• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EFFECT OF COLD SPRAY PARTICLE CONDITIONS AND OPTIMAL STANDOFF DISTANCE ON IMPACT VELOCITY

    2011-09-27 12:32:12WANGXiaofangYINShuoXUBaopeng

    WANG Xiao-fang, YIN Shuo, XU Bao-peng

    (1.School of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China;2.Faculty of Engineering,Kingston University,London SW15 3DW,England)

    0 Introduction

    Cold spray,also called cold gas-dynamic spray (CGDS),is radically different from conventional thermal spray methods.The deposition process relies purely on kinetic energy rather than the combination of thermal and kinetic components.In this process,spray particles(generally<50μm)are accelerated to a high velocity(ranging from 300to 1 200m/s)by the supersonic gas flow which is generated in the convergent-divergent de Laval nozzle[1-4].A coating is formed through the intensive plastic deformation of particles impacting upon a substrate at a temperature well below the melting point of spray material[5,6].Generally,there exists a critical velocity for a given spray material,at which the transient from erosion of substrate to particle deposition takes place[2-6].Only if the particle impact velocity is above the critical value,could the coating be formed.Cold spray has many advantages,such as the wider choices of metals and alloys as coating materials,the capability of oxygen-free coating and high deposition efficiency[4,7-10].It has attracted more and more attentions now.

    During the past decade,several researchers had focused on the effect of particle conditions on its acceleration behavior inside and outside the nozzle.Jen,etal.[11]reported that the bow shock waves almost had no effect on copper particles of more than 5 μm and significantly affected the particles less than 1μm through CFD simulations.Li,etal.[12]further showed that particles with smaller size,lower density or more irregular shape were easier to be accelerated by the carrier-gas via numerical method.Pattison,etal.[13]confirmed this using the experiment in a free jet.However,a systemic investigation on effect of particle size,density and shape on its impact velocity,which is the most important factor in cold spray process,is still lacking.

    For the optimal standoff distance,there have been very little literatures concerning this research.Gilmore,etal.[4]sprayed copper particles with helium and found that particle velocity only began to decrease when the standoff distance was more than 50mm.Stoltenhoff,etal.[14]gave aproof to this observation by using numerical simulation.Pattison,etal.[13]employed the experimental method to point out that there exists an optimal region in which the deposition efficiency can reach a high value.Although some reports referred to the standoff distance in cold spray,the reason why the optimal standoff distance exists and how to determine it are still not well understood.

    Therefore,in this study,the numerical method was employed to give a detailed investigation into the effect of particle conditions on its impact velocity, and examine the determination of optimal standoff distance.

    1 Mathematical modeling

    1.1 Numerical modeling

    Numerical modeling is performed by using the CFD software Fluent to determine the flow field of free jet and impact jet outside the nozzle.The gas is taken as an ideal and compressible one.A coupled implicit method is used to solve the flow field and the result of flow field in a steady state is obtained.The standardK εturbulence model available in Fluent is utilized for modeling the turbulent flow in the simulation.The accelerating of particles is computed using discrete phase modeling (DPM).The interaction of particle with gas is not considered in this study.The governing equations for gas flow include the physical laws of conservation of mass,momentum,and energy.Models describing the dynamic behavior of in-flight particles during the two-phase flow have been well documented in the Fluent manual[15].

    1.2 Geometrical model and boundary conditions

    Owing to the axisymmetrical characteristics of the flow field in this study,a two-dimensional symmetrical model is employed as shown in Fig.1.The diameter of the nozzle exit is chosen as 4mm.Pressure-based boundary conditions are applied to the inlet and outlet,while no-slip condition and a fixed heat flux of zero are enforced at the nozzle wall and substrate.The atmosphere is treated as non-reflectingboundary.The meshing is conducted with the quad elements.The initial velocity of the carriergas has been set as 617m/s at the nozzle exit according to the authors′previous experimental results.Moreover,it is assumed that the initial velocity of particles is defined as the same value as that of the carrier-gas in order to ensure that all the particles have a same initial condition at the nozzle exit and make the comparison much clearer.

