄色美女视频| 极品人妻少妇av视频| 亚洲精品久久午夜乱码| 欧美日韩精品网址| 极品少妇高潮喷水抽搐| 九草在线视频观看| 中文字幕色久视频| 亚洲精品日本国产第一区| 欧美 日韩 精品 国产| 亚洲成人国产一区在线观看 | 午夜福利免费观看在线| 中文欧美无线码| svipshipincom国产片| 国产在视频线精品| 成年av动漫网址| 国产一区二区三区综合在线观看| 丝袜人妻中文字幕| 又粗又硬又长又爽又黄的视频| 王馨瑶露胸无遮挡在线观看| 久久久久久人人人人人| 1024香蕉在线观看| a级毛片在线看网站| 黑人猛操日本美女一级片| 一级毛片我不卡| 亚洲图色成人| 国产成人精品福利久久| 街头女战士在线观看网站| 国产亚洲最大av| 日韩 亚洲 欧美在线| 精品一区二区三卡| 黄频高清免费视频| 精品一区二区免费观看| 中文字幕av电影在线播放| 999精品在线视频| 欧美黄色片欧美黄色片| 男女边摸边吃奶| 免费av中文字幕在线| 曰老女人黄片| 男女无遮挡免费网站观看| 国产免费福利视频在线观看| 一级毛片 在线播放| 亚洲欧美一区二区三区久久| 天天躁夜夜躁狠狠躁躁| 啦啦啦 在线观看视频| 欧美人与性动交α欧美精品济南到| 久久人人爽av亚洲精品天堂| 亚洲三区欧美一区| 黄片小视频在线播放| 免费高清在线观看视频在线观看| 丰满乱子伦码专区| 九色亚洲精品在线播放| 80岁老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影 | 高清视频免费观看一区二区| 欧美亚洲 丝袜 人妻 在线| 久久午夜综合久久蜜桃| 亚洲精品第二区| kizo精华| 久久99精品国语久久久| 久久ye,这里只有精品| 一边摸一边做爽爽视频免费| 国产av一区二区精品久久| 亚洲精品视频女| 搡老乐熟女国产| 韩国高清视频一区二区三区| 亚洲,欧美精品.| 制服诱惑二区| 国产99久久九九免费精品| 亚洲国产成人一精品久久久| 伦理电影大哥的女人| 精品国产乱码久久久久久小说| 久久 成人 亚洲| www.自偷自拍.com| 色网站视频免费| 亚洲精品乱久久久久久| 在现免费观看毛片| 精品视频人人做人人爽| a级毛片在线看网站| 青春草亚洲视频在线观看| 另类精品久久| 亚洲国产日韩一区二区| 人人妻人人澡人人看| 日韩欧美精品免费久久| 在线观看一区二区三区激情| 欧美xxⅹ黑人| 国产精品三级大全| 亚洲熟女毛片儿| 日韩,欧美,国产一区二区三区| 久久精品久久久久久噜噜老黄| 美女福利国产在线| 无遮挡黄片免费观看| 国产女主播在线喷水免费视频网站| √禁漫天堂资源中文www| 麻豆精品久久久久久蜜桃| 十八禁网站网址无遮挡| 视频区图区小说| 一本大道久久a久久精品| 一区福利在线观看| 亚洲精品自拍成人| 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃| 美女脱内裤让男人舔精品视频| 中文精品一卡2卡3卡4更新| 一二三四在线观看免费中文在| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 日韩欧美精品免费久久| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 国产99久久九九免费精品| 国产深夜福利视频在线观看| 精品免费久久久久久久清纯 | 亚洲,欧美精品.| 日韩精品有码人妻一区| 我要看黄色一级片免费的| 久热这里只有精品99| 欧美日韩视频精品一区| 久久韩国三级中文字幕| 午夜影院在线不卡| 十八禁人妻一区二区| 啦啦啦视频在线资源免费观看| 无遮挡黄片免费观看| 一级,二级,三级黄色视频| 久久久久久久精品精品| 日日啪夜夜爽| 母亲3免费完整高清在线观看| 我的亚洲天堂| 精品人妻一区二区三区麻豆| 国产熟女午夜一区二区三区| 热re99久久国产66热| 美女午夜性视频免费| 久久精品亚洲av国产电影网| 毛片一级片免费看久久久久| 国产免费又黄又爽又色| 亚洲精品久久久久久婷婷小说| 亚洲国产精品成人久久小说| 欧美激情 高清一区二区三区| 99精品久久久久人妻精品| 一本大道久久a久久精品| 久久天堂一区二区三区四区| 国产欧美日韩综合在线一区二区| av不卡在线播放| 亚洲视频免费观看视频| 成人国产麻豆网| 一边摸一边抽搐一进一出视频| 欧美黑人欧美精品刺激| 黄网站色视频无遮挡免费观看| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 99久国产av精品国产电影| 国产伦理片在线播放av一区| 精品一区二区免费观看| 国产黄色视频一区二区在线观看| 日韩,欧美,国产一区二区三区| 日韩中文字幕视频在线看片| 久久精品久久久久久久性| 99国产综合亚洲精品| 