• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The maximum entropy principle for radiation fields?

    2011-05-12 07:56:20GUQiao
    關(guān)鍵詞:生物學(xué)物理生物

    GU Qiao

    1)International Institute of Quantum Biology Ha?loch 67454 Germany

    2)College of Electronic Science and Technology Shenzhen University,Shenzhen 518060 P.R.China

    The maximum entropy principle for radiation fields?

    GU Qiao1,2

    1)International Institute of Quantum Biology Ha?loch 67454 Germany

    2)College of Electronic Science and Technology Shenzhen University,Shenzhen 518060 P.R.China

    The maximum entropy principle discovered by Jaynes E T governs a search of the most reasonable probability assignment of stochastic variable,based on the measured data.One of the simplest applications of this principle lies in that all the thermodynamical relations are derived from the maximizing entropy of the system with energy as a single measured value.The maximum entropy principle is used then for the radiation field as a quantum system.Our results show that with an increase of the number of measurable quantities,the thermal field,the coherent states as well as the squeezed states are automatically introduced in turn;in particular,the dependence of all the properties of these radiation fields on the thermal noise is formulated quantitatively.The fundamental results obtained in this paper are expected to provide a basis for applications of the maximum entropy principle in some fields,such as quantum optics,quantum informatics,biophotonics,and related interdisciplinary science.

    maximum entropy principle;the most reasonable probability assignment;thermodynamical relations;thermal field;coherent state with thermal noise;squeezed state with thermal noise;quantum optics;quantum informatics;biophotonics

    1 The maximum entropy principle

    The maximum entropy principle is discovered by Jaynes E T in 1957[1-2].This is a general expression for conventional probability theory,classical thermodynamics,and statistical physics.All of the laws of classical thermodynamics,in particular,the concepts of heat and temperature,could be defined in terms of the maximum entropy principle.Entropy maximization is following an ordinary common sense and deeply connected with experimental reality.The mathematical formulations of maximum entropy principle are straightforward,with which many applications have been carrying out[3].

    1.1 Simple examples

    Let us start with the simple example to elucidate the maximum entropy principle.If a measurement of three possible states gives average value 2 of the stochastic variablei(i=1,2,3),let us ask then:what is the probability assignment of the measured values?Obviously,the probability assignment satisfying the measured data could not be unique;two possible assignments are shown in Fig 1.However,the most reasonable probability assignment may be unique.The maximum entropy principle governs a search of the most reasonable probability assignment of stochastic variable,based on the measured data.

    Consider another example of tossing die.After tossing a die very large numberNof times,one finds that the every outcome of the die appearsN/6 times.The probability of appearance of every outcome ispi=1/6(i=1,2,…,6),following the equalprobability principle.The average spot number is 3.5 then.

    Fig.1 Two different distributions give the same average value 2.圖1 平均值為2的兩種不同分布

    However,for a particularly made die the average number might be found to,for example,be 4.5,instead of 3.5.The reason that leads to such a result must be a more appearance of the outcomes with the higher spots(5 and/or 6).The natural question is what kind of probability assignmentpimay give rise average number 4.5.We have,evidently,to look for thepisuch that

    whereN=4.5.A possible solution of(1)is indicated in Fig 2(a);we could takep4=p5=0.5,all otherspi=0.This agrees with the given data.But our common sense tells us it is not a reasonable assignment because that all others do not appear impossibly in practice.Fig 2(b)shows an assignment that agrees with the data and does not ignore any possibility.But it still seems unreasonable to give the casei=6 such exceptional treatment.A reasonable assignmentpimust not only agree with the data and must not ignore any possibility,but it must also not give undue emphasis to any possibility.Thepishould vary as smoothly as possible,in some sense.One criterion of“smoothness”might be that adjacent differencepi+1-pishould be constant;and there is a solution with that property.It is given bypi=(12i-7)/210 and shown in Fig 2(c).This is evidently the most reasonable probability assignment so far.However,with this linear variation ofpian average is limited by the assignmentpi=constant·(i-1).Actually,this extreme assignment not only ignores one possibility becausepi=0 but works out only 4.7 as the maximum average.Suppose the data of the problem had been changed so that the average is to be 4.7 instead of 4.5.Then there is no straight-line solution satisfyingpi>0.One can imagine that thepimust lie on some concave curve.