    Fig.1 Schematic diagram of the computational domain and boundaries of the free jet and the impact jet

    2 Results and discussion

    2.1 Gas flow field in the free jet

    Fig.2illustrates the pressure profile in the free jet by using air as carrier-gas in order to find the general flow feature of free jet flow field.A well-formed complex wave structure can obviously be seen,where dilatational waves and oblique shock waves appear alternately.The first region near the nozzle exit presents several dilatational waves owing to the non-ideally expanding with a rapid acceleration of gas velocity and then presents compression waves as a result of the reflection at the atmosphere boundary.These compressional waves are combined to the oblique shock wave to reduce the flow velocity with increasing the pressure and the temperature sharply.The periodic variation of the wave structure results in the fluctuation of carrier-gas velocity at the centerline.Furthermore,it is also noticed that the oscillation amplitude of this complicated wave structure is reduced gradually along the jet direction because of the viscous dissipation.Eventually,the flow energy is dissipated and stabilized to the environmental pressure through continuous adjustment of the supersonic flow.

    Fig.2 Pressure profile outside the nozzle in the free jet using air as carrier-gas at a pressure of 0.252MPa and a temperature of 300K

    Fig.3 Velocity plot of carrier-gas along the nozzle centerline

    Fig.3shows the velocity plot of carrier-gas along the nozzle centerline.It is clear that the gas velocity experiences a periodic fluctuation along the centerline in the form of a rapid increase followed by a steep decrease.The carrier-gas has been accelerated through the dilatational wave,and then starts to decrease when penetrating into the oblique shock wave until the next expansion wave comes.Moreover,the maximum gas velocity is about 840m/s at the location of 12mm from the nozzle exit after the first dilatational wave and the subsequent peak values decrease gradually.The velocity distribution can be well explained by the wave structure shown in Fig.2.Jodoin,etal.[16]also reported the same phenomenon through experiments using nitrogen as carrier-gas at the stagnation pressure of 2.4MPa and temperature of 733K.

    2.2 Effect of particle size,density and shape on particle impact velocity

    Following the free jet study,impact jet is simulated to clarify the effect of particle size,density and shape on particle impact velocity.Fig.4exhibits the pressure profile in the impact jet with the substrate 16mm away from the nozzle exit by using air as carrier-gas.It is obvious that the existence of the substrate causes the wave structure more different from that in the free jet.The obvious dilatationalwaves are seen outside the nozzle exit,followed by the oblique shock waves.Between the nozzle exit and the substrate,there exists a wellformed bow shock wave located close to the substrate,which arises from the interaction between the gas flow and the substrate.The pressure in this region is well confined,leading to a much higher pressure increase at the substrate and a significantly different flow pattern.The flow velocity decreases rapidly to nearly zero when the gas flow penetrates into the bow shock wave and approaches the substrate.

    Fig.4 Pressure profile outside the nozzle using air as carrier-gas with the substrate 16mm away from the nozzle exit at a pressure of 0.252MPa and a temperature of 300K

    Fig.5compares the impact velocities of spherical copper, titanium and aluminum particles in order to find the effect of material density on particle impact velocity.The densities of aluminum,titanium and copper powders are 2 719,4 850and 8 978kg/m3,respectively.It is apparent that three types of particles almost have the same velocity changing tendency.Aluminum particle with the lowest density is more susceptible to carrier-gas than the other two particles.Therefore,it is easily picked up and accelerated to the highest velocity before entering into the bow shock wave.However,when penetrating into the bow shock waves,aluminum particle is also easily decelerated and the velocity drops steeply from the highest value of nearly 640m/s to the lowest value of about 610m/s,while titanium particle and copper particle achieve relatively higher impact velocities due to their large densities.Moreover,in order to examine the influence of particle shape on the particle impact velocity,the comparison of spherical and non-spherical titanium particles with the equivalent diameter of 5μm is also given in Fig.5.It is easily found that the non-spherical titanium particle has a higher velocity before penetrating into the bow shock waves,but a lower impact velocity.This fact can be linked to the morphologies of particles.The drag coefficient of a sphere particle is less than that of an equivalent diameter but irregular shape particle.Therefore,the non-spherical titanium particle can be easily picked up by the gas flow and also seriously affected by the bow shock waves.

    Fig.5 Comparison of velocities of spherical copper,titanium, aluminum particles and nonspherical titanium at the standoff distance of 16mm along the nozzle centerline

    Fig.6shows the centerline velocity of copper particles with different diameters in the impact jet.Small particle is easily picked up through the drag force of carrier-gas compared with large one.However,as the particles traverse the bow shock waves,the acceleration suddenly becomes deceleration.When coming to the bow shock waves,large particles are affected slightly by the drag force and maintain sufficient impact velocity as a result of the significant momentum and energy.On the contrary,small and light particles are decelerated steeply by thebow shock waves although they can be accelerated greatly by the carrier-gas before entering the bow shock waves.The final impact velocities of copper particles with different diameters are displayed in Fig.6.It gives a clear suggestion that the larger particle can achieve a higher impact velocity when impacting the substrate.It is clearly found that with increasing the particle size,the effect of gas flow becomes slight and the impact velocity rises gradually.Jen,etal.[11]also reported that the bow shock waves almost had no effect on copper particle with a diameter larger than 5 μm and significantly affected the particle with a diameter less than 1μm.