国产精品一区二区在线不卡| 老熟女久久久| 国产黄色免费在线视频| 99久久综合免费| 国产午夜精品一二区理论片| 成人国产麻豆网| 狂野欧美激情性bbbbbb| 久久精品人人爽人人爽视色| 国产亚洲午夜精品一区二区久久| 在线亚洲精品国产二区图片欧美| 国产福利在线免费观看视频| 观看美女的网站| 一级爰片在线观看| 黄片无遮挡物在线观看| 久久精品亚洲熟妇少妇任你| 久久久久精品人妻al黑| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 午夜av观看不卡| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 如何舔出高潮| 亚洲国产欧美一区二区综合| 99久久99久久久精品蜜桃| a级片在线免费高清观看视频| 99久久精品国产亚洲精品| 丰满饥渴人妻一区二区三| 国产成人精品久久久久久| 国精品久久久久久国模美| 一区二区日韩欧美中文字幕| 极品人妻少妇av视频| 性色av一级| 亚洲精品aⅴ在线观看| 毛片一级片免费看久久久久| 国产一卡二卡三卡精品 | 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| 亚洲精品乱久久久久久| 中文字幕亚洲精品专区| 亚洲av中文av极速乱| 又黄又粗又硬又大视频| 91精品三级在线观看| 大片电影免费在线观看免费| 韩国精品一区二区三区| 中文欧美无线码| 欧美日韩精品网址| 国产av码专区亚洲av| 色视频在线一区二区三区| 欧美黑人精品巨大| 色吧在线观看| 国产成人欧美| 亚洲精品日韩在线中文字幕| 不卡av一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲av电影在线观看一区二区三区| 午夜影院在线不卡| 久久久精品国产亚洲av高清涩受| 久久久久久免费高清国产稀缺| 国产精品久久久久久人妻精品电影 | 久久久久精品久久久久真实原创| 欧美成人午夜精品| 交换朋友夫妻互换小说| 女人爽到高潮嗷嗷叫在线视频| 日韩,欧美,国产一区二区三区| 欧美精品av麻豆av| 美女中出高潮动态图| 一级毛片 在线播放| 久久久久久久国产电影| 国产精品偷伦视频观看了| 黄色视频在线播放观看不卡| 在线天堂最新版资源| 男男h啪啪无遮挡| 亚洲精品美女久久av网站| 久久久久精品国产欧美久久久 | 亚洲一码二码三码区别大吗| 99久久99久久久精品蜜桃| 欧美日本中文国产一区发布| 制服人妻中文乱码| 精品人妻在线不人妻| 国产成人欧美在线观看 | 国产精品亚洲av一区麻豆 | 波多野结衣一区麻豆| 麻豆乱淫一区二区| a级毛片在线看网站| 在线 av 中文字幕| 免费女性裸体啪啪无遮挡网站| 精品少妇内射三级| 黄色视频不卡| 精品少妇久久久久久888优播| 亚洲成人国产一区在线观看 | 高清av免费在线| 一级爰片在线观看| 成人国语在线视频| 97在线人人人人妻| 亚洲欧洲国产日韩| 悠悠久久av| av免费观看日本| 999精品在线视频| 天天躁夜夜躁狠狠久久av| 看免费av毛片| 亚洲国产看品久久| 国产男人的电影天堂91| 亚洲国产毛片av蜜桃av| 桃花免费在线播放| 悠悠久久av| 国产免费福利视频在线观看| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 女性被躁到高潮视频| 亚洲七黄色美女视频| 老司机深夜福利视频在线观看 | 午夜91福利影院| 五月开心婷婷网| 美女福利国产在线| 国产免费现黄频在线看| 亚洲成人手机| 五月开心婷婷网| 少妇猛男粗大的猛烈进出视频| 啦啦啦 在线观看视频| 免费观看性生交大片5| 日韩,欧美,国产一区二区三区| 天美传媒精品一区二区| 国产探花极品一区二区| 日韩成人av中文字幕在线观看| 欧美人与善性xxx| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 91老司机精品| 国产一区二区三区综合在线观看| 亚洲精品久久午夜乱码| 亚洲精品美女久久av网站| 一区二区三区四区激情视频| www.av在线官网国产| 卡戴珊不雅视频在线播放| 精品酒店卫生间| 99久久综合免费| 人体艺术视频欧美日本| 美国免费a级毛片| 男女之事视频高清在线观看 | 一本色道久久久久久精品综合| tube8黄色片| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区| 男女高潮啪啪啪动态图| 国产又色又爽无遮挡免| 国产一区二区 视频在线| 亚洲在久久综合| 一二三四中文在线观看免费高清| 国产成人精品福利久久| 好男人视频免费观看在线| 国产有黄有色有爽视频| 国产精品嫩草影院av在线观看|