    After all,what is the most reasonable probability assignment satisfying(1)actually?In the maximum entropy principle,it should be an entropy maximizing distribution.This means that it results from maximizing entropy given by

    with the constraints(1).We therefore maximizeSby the method of Lagrange multipliers.If we vary thepi's,the variation inSis

    At the same time,the variations in the constraints(1)are

    By the method of Lagrange multipliers,we have

    Fig.2 The possible probability assignments in tossing die,with the same average spot number 4.5 and the different values of the entropy.圖2 擲骰子平均點(diǎn)數(shù)為4.5時(shí)的可能幾率分布與相應(yīng)熵值

    where λ and β are undetermined parameters.Then the distribution is exponential function

    whereZ=exp(1+λ)and β are determined by(1)as the relations

    From(7)we obtainZ=26.7 and β=0.371 forN=4.5.The exponential distribution(6)is shown in Fig 2(d).

    With the help of the above examples one may get a preliminary knowledge on the maximum entropy principle.It is based on the given data in measurement of stochastic variableiand traces back the distribution oniby maximizing entropy.The entropy maximizing distribution is the most reasonable probability assignment in the sense.Such a probability assignment most honestly describes the given data.It is the most conservative assignment that it does not permit one to draw any conclusions unwarranted by the data.Formally,this assignment is as smooth and“spread out”as possible,thus it is,subject to constraints,most nearest to the probability assignment predicted by a normal equal-probability principle.

    1.2 General formalism

    We now consider a general measurement of a stochastic event obtainingnpossible states,wherencan be finite or infinite.It gives the average values ofmquantitiesf1(i),f2(i),…,fm(i),whereicorresponds toith state(i=1,2,…,n).They are represented byF1,F(xiàn)2,…,F(xiàn)m,wherem<n.The problem is to find the probability assignmentpiwhich satisfies the given data:

    where we have put Boltzmann constantkin order to agree with the thermodynamical notation.Using the method of Lagrange multipliers,we obtain probability distribution

    where the λ's are Lagrange multipliers andZis the partition function defined by

    Then the entropy(9)is represented by

    The Lagrange multipliers are related to the given data by the equation

    The higher moments are given by

    Above expressions provide all the results of the maximum entropy principle for a general measurement.

    1.3 Boltzmann distribution

    We now apply the above-mentioned formalism to the simplest situation:m=1 andf1(i)=Eibeing the energy of the system.The average value of the energy,〈Ei〉≡U,is given as the data.The partition function is

    where we have,in particular,set λ1=β.With this we may write a number of the previous formulas in a way which can be immediately identified with relations well known in thermodynamics.Instead of(10)we find

    which is the well-known Boltzmann distribution. Then, by(13),β is determined by

    Equation(12)gives

    By comparison with the thermodynamic expression

    whereTis the absolute temperature,we recognize in(18)thatUis the internal energy and 1/β=kT,and the free energyFis represented by

    One can see that a series of the thermodynamic expressions have been worked out.A number of further identities of thermodynamics can easily be checked by applying the above formulas[4].

    The above-mentioned maximum entropy principle is associated with the classical entropy(2).In the subsequent sections we will show how to use this principle for radiation field as a quantum system.One will see that with an increase of the given data,the thermal field,the coherent states as well as the squeezed states can be introduced automatically.The maximum entropy principle applied to radiation field may open a lot of new knowledge which has not only academic but practical significance.

    2 Radiation field in thermal equilibrium

    Entropy of a quantum system is written with substitution of the probability distribution by the density operator and of the summation by the trace.Thus we have from(2):

    subject to the constraint

    The diagonal matrix elements of ρ are real and positive in any representation.In particular,the density operator ρ may have an eigenequation

    With(23)we can evaluate the trace in the representation{

    whereRiis an eigenvalue,which represents the probability of finding the system in the eigenstate〉},so that entropy of the quantum system is written in the classical form[5]

    Like the classical case,the entropy(21)is a measure of lack of knowledge about the states of the system.For if we maximizeSsubject to(22),just as in the classical case,we find

    yielding ρ=constant,so thatRi=constant.This tells us that the probability of finding the system in any of its possible states is the same when the entropy is a maximum.Thus,we have no knowledge about the states of the system.On the other hand,if we know the state of the system precisely,i e,we know that the system is in a pure state〉,thenS=0 sinceRi=δij.

    Let us consider a single-mode radiation field in thermal equilibrium with the heat bath at temperatureT,and we now suppose that we know something about it,for example,its average energy.The average energy is

    whereHis the Hamiltonian for this mode,given by

    in whichaanda+are the annihilation and creation operators of a photon,ω is the frequency of this mode,and ? Planck constant divided by 2π.