    Fig.6 Comparison of velocity of copper particles with different diameters at the standoff distance of 16mm along the nozzle centerline

    2.3 Optimal standoff distance

    Fig.7shows the effect of standoff distance(d)on impact velocity by using copper particles with different sizes.It is clearly observed that there exists an optimal standoff distance between the nozzle exit and the substrate.Under the given condition in this study,the optimal distance is 16mm.The reason for this is that the carrier-gas velocity at 16mm is the lowest in the first changing period in the free jet as shown in Fig.3.Therefore,when setting the substrate at this position,the intensity of the bow shock waves must be very small,which could weaken the deceleration effect of the bow shock waves on particle impact velocity and thus particle can achieve a higher impact velocity.However,it also can be noticed that in the free jet there exist several velocity changing periods and each has a minimum point of gas velocity.Thus,it can be deduced that there must be another limitation to determine the optimal standoff distance of 16 mm.In order to find this determinant,the standoff distance of 32mm is chosen.The carrier-gas velocity at this distance is the lowest in the second changing period in the free jet.Fig.8shows pressure profile outside the nozzle using air as carrier-gas with the substrate 32mm away from the nozzle exit at a pressure of 0.252 MPa and a temperature of 300K.It can be seen that the particle experiences twice acceleration and three times deceleration before entering into the bow shock waves due to the alternantdilatational waves and oblique shock waves.After the second dilatational wave, the deceleration effect of drag force becomes more intensive than the positive drag force as a result of the energy dissipation in carrier-gas.Therefore,the in-flight particle velocity can not reach the peak before permeating into the bow shock waves.However, when the standoff distance is 16mm as shown in Fig.5,the particle experiences twice acceleration and only once deceleration.The particle uses the positive drag force effectively to obtain a higher velocity compared with that the standoff distance is 32 mm.

    Fig.7 Effect of standoff distance on impact velocity by using copper particles with different diameters

    Fig.8 Pressure profile outside the nozzle using air as carrier-gas with the substrate 32mm away from the nozzle exit at a pressure of 0.252MPa and a temperature of 300K

    From the discussion above,it can be easily concluded that the determination of the optimal standoff distance needs two essential conditions to ensure that the particle can achieve the highest impact velocity.The first one is that the substrate must be located at the place where the carrier-gas velocity is lower in the free jet.The other is that the particles should be accelerated twice before entering the bow shock wave,which means there must be two dilatational waves in front of the bow shock wave.The previous experimental study on the standoff distance conducted by Pattison,etal.[13]also reported the similar results that the optimal standoff distance in cold spray linked closely to the bow shock wave intensity.Only for the proper standoff distance at which the bow shock wave intensity is weak,the particle impact velocity and the deposition efficiency can reach a higher value.Also,Li,etal.[17]reported the same phenomenon that standoff distance actually affected the impact velocity and the optimal standoff distance indeed existed in cold spray by experiment method.These facts further enhance the value of this study.

    3 Conclusions

    (1)Particle size,density and shape play critical roles in in-flight particle velocity and impact velocity.Particles with small size,low density or irregular shape can be easily affected by the carrier-gas.These particles can be accelerated to a higher velocity by the positive drag force and decelerated sharply by viscous dissipation and the bow shock wave.But large size,high density or spherical particle is not sensitive to the carrier-gas and thus can obtain a higher impact velocity while impacting the substrate.

    (2)The existence of the substrate causes the wave structure more different from that in the free jet.The obvious bow shock wave which arises from the interaction between the gas flow and the substrate,leading to a steep deceleration of particle velocity.

    (3) There exists an optimal standoff distance.The determination of this distance requires two conditions.The first one is that the substrate must be located at the place where the carrier-gas velocity is lower.The other is that particles should be accelerated twice before entering the bow shock wave,which means there must be two dilatational waves in front of the bow shock wave.