    Following the procedure of the maximizing entropy for a classical system,we will maximize the entropy(21)subject to the constraints(22)and(26)in order to find the most reasonable density operator.For this purpose,we vary:

    Multiplying the second of these by the undetermined multiplier λ0and the third by β and adding to the first,we have

    Since δ ρ is arbitrary and all variations are now independent,this will be satisfied if and only if

    This gives

    whereZ=exp(1+λ0)is the partition function,which is determined by(22)as

    This may be written,using(27),as

    where we have taken the trace in the number representation〉}.By the use ofa+〉=〉,the sum in(33)can be carried out,yielding

    In order to determine the parameter β,we use the constraint(26)and obtain

    This becomes,using(34),that

    It is easy to solve for β in terms of〈E〉.However,from the correspondence principle,as→0 the average energy〈E〉must become the average classical energy contained in a field mode;that is,〈E〉→kTas→ 0 since from the classical equipartition-ofenergy theorem,we getkT/2 per degree of freedom.The electric and magnetic fields each correspond to one degree of freedom.Actually,the limit of(36)as→ 0 gives that〈E〉→ 1/β,so that β=1/kT.Thus the average energy(36)becomes

    This is just the Plank distribution law for blackbody radiation.We have seen that the most reasonable distribution predicted by the maximum entropy principle is just the well-known natural law.Thus we obtain the completely determined density operator

    We now express the density operator in terms of the average photon number.Essentially,the density operator has the photon number operatora+aas its key.We write(38),using(27),as

    The dependence of the average photon number in the thermal field on the frequencyv(or to the wavelength λ)and temperatureTis plotted in Fig 3,which provide a basic concept for estimating the influence of them on the total intensity of a practical radiation field.

    We now compute the entropy of the field mode based on(38).For this purpose,we insert the completeness relation in the number representation to the right side of(39),we get density operator in the form

    Fig.3 The curves in(a)may be used to estimate the influence of the thermal noise of a detector on the radiation of photon emission from biological systems[6]and the curves in(b)for the microscopic wave radiation from the one-atom maser system[7-8].圖3 熱場(chǎng)平均光子數(shù)隨波長(zhǎng)及溫度的變化.(a)圖中曲線用來估算熱噪聲對(duì)生物系統(tǒng)光子輻射的影響[6],(b)圖中曲線用于單原子系統(tǒng)微波輻射的實(shí)驗(yàn)研究[7-8].

    It is straightforward to get the entropy of the radiation field.Since the density operator(41)has the number states〉as its eigenstates,the entropy therefore has the classical form(24),that is[5]

    Furthermore,we investigate the photon statistical properties of the field.For this purpose,we use(41)for obtaining the photon number distribution

    The normalized factorial moments are then

    In particular,the variance in the photon number is

    and the second-order correlation function is

    Equation(44)shows a rapid increase of the normalized factorial moments with the order numberkfor a single-mode thermal field.This may provide a tool to identify such a field by means of the measurement of photocount distribution.It has been used for investigation of the properties of the organic materials[9],where a weak photon emission of the materials is measured as a signal.

    Finally,we use the dimensionless quadrature operators[10]:

    to describe the field fluctuation represented by[11]

    where the expectation values〈…〉are taken in any representations.We now calculate the field fluctuations,using the density operator(39).Actually,we have

    and〈a2〉=0 at the same time,so that

    It shows that the field fluctuations increase linearly with the average photon numberN.In the limiting caseN→0 asT→0,the field reduces to a vacuum state,being a special case of the coherent states since(Δx)2=(Δp)2=1 from(50)and(Δn)2=0 from(45).Note that a vacuum can also be a special number state or a special chaotic state.

    We have discussed the thermal field from the different points of view.In this section the density operator is obtained by maximization of entropy with,in addition to(22),one constraint(26).We will see that with increase of the given constraints the radiation field with more information content may be introduced out.

    3 Coherent states with thermal noise

    We use the maximum entropy principle to determine the density operator which describes a more of the radiation field when we have made various measurements.Let us assume that we measure,in addition to the average energy,the average electric and magnetic field of the mode.We therefore have

    Following the procedure for the thermal field case,we maximize the entropy(21)subject to the constraints(22)and(51),we have,instead of(29),on using Lagrange multipliers

    This will be satisfied by

    The complex Lagrange parameter γ1results from π /2 out of phase between〈X〉and〈P〉.Let us introduce the new operators

    where we have ignored the uninterestingc-numberWe see from(55)that[b,b+]=1,sobandb+may be interpreted as the quasiboson annihilation and creation operators,so we may establish a“number”representation〉b}

    Thus the trace for(56)may be calculated in the representation{〉b}and the partition functionZis obviously the same as that in the thermal field,represented by(34).Also,we have from(55)that

    We must next determine the Lagrange multipliers λ,wandw*.For this purpose,we substitute(56)into(51a),calculating the trace in the representation{〉b}and using(57),we obtain

    makew1andw*directly expressible in terms of the average of the electric and magnetic field.

    The radiation field under consideration displays such an average energy that is added to that of the thermal field by the term.It suggests the average photon number in the field mode

    Let us consider first the case in which only thermal radiation occurs with the bath at temperatureT.Then the average electric and magnetic fields are zero:

    so that we have from(58)thatb+b=a+a.Thus the density operator(56)obtained here reduces to(41),corresponding to pure thermal noise,as discussed in detail in the last section.On the other hand,asT→0 the average energy(59)becomes

    We now calculate the entropy of the radiation field containing the signal and the noise.Since the density operator(56)has the number states〉bas its eigenstates,we have

    which is exactly the same as that of the thermal field,depending onlyNas the average photon number of the thermal field,instead ofNb.This means that the additional measurements produce only the additional energy,no additional entropy.Actually,we have known that the additional field is a coherent state with zero entropy.

    We now turn to discuss the photon statistical properties of the present field.By using(56),the photon number distribution is

    and the normalized factorial moments are then

    where Laguerre polynomials are given by the power series

    Obviously,(65)involves the contributions of the signal and the noise,demonstrated byandN,respectively.In the pure noise case(=0),Eq(67)has only the first term(corre-sponding tol=0)to be non-zero:Ln(0)=n!,so that(65)and(66)reduce respectively to(43)and(44)as the results of the thermal field.On the other hand,for the pure signal case(N=0),after moving the factorNn/(N+1)n+1in(65)into the sum,we see that the present summation has only the last term(corresponding tol=n)to be non-zero,carrying outThus the photon number distribution becomes Poissonian

    Similarly,(66)reduces to

    These show the well-known results for coherent states[12].For the general signal plus noise case,the photon number distribution(65)and the normalized factorial moments(66)are plotted in Fig 4 and Fig 5,respectively.

    Fig.4 The photon number distribution(65)of the coherent state with thermal noise.圖4 存在熱噪聲的相干態(tài)光子數(shù)分布.見式 (65)

    We now discuss the field fluctuations in terms of the dimensionless quadrature operatorsxandp.We have from(60)that

    Also,we write〈x2〉=Trρ(a++a)2and〈p2〉=-Trρ(a+-a)2,by(55)and(56),as

    Fig.5 The normalized factorial moments(66)of the coherent state with thermal noise,for the different values of the ratio R≡/N.圖5 不同R值時(shí) (R≡/N)包含熱噪聲的相干態(tài)歸一化階乘矩.見式 (66)

    which shows that the field fluctuations increase linearly with the noise photon numberN,independent of the signal photon number,same as(50)for the thermal field.Similarly to the behavior of entropy,the additional measurements do not produce any additional field fluctuations.In the pure signal case(N=0,≠0),the field reduces to a coherent state,which is a minimum-uncertainty state defined by ΔxΔp=1 and has equal uncertainties in the two quadratures:

    The resulting integral leads to a singularZ,meaning that no corresponding density operator occurs.We conclude therefore that it is necessary anyway to use the energy constraint.

    In summary the following points should be emphasized.①The maximization of entropy for a radiation field,with given value of the average energy and additionally given values of the average electric and magnetic fields,determines a density operator which describes a coherent state as a signal accompanied with the thermal noise.② A pure coherent state could not occur individually without the thermal noise unless at zero temperature.The total energy of the field is a sum over the signal and the noise.③ The additional field as a pure state does not induce additional entropy and field fluctuations.It essentially suggests that entropy and field fluctuations play equivalent roles in description of the quantum statistical properties of the radiation field.

    At the conclusion of this section,it may be interesting to mention the different ways in which the concept of coherent state is defined.As it is well known that the coherent states are introduced normally as the eigenstates〉of the annihilation operatoraor by an action of the displacement operatorD(α)=exp(αa+-α*a)to the vacuum state〉,that is〉=D(α〉.In a way completely different from these,the coherent states have been introduced here by maximization of entropy for radiation field subject to the constraints on the energy and the fields.Moreover,a coherent state is found to not occur on its own,instead it is encircled always by the noise in practice.This is quite a novel fact from which the maximum entropy principle is shown to be really of a general and fundamental significance.It gives the most reasonable(hence the most reality)density operator to describe a knowledge state about the physical situation.It may be imagined that some further states obtaining more information could be introduced if more measurable quantities have the given values.