    [1]ALKIMOV A P,KOSAREV V F,PAPYRIN A N.A method of cold gas-dynamic deposition [J].Doklady Akademii Nauk SSSR,1990,318 (5):1062-1065

    [2]DYKHUIZEN R C,SMITH M F.Gas dynamic principles of cold spray[J].Journal of Thermal Spray Technology,1998,7(2):205-212

    [3]ASSADI H,GARTNER F,STOLTENHOFF T,etal.Bonding mechanism in cold gas spraying [J].Acta Materialia,2003,51(15):4379-4394

    [4]GILMORE D L,DYKHUIZEN R C,NEISER R A,etal.Particle velocity and deposition efficiency in the cold spray process [J].Journal of Thermal Spray Technology,1999,8(4):576-582

    [5]PAPYRIN A.Cold spray technology [J].Advanced Materials and Processes,2001,159(9):49-51

    [6]KARTHIKEYAN J.Cold spray technology [J].Advanced Materials and Processes,2005,163(3):33-35

    [7]STEENKISTE T V, SMITH J, TEETS R.Aluminum coatings via kinetic spray with relatively large powder particles [J].Surface and Coatings Technology,2002,154(2-3):237-252

    [8]LI C J,LI W Y.Deposition characteristics of titanium coating in cold spraying [J].Surface and Coatings Technology,2003,167(2-3):278-283

    [9]KIM H J,LEE C H,HWANG S Y.Fabrication of WC-Co coatings by cold spray deposition[J].Surface and Coatings Technology,2005,191(2-3):335-340

    [10]LI W Y,LI C J,WANG Y Y,etal.Effect of Cu particle parameters on its impacting behavior in cold spraying [J].Acta Metallurgica Sinica,2005,41(3):282-286 (in Chinese)

    [11]JEN T C,LI L J,CUI W Z,etal.Numerical investigations on cold gas dynamic spray process with nano-and microsize particles[J].International Journal of Heat and Mass Transfer,2005,48(21-22):4384-4396

    [12]LI W Y,LI C J.Optimization of spray conditions in cold spraying based on the numerical analysis of particle velocity [J].Transactions of Nonferrous Metals Society of China,2004,14(s2):43-48

    [13]PATTISON J,CELOTTO S,DHAN A,etal.Standoff distance and bow shock phenomena in the cold spray process [J].Surface and Coatings Technology,2008,202(8):1443-1454

    [14]STOLTENHOFF T,KREYE H,RICHTER H J.An analysis of the cold spray process and its coatings[J].Journal of Thermal Spray Technology,2002,11(4):542-550

    [15]Fluent Inc..FLUENT 6.1User′s Guider [Z].Lebanon:Fluent Inc.,2003

    [16]JODOIN B,RALETZ F,VARDELLE M.Cold spray modeling and validation using an optical diagnostic method [J].Surface and Coatings Technology,2006,200(14-15):4424-4432

    [17]LI W Y,ZHANG C,GUO X P,etal.Effect of standoff distance on coating deposition characteristics in cold spraying [J].Materials and Design,2008,29(2):297-304