    4 Squeezed states with thermal noise

    A squeezed state is known to have less field fluctuation in one quadrature than a coherent state.To satisfy the requirements of the uncertainty relation,the field fluctuation in another quadrature must be greater than that of coherent state.So a squeezed state is characterized by Δx<1<Δpor by Δp<1<Δx.Squeezed states are defined as the eigenstatesof the combined operatorb=μa+va+,where the complex parameters μ,vsatisfyand the uncertainties areand

    These reduce to Δx=exp(-r)and Δp=exp(r)if θ=0,which describe a minimum-uncertainty state but have in general the unequal uncertainties in the two quadratures.Asr=0 this state becomes to a coherent state:Δx=Δp=1.

    Above definitions of squeezed states are based on quite deep a knowledge on quantum optics[13-18].We will introduce the squeezed states by means of the maximum entropy principle;it is straightforward,where we only need to express more measurable quantities with the given values.

    Let us consider first the Hamiltonian[13]

    where γiare thec-numbers.From Hermiticity γ0has to be real.The γ1and γ2terms describe the one-photon and two-photon mechanism,respectively.

    where γ is real,with the same sign as γ0,and has absolute value

    and the operatorsc,c+and thec-numberCare defined by

    respectively,with μ,vbeing complex and taking the form

    where 2θ and φγare the phases of γ2and γ,respectively:.The canonical transformation(78)is an inhomogeneous linear one.Similar to the operatorsbandb+represented in(55),we see[c,c+]=1,so we may again establish a“number”representation{〉c},which satisfies the relations as(57).The Hamiltonian(76)is manifestly positive definite,which likes a free single-mode field(or a harmonic oscillation)apart from an unimportantc-numberC.

    Considering a measurement for a radiation field,we assume that,in addition to the energy and fields,we also have the measured values of square of the electric and magnetic fields.Totally we have the following measured values:

    Subject to these constraints and(22)we will maximize entropy(21).Following the previously used method,we have,instead of(52),that

    which will be satisfied by

    Note that the Lagrange parameter γ2appearing in(84),given by(85c),is real since the measured values〈X2〉and〈P2〉are found to be π out of phase.Obviously,if one measures the cube of the electric and magnetic fields,the corresponding Lagrange parameter must be complex since the average values〈X3〉and〈P3〉are 3π/2 out of phase.

    Thus the linear transformation(78)can be written for any values of γ2as

    where thec-numberWandW*are defined by

    The density operator(84)takes then the form

    where the partition functionZcis calculated in the representation{〉c},yieldingEquation(89)displays a general solution of density operator under the measured data(82).Whenr=0(W→w),the canonical transformation(86)reduces to(55),and Λ→λ,Zc→Z,so the density operator(89)reduces to(56),that is the case on coherent state with thermal noise.The parameterrresulting from the two-photon effect is related to the coefficient γ2given by in(88b).We plotras a function of the real number γ2/Γ in Fig 6.

    Fig.6 The parameter r as a function of the real number γ2/Γ,where r changes from+∞ to-∞ as γ2/Γ changes from-1 to+1.圖6 參數(shù)r隨γ2/Γ的變化曲線.其中當(dāng)γ2/Γ從-1到+1變化時(shí),r在+∞到-∞之間變化.

    We have from(86)that

    By(91),the average energy〈E〉=?ω〈a+a〉is calculated in the representation{〉c},yielding

    which satisfies the limiting condition〈E〉→kTasT→0,the frequency Ω is defined by Ω = ωcosh2r.The average number of photon is then

    where sinh2r+is known to be the number of photons in a normal squeezed state,and the first term is the number of photons originating from the thermal noise.Obviously,we work out a squeezed state with thermal noise.Whenr=0,Nc→Nb[see(61)].it is the result of the coherent state with thermal noise.Furthermore,in terms of

    the entropy of the radiation field is represented as

    which is dependent of temperatureTand the squeezing factorr,but independent of the coherent component.The dependence of this entropy onis shown in Fig 7.For the larger,the entropy approaches to zero,so that the radiation field approaches to a pure state.On the other hand,whenr=0(N →N),this entropy reduces to that on the coherent state with thermal noise,where the entropy is determined by a pure thermal noise(40).

    Fig.7 The entropy of the squeezed state with thermal noise,as a function of:(a)for the given wavelength and the different values of temperature;(b)for the given temperature and the different values of frequency.圖7 存在熱噪聲時(shí)壓縮態(tài)的熵隨的變化.(a)給定λ,T不同;(b)給定T,v不同.