    国产精品一区二区免费欧美| 日韩一卡2卡3卡4卡2021年| 国产高清videossex| 精品久久久精品久久久| 韩国精品一区二区三区| 五月开心婷婷网| 久久精品成人免费网站| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影| 国产av一区二区精品久久| 免费少妇av软件| 亚洲精品美女久久av网站| 亚洲一码二码三码区别大吗| 国产男女内射视频| 欧美日韩瑟瑟在线播放| 国产主播在线观看一区二区| 1024视频免费在线观看| 91大片在线观看| 777久久人妻少妇嫩草av网站| 免费少妇av软件| 午夜亚洲福利在线播放| 精品午夜福利视频在线观看一区| 国产精品久久久久成人av| 亚洲全国av大片| 另类亚洲欧美激情| 欧美在线一区亚洲| 精品熟女少妇八av免费久了| 国产精华一区二区三区| 一夜夜www| 日韩视频一区二区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 午夜视频精品福利| 国产日韩欧美亚洲二区| 丰满饥渴人妻一区二区三| 12—13女人毛片做爰片一| 精品一品国产午夜福利视频| 黑丝袜美女国产一区| 中文字幕人妻熟女乱码| 久久人妻av系列| 美女福利国产在线| 两性午夜刺激爽爽歪歪视频在线观看 | 在线免费观看的www视频| 十八禁网站免费在线| 99re6热这里在线精品视频| 亚洲国产精品sss在线观看 | 黄色成人免费大全| 精品国产亚洲在线| 国产精品综合久久久久久久免费 | 久久久久久亚洲精品国产蜜桃av| 亚洲成国产人片在线观看| 中出人妻视频一区二区| 国产精品一区二区免费欧美| 高清欧美精品videossex| 国产精品亚洲一级av第二区| 婷婷精品国产亚洲av在线 | 人人妻人人添人人爽欧美一区卜| 超碰成人久久| 曰老女人黄片| a级片在线免费高清观看视频| 久久久久国内视频| 国产99久久九九免费精品| 老汉色∧v一级毛片| 美女高潮喷水抽搐中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产99久久九九免费精品| 午夜视频精品福利| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| 青草久久国产| 国产1区2区3区精品| 亚洲精品中文字幕在线视频| 女人久久www免费人成看片| 18禁黄网站禁片午夜丰满| 国产成人免费无遮挡视频| 丝瓜视频免费看黄片| 女性生殖器流出的白浆| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| tube8黄色片| 亚洲九九香蕉| 亚洲avbb在线观看| 999久久久精品免费观看国产| 在线看a的网站| 一区二区三区国产精品乱码| 亚洲人成77777在线视频| 一进一出好大好爽视频| 大陆偷拍与自拍| 国产精品偷伦视频观看了| 久久精品国产99精品国产亚洲性色 | 国产人伦9x9x在线观看| 韩国av一区二区三区四区| 在线观看www视频免费| 欧美在线黄色| 90打野战视频偷拍视频| 国产黄色免费在线视频| 欧美丝袜亚洲另类 | 女性被躁到高潮视频| 中文字幕制服av| 欧美老熟妇乱子伦牲交| 中文字幕人妻丝袜一区二区| 国产av一区二区精品久久| 国产男靠女视频免费网站| 精品国产一区二区三区四区第35| 精品一区二区三卡| 80岁老熟妇乱子伦牲交| 国产精品影院久久| 国产主播在线观看一区二区| 国产一区二区三区在线臀色熟女 | 欧美日韩视频精品一区| 国产精品免费大片| 亚洲午夜理论影院| 国产亚洲精品久久久久久毛片 | 久久精品国产99精品国产亚洲性色 | 国产精品亚洲一级av第二区| 丁香欧美五月| 国产一区二区三区在线臀色熟女 | 国产男女内射视频| 亚洲午夜理论影院| 国产主播在线观看一区二区| 操出白浆在线播放| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 久久午夜亚洲精品久久| 国产亚洲精品一区二区www | 亚洲av成人一区二区三| 国产又爽黄色视频| 成年人黄色毛片网站| 亚洲精品av麻豆狂野| av线在线观看网站| 久久久久久久久久久久大奶| 啦啦啦在线免费观看视频4| 纯流量卡能插随身wifi吗| 91成年电影在线观看| 国产97色在线日韩免费| 久久国产精品影院| 视频区欧美日本亚洲| 日本撒尿小便嘘嘘汇集6| 免费日韩欧美在线观看| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| 9热在线视频观看99| 国产精品二区激情视频| 亚洲人成电影免费在线| 亚洲欧洲精品一区二区精品久久久| 欧美激情极品国产一区二区三区| 亚洲黑人精品在线| 国产欧美日韩精品亚洲av| 欧美日本中文国产一区发布| 黄片小视频在线播放| 亚洲av成人av| 成年人黄色毛片网站| 一级,二级,三级黄色视频| 国产高清激情床上av| 90打野战视频偷拍视频| 两性夫妻黄色片| 男女高潮啪啪啪动态图| 久久精品亚洲熟妇少妇任你| 精品人妻1区二区| 日本黄色日本黄色录像| 女人久久www免费人成看片| 久久香蕉激情| 免费在线观看日本一区| 深夜精品福利| 亚洲国产精品sss在线观看 | 亚洲av片天天在线观看| 欧美日韩黄片免| 在线观看免费视频网站a站| 国产精品香港三级国产av潘金莲| 欧美激情高清一区二区三区| 欧美日韩视频精品一区| 久久人妻av系列| 在线十欧美十亚洲十日本专区| 久久久久久久国产电影| 搡老岳熟女国产| 亚洲九九香蕉| 99riav亚洲国产免费| 久久精品国产99精品国产亚洲性色 | 亚洲精品中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 日韩欧美一区二区三区在线观看 | 91麻豆av在线| 黄色a级毛片大全视频| 亚洲三区欧美一区| 欧美av亚洲av综合av国产av| 国产一区二区激情短视频| 91成年电影在线观看| 满18在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美大码av| 91在线观看av| 又紧又爽又黄一区二区| 成人av一区二区三区在线看| 国产又色又爽无遮挡免费看| 亚洲成人国产一区在线观看| bbb黄色大片| 校园春色视频在线观看| 国产熟女午夜一区二区三区| 国产片内射在线| 欧美激情久久久久久爽电影 | 婷婷丁香在线五月| 制服人妻中文乱码| 欧美激情久久久久久爽电影 | √禁漫天堂资源中文www| 亚洲色图综合在线观看| 亚洲欧美精品综合一区二区三区| 女人被躁到高潮嗷嗷叫费观| 黄色 视频免费看| 亚洲精品一二三| 亚洲精品中文字幕一二三四区| 18禁裸乳无遮挡动漫免费视频| 中文字幕最新亚洲高清| 亚洲专区国产一区二区| 不卡一级毛片| 在线观看一区二区三区激情| 老司机影院毛片| 一级,二级,三级黄色视频| av网站在线播放免费| 日韩免费高清中文字幕av| 热re99久久精品国产66热6| 久久香蕉精品热| 精品亚洲成国产av| 香蕉丝袜av| 性少妇av在线| netflix在线观看网站| www日本在线高清视频| 悠悠久久av| 国产精品香港三级国产av潘金莲| 大香蕉久久网| 狠狠婷婷综合久久久久久88av| 视频区图区小说| 成人国语在线视频| 怎么达到女性高潮| 国产精品乱码一区二三区的特点 | 亚洲在线自拍视频| 午夜两性在线视频| 下体分泌物呈黄色| 麻豆成人av在线观看| 久久国产乱子伦精品免费另类| videosex国产| 女警被强在线播放| 国产成人精品久久二区二区免费| 久久人人97超碰香蕉20202| 国产不卡一卡二| 国产一区二区三区在线臀色熟女 | 免费在线观看黄色视频的| 99精品在免费线老司机午夜| 欧美 日韩 精品 国产| 久久香蕉国产精品| 身体一侧抽搐| 天天躁狠狠躁夜夜躁狠狠躁| 脱女人内裤的视频| 国产精品永久免费网站| 麻豆乱淫一区二区| 亚洲视频免费观看视频| 亚洲一码二码三码区别大吗| 国产麻豆69| 免费一级毛片在线播放高清视频 | 男人舔女人的私密视频| 亚洲片人在线观看| 日韩大码丰满熟妇| 亚洲色图综合在线观看| 男女午夜视频在线观看| 亚洲一码二码三码区别大吗| 两个人看的免费小视频| 老汉色∧v一级毛片| 亚洲av日韩精品久久久久久密| 亚洲精品在线美女| 日本a在线网址| 法律面前人人平等表现在哪些方面| 手机成人av网站| 成在线人永久免费视频| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| av一本久久久久| 天天影视国产精品| 亚洲欧美激情综合另类| www.自偷自拍.com| 在线观看日韩欧美| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 欧美日韩精品网址| 交换朋友夫妻互换小说| av不卡在线播放| 五月开心婷婷网| 精品第一国产精品| 18禁国产床啪视频网站| 在线播放国产精品三级| 精品国产一区二区三区四区第35| 亚洲第一欧美日韩一区二区三区| videos熟女内射| 欧美日韩一级在线毛片| 老司机靠b影院| 欧美在线一区亚洲| 日日爽夜夜爽网站| 午夜福利视频在线观看免费| 中文字幕高清在线视频| 一区二区三区激情视频| 女性生殖器流出的白浆| 亚洲欧洲精品一区二区精品久久久| 欧美不卡视频在线免费观看 | 国产国语露脸激情在线看| 亚洲午夜理论影院| 精品国产一区二区三区四区第35| 男人操女人黄网站| 91九色精品人成在线观看| 国产高清激情床上av| 免费不卡黄色视频| 身体一侧抽搐| 久久精品国产亚洲av高清一级| 