    Let us next discuss the fluctuations of the field.By(91),we obtain

    Unlike the normal squeezed state where thex-quadrature exhibits always squeezing forr>0 and thep-quadrature exhibits always squeezing forr<0,the present state shows squeezing inxorpcomponent under conditions

    ①thex-quadrature fluctuation atr=0 depends on the value of the factorB:the largerB,the lower fluctuation,which approaches to unit asB→∞;

    ②this fluctuation decreases monotonically with increasingrand behaves as function exp(-2r),approaching to zero asr→∞for any of the values ofB;

    ③p-quadrature increases monotonically with increasingrand behaves as function exp(2r),becoming infinite asr→∞ for any of the values ofB.

    Fig.8 The field fluctuations in the squeezed state with thermal noise change as a function of r(r>0).圖8 存在熱噪聲時(shí)壓縮態(tài)場(chǎng)起伏隨r(r>0)的變化

    In short,for largerBorr,so that N→0,the present state becomes a normal squeezed state with Δx=e-rand Δp=er.On the other hand,whenr=0,Eq(97)reduces to(50)as the result on the coherent state with thermal noise.Also,whenr=0 andT→ 0 it results in a normal coherent state with Δx=Δp=1.We should emphasize here that both of the entropy shown in Fig 7 and the field fluctuation in Fig 8(a)decrease with increasingr.This means that the entropy may work as a measure of the field fluctuation[5].This is really useful in analysis of coherence properties of a practical radiation field.

    Conclusion

    The maximum entropy principle is following an ordinary common sense.It is based on the given data in measurement of stochastic variableiand traces the distribution oni.In principle,the distribution satisfying measured data could not be unique,but the most reasonable one is unique in practice.Such a probability assignment most honestly describes the given data.It is the most conservative assignment that it does not permit one to draw any conclusions unwarranted by the data.Formally,this assignment is as smooth and“spread out”as possible,thus it is,subject to constraints,most nearest to the probability assignment predicted by a normal equal-probability principle.One of the simplest applications of this principle lies in that all the thermodynamical relations are derived from the maximizing entropy of the system with energy as a single measured value.The maximum entropy principle has been used then for radiation field as a quantum system.Our results show that with an increase of the number of measurable quantities,the thermal field,the coherent states as well as the squeezed states are automatically introduced in turn;in particular,the dependence of all the properties of these radiation fields on the thermal noise is formulated quantitatively.The fundamental results obtained in this paper are expected to provide a basis for applications of the maximum entropy principle in some fields,such as quantum optics,quantum informatics,biophotonics,and related interdisciplinary science[19-24].

    A further research with additional given data of〈X3〉and〈P3〉is in preparation,which is expected to work out a novel quantum state of radiation field.

    ? This work was supported as a special project by International Institute of Quantum Biology,Germany.

    [1]Jaynes E T.Information theory and statistical mechanics[J].Physics Review,1957,106(4):620-630.

    [2]Jaynes E T.Information theory and statistical mechanics:II[J].Physics Review,1957,108(2):171-190.

    [3]Jaynes E T.Where do we stand on maximum entropy?[G]//Levine R D,Tribus M.The Maximum Entropy Formalism.Cambridge:The MIT Press,1978:15-118.

    [4]Haken H.Information and Self-Organization:A Macroscopic Approach to Complex Systems[M].Berlin:Springer-Verlag,1988.35-76.

    [5]GU Qiao.Quantum entropy of radiation fields[J].Journal of Shenzhen University Science and Engineering,2011,28(2):95-104.

    [6]Mieg C,Mei W P,Popp F A.Technical notes to biophoton emission[C]//Popp F A,Li K H,GU Qiao.Recent Advances in Biophoton Research and Its Applications.Singapore:World Scientific,1992:197-205.

    [7]Rempe G,Walther H.Observation of quantum collapse and revival in a one-atom maser[J].Physical Review Letters,1987,58(4):353-356.

    [8]GU Qiao.Squeezing in one-atom maser[J].Chinese Journal of Lasers,1990,17(6):347-351.(in Chinese)

    [9]Popp F A.Some essential questions of biophoton research and probable answers[C]//Popp F A,Li K H,GU Qiao.Recent Advances in Biophoton Research and Its Applications.Singapore:World Scientific,1992:1-46.

    [10] GU Qiao.Squeezing in a two-photon Jaynes-Cummings model[J].Acta Physica Sinica,1988,37(5):751-759.(in Chinese)

    [11]GU Qiao.The quantum statistical properties of the Jaynes-Cummings model[J].Acta Physica Sinica,1989,38(5):735-744.(in Chinese)

    [12]Glauber R J.Coherent and incoherent states of the radiation field[J].Physics Review,1963,131(6):2766-2788.