亚洲在线自拍视频| 国产成人系列免费观看| 亚洲五月婷婷丁香| 欧美 亚洲 国产 日韩一| 成年动漫av网址| 免费看十八禁软件| 老司机福利观看| 777久久人妻少妇嫩草av网站| 亚洲av成人av| 中文字幕色久视频| 亚洲精品在线美女| 久久中文字幕人妻熟女| 国产精品一区二区免费欧美| av中文乱码字幕在线| 久久精品人人爽人人爽视色| 亚洲av熟女| 国产精品电影一区二区三区 | 女人精品久久久久毛片| 亚洲精品在线观看二区| 色婷婷av一区二区三区视频| 极品少妇高潮喷水抽搐| 在线av久久热| 日韩成人在线观看一区二区三区| 狂野欧美激情性xxxx| 涩涩av久久男人的天堂| av片东京热男人的天堂| 免费黄频网站在线观看国产| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 少妇粗大呻吟视频| 人人妻人人澡人人看| 亚洲国产欧美日韩在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 三上悠亚av全集在线观看| 午夜精品在线福利| 久久香蕉精品热| 丝袜人妻中文字幕| 天堂俺去俺来也www色官网| 最近最新免费中文字幕在线| 久久国产精品影院| 1024视频免费在线观看| 日韩中文字幕欧美一区二区| 男人操女人黄网站| 18禁观看日本| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av在线 | 人妻 亚洲 视频| 午夜成年电影在线免费观看| 80岁老熟妇乱子伦牲交| 国产aⅴ精品一区二区三区波| 久热这里只有精品99| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| bbb黄色大片| 欧美激情 高清一区二区三区| tube8黄色片| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 老司机午夜福利在线观看视频| 涩涩av久久男人的天堂| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 亚洲综合色网址| 一级a爱片免费观看的视频| 99久久精品国产亚洲精品| 亚洲av成人不卡在线观看播放网| 精品国产一区二区久久| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 人人妻,人人澡人人爽秒播| 欧美人与性动交α欧美精品济南到| 成熟少妇高潮喷水视频| 黄网站色视频无遮挡免费观看| 一进一出好大好爽视频| 国产97色在线日韩免费| 亚洲精品国产区一区二| 亚洲黑人精品在线| 亚洲国产欧美网| 人人妻人人爽人人添夜夜欢视频| 777米奇影视久久| 日韩免费av在线播放| 国产黄色免费在线视频| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜制服| 97人妻天天添夜夜摸| 久久精品91无色码中文字幕| 久久久久久免费高清国产稀缺| 亚洲色图 男人天堂 中文字幕| 麻豆成人av在线观看| 国产精华一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 国产熟女午夜一区二区三区| 国产精品亚洲一级av第二区| 大型av网站在线播放| 国产精品一区二区精品视频观看| 欧美精品人与动牲交sv欧美| 一本大道久久a久久精品| 亚洲av日韩精品久久久久久密| 91在线观看av| 亚洲欧美一区二区三区黑人| 一二三四在线观看免费中文在| 麻豆av在线久日| 国产精品98久久久久久宅男小说| 欧美成狂野欧美在线观看| ponron亚洲| 性少妇av在线| av欧美777| www.熟女人妻精品国产| 天堂√8在线中文| av国产精品久久久久影院| 五月开心婷婷网| 好看av亚洲va欧美ⅴa在| 久久人妻熟女aⅴ| 欧美日韩av久久| 欧美亚洲 丝袜 人妻 在线| 999精品在线视频| 三级毛片av免费| 国产日韩欧美亚洲二区| 成熟少妇高潮喷水视频| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 亚洲av电影在线进入| av电影中文网址| 亚洲精品中文字幕一二三四区| 欧美精品亚洲一区二区| 中文欧美无线码| 欧美日韩亚洲高清精品| 首页视频小说图片口味搜索| 午夜福利乱码中文字幕| 高潮久久久久久久久久久不卡| 老汉色av国产亚洲站长工具| 韩国av一区二区三区四区| 满18在线观看网站| 精品国产亚洲在线| 国产男女超爽视频在线观看| 99热只有精品国产| 亚洲熟女精品中文字幕| 色综合婷婷激情| 捣出白浆h1v1| 欧美国产精品一级二级三级| av天堂在线播放| 亚洲av欧美aⅴ国产| 亚洲av片天天在线观看| 国产精品二区激情视频| 黑人猛操日本美女一级片| 男女午夜视频在线观看| 国产成人av教育| 老汉色∧v一级毛片| 18在线观看网站| 欧美激情久久久久久爽电影 | 久久精品亚洲精品国产色婷小说| 天堂√8在线中文| 国产精品一区二区在线不卡| 99re在线观看精品视频| 久久久国产成人精品二区 | 日韩欧美一区视频在线观看| 少妇的丰满在线观看| 国产男靠女视频免费网站| 国产国语露脸激情在线看| 黄色 视频免费看| 青草久久国产| 黄网站色视频无遮挡免费观看| 国产精品 国内视频| 九色亚洲精品在线播放| 久9热在线精品视频| 人人妻,人人澡人人爽秒播| 久久久国产一区二区| 91麻豆精品激情在线观看国产 | 大型黄色视频在线免费观看| 91麻豆av在线| 99热只有精品国产| 美国免费a级毛片| 亚洲精品自拍成人| 丝瓜视频免费看黄片| 老司机午夜福利在线观看视频| 国产91精品成人一区二区三区| 少妇猛男粗大的猛烈进出视频| 男女免费视频国产| 婷婷成人精品国产| 女人精品久久久久毛片| 亚洲精品一二三| 久久国产亚洲av麻豆专区| 满18在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 久久久久国产一级毛片高清牌| 欧美激情 高清一区二区三区| 亚洲av片天天在线观看| 国产精品久久视频播放| 999久久久国产精品视频| 91麻豆av在线| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区久久| 丝袜人妻中文字幕| 国产日韩欧美亚洲二区| 国产aⅴ精品一区二区三区波| 亚洲av电影在线进入| 欧美精品亚洲一区二区| 国产成人av教育| 午夜福利乱码中文字幕| 国产1区2区3区精品| 久久精品国产亚洲av高清一级| 999久久久精品免费观看国产| av片东京热男人的天堂| 亚洲视频免费观看视频| 咕卡用的链子| 视频在线观看一区二区三区| 成人国产一区最新在线观看| 亚洲国产中文字幕在线视频| 成人免费观看视频高清| 老司机在亚洲福利影院| 国产欧美日韩综合在线一区二区| 久久亚洲精品不卡| 亚洲中文日韩欧美视频| 一级片免费观看大全| 12—13女人毛片做爰片一| 久久久久视频综合| 老汉色av国产亚洲站长工具| 色老头精品视频在线观看| 69精品国产乱码久久久| 国产又爽黄色视频| 啦啦啦在线免费观看视频4| 天天操日日干夜夜撸| 美女视频免费永久观看网站| 可以免费在线观看a视频的电影网站| 欧美黑人欧美精品刺激| 欧美国产精品va在线观看不卡| 成人手机av| 免费黄频网站在线观看国产| 夜夜躁狠狠躁天天躁| 亚洲精品中文字幕一二三四区| 美女视频免费永久观看网站| 熟女少妇亚洲综合色aaa.| 成年人免费黄色播放视频| 国产精品乱码一区二三区的特点 | 欧美在线黄色| 久久精品aⅴ一区二区三区四区| 99久久精品国产亚洲精品| 搡老岳熟女国产| 国产成人欧美在线观看 | 国产亚洲精品久久久久5区| 国产亚洲精品一区二区www | 看黄色毛片网站| 露出奶头的视频| 搡老熟女国产l中国老女人| 狠狠婷婷综合久久久久久88av| 欧美性长视频在线观看| 国产成人精品久久二区二区91| 午夜激情av网站| 最新的欧美精品一区二区| 精品国产超薄肉色丝袜足j| 国产av又大| 久久久久久久国产电影| 久久这里只有精品19| av天堂在线播放| 精品午夜福利视频在线观看一区| 人妻 亚洲 视频| 国产成人av激情在线播放| 日韩三级视频一区二区三区| 欧美最黄视频在线播放免费 | 在线永久观看黄色视频| 国产高清国产精品国产三级| 十八禁网站免费在线| 女性被躁到高潮视频| 视频区图区小说| 欧美老熟妇乱子伦牲交| 欧美国产精品va在线观看不卡| 久99久视频精品免费| 热99久久久久精品小说推荐| 国产亚洲精品一区二区www | 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 18在线观看网站| 搡老岳熟女国产| 成人精品一区二区免费| 亚洲精品自拍成人| 日韩成人在线观看一区二区三区| 99精品在免费线老司机午夜| 麻豆av在线久日| 久久久国产欧美日韩av| 啦啦啦在线免费观看视频4| 视频在线观看一区二区三区| 亚洲国产精品sss在线观看 | 欧美日韩精品网址| 国产亚洲欧美98| 91精品三级在线观看| 手机成人av网站| 国产成人免费观看mmmm| 成年人免费黄色播放视频| 亚洲五月色婷婷综合| 精品欧美一区二区三区在线| 大香蕉久久网| 建设人人有责人人尽责人人享有的| 成年女人毛片免费观看观看9 | 久久人人爽av亚洲精品天堂| 男女下面插进去视频免费观看| av天堂在线播放| 精品国内亚洲2022精品成人 | 亚洲国产精品合色在线| 久久久精品国产亚洲av高清涩受| 亚洲,欧美精品.| 欧美激情久久久久久爽电影 |