    [13] Yuen H P.Two-photon coherent states of the radiation field[J].Physics Review,1976,A13(6):2226-2243.

    [14]Caves C M.Quantum-mechanical noise in an interferometer[J].Physical Review D,1981,23(8):1693-1708.

    [15]GU Qiao.Novel features in photon statistics from a singlemode laser [J].Science in China:English edition,1990,A33(9),1460-1468.

    [16]GU Qiao,ZHANG Ji-yue.A possible way for generating sub-poissonian field [J].Acta Optica Sinica,1989,5(5):478-480.(in Chinese)

    [17]GU Qiao.Photon statistics for laser with a weak spontaneous emission [J].Journal of Shenzhen University Science and Engineering,1990,7(1/2):11-20.(in Chinese)

    [18]Walls D F,Milburn G J.Quantum Optics[M].Berlin:Springer-Verlag,1994,1-72.

    [19]GU Qiao.The ultraweak photon emission from biological systems(review)[J].Quantum Electronics,1988,5(2):97-108.(in Chinese)

    [20]Aoki I.Entropy flow and entropy production in the human body in basal conditions[J].Journal of Theoretical Biology,1989,141(1):11-21.

    [21]Aoki I.Effects of exercise and chills on entropy production in human body [J].Journal of Theoretical Biology,1990,145(3):421-428.

    [22]Aoki I.Entropy principle for human development,growth and aging[J].Journal of Theoretical Biology,1991,150(2):215-223.

    [23]GU Qiao,Popp F A.Nonlinear response of biophoton e-mission to external perturbations(review)[J].Experientia,1992,48(11/12):1069-1082.

    [24]GU Qiao.Biophotonics[M].Beijing:Science Press,2007:1-18.(in Chinese)

    參考文獻(xiàn):

    [1]Jaynes E T.信息論與統(tǒng)計(jì)力學(xué) [J].物理評(píng)論,1957,106(4):620-630.(英文版)

    [2]Jaynes E T.信息論與統(tǒng)計(jì)力學(xué) II[J].物理評(píng)論,1957,108(2):171-190.(英文版)

    [3]Jaynes E T.我們應(yīng)該研究的最大熵原理是什么?[G]//Levine R D,Tribus M.最大熵原理.劍橋 (美國(guó)):麻省理工學(xué)院出版社,1978:15-118.(英文版)

    [4]Haken H.信息與自組織:一種多元系統(tǒng)的宏觀處理[M].柏林:施普林格出版社,1988.35-76.(英文版)

    [5]顧 樵.輻射場(chǎng)的量子熵 [J].深圳大學(xué)學(xué)報(bào)理工版,2011,28(2):95-104.(英文版)

    [6]Mieg C,Mei W P,Popp F A.生物光子輻射的技術(shù)問題[C]//Popp F A,Li K H,顧 樵.生物光子學(xué)及其應(yīng)用研究進(jìn)展.新加坡:世界科學(xué)出版社,1992:197-205.(英文版)

    [7]Rempe G,Walther H.單原子微波激射器中的量子塌陷與再生 [J].物理評(píng)論快報(bào),1987,58(4):353-356.(英文版)

    [8]顧 樵.單原子微波激射器中的壓縮[J].中國(guó)激光,1990,17(6):347-351.

    [9]Popp F A.生物光子學(xué)的一些根本問題及其可能答案[C]//Popp F A,Li K H,顧 樵.生物光子學(xué)及其應(yīng)用研究進(jìn)展.新加坡:世界科學(xué)出版社,1992:1-46.(英文版)

    [10]顧 樵.雙光子Jaynes-Cummings模型中的壓縮 [J].物理學(xué)報(bào),1988,37(5):751-759.

    [11]顧 樵.Jaynes-Cummings模型的量子統(tǒng)計(jì)特性 [J].物理學(xué)報(bào),1989,38(5):735-744.

    [12]Glauber R J.輻射場(chǎng)的相干態(tài)與非相干態(tài) [J].物理評(píng)論,1963,131(6):2766-2788.(英文版)

    [13]Yuen H P.輻射場(chǎng)的雙光子相干態(tài) [J].物理評(píng)論,1976,A13(6):2226-2243.(英文版)

    [14]Caves C M.干涉儀的量子力學(xué)噪聲 [J].物理評(píng)論D,1981,23(8):1693-1708.(英文版)

    [15]顧 樵.單模激光光子統(tǒng)計(jì)的新特征 [J].中國(guó)科學(xué):英文版,1990,A33(9):1460-1468.(英文版)

    [16]顧 樵,張紀(jì)岳.一種產(chǎn)生亞泊松光場(chǎng)的可能途徑[J].光學(xué)學(xué)報(bào),1989,5(5):478-480.

    [17]顧 樵.弱自發(fā)輻射激光的光子統(tǒng)計(jì)特性 [J].深圳大學(xué)學(xué)報(bào)理工版,1990,7(1/2):11-20.

    [18]Walls D F,Milburn G J.量子光學(xué) [M].柏林:施普林格出版社,1994:1-72.(英文版)

    [19]顧 樵.生物體系統(tǒng)的超微弱光子輻射 (綜述)[J].量子電子學(xué),1988,5(2):97-108.

    [20]Aoki I.一般情況下人體的熵流及熵產(chǎn)生 [J].理論生物學(xué),1989,141(1):11-21.(英文版)

    [21]Aoki I.運(yùn)動(dòng)與寒冷對(duì)人體熵產(chǎn)生的影響 [J].理論生物學(xué),1990,145(3):421-428.(英文版)

    [22]Aoki I.人體成長(zhǎng)及衰老過程中的熵原理 [J].理論生物學(xué),1991,150(2):215-223.(英文版)

    [23]顧 樵,Popp F A.生物光子輻射對(duì)外界微擾的非線性響應(yīng) [J].實(shí)驗(yàn),1992,48(11/12):1069-1082.(英文版)

    [24]顧 樵.生物光子學(xué) [M].北京:科學(xué)出版社,2007:1-18.

    2011-04-11

    德國(guó)國(guó)際量子生物學(xué)研究所專項(xiàng)基金資助項(xiàng)目

    顧 樵(1947-),男 (漢族),陜西省西安市人,德國(guó)國(guó)際量子生物學(xué)研究所首席科學(xué)家、深圳大學(xué)教授.E-mail:gu-qiao@gmx.de

    輻射場(chǎng)的最大熵原理

    顧 樵1,2

    1)德國(guó)國(guó)際量子生物學(xué)研究所,Ha?loch,67454,德國(guó);2)深圳大學(xué)電子科學(xué)與技術(shù)學(xué)院,深圳518060

    Jaynes E T的最大熵原理指出如何從隨機(jī)變量的測(cè)量數(shù)據(jù)推導(dǎo)出最合理概率分布.該原理最直接的應(yīng)用是給出了所有熱力學(xué)關(guān)系,這是對(duì)具有能量作為單一測(cè)量值的經(jīng)典系統(tǒng)進(jìn)行熵的最大化處理的結(jié)果.本研究將最大熵原理推廣到量子力學(xué)系統(tǒng),揭示輻射場(chǎng)的量子統(tǒng)計(jì)性質(zhì).結(jié)果顯示,隨著可測(cè)量力學(xué)量類別的增加,依次自動(dòng)引出混沌態(tài)、相干態(tài)和壓縮態(tài)等一系列輻射場(chǎng)態(tài).值得關(guān)注的是運(yùn)用該方法,所有輻射場(chǎng)態(tài)對(duì)熱噪聲的依賴性可被定量描述.該研究結(jié)果有望用于量子光學(xué)、量子信息學(xué)、生物光子學(xué)及相關(guān)交叉學(xué)科領(lǐng)域.

    最大熵原理;最合理概率分配;熱力學(xué)關(guān)系;熱場(chǎng);熱噪聲相干態(tài);熱噪聲壓縮態(tài);量子光學(xué);量子信息學(xué);生物光子學(xué)

    O 431.2

    A

    1000-2618(2011)04-0294-CA

    O 431.2

    A

    Abstract:1000-2618(2011)04-0283-12

    【中文責(zé)編:方 圓;英文責(zé)編:衛(wèi) 棟】

    猜你喜歡
    生物學(xué)物理生物
    只因是物理
    井岡教育(2022年2期)2022-10-14 03:11:44
    生物多樣性
    生物多樣性
    上上生物
    谷稗的生物學(xué)特性和栽培技術(shù)
    第12話 完美生物
    航空世界(2020年10期)2020-01-19 14:36:20
    處處留心皆物理
    初中生物學(xué)糾錯(cuò)本的建立與使用
    初中生物學(xué)糾錯(cuò)本的建立與使用
    三腳插頭上的物理知識(shí)
    国产黄片视频在线免费观看| 最近最新中文字幕大全电影3| 91精品国产九色| 国产日本99.免费观看| 最近手机中文字幕大全| 午夜老司机福利剧场| 欧美成人一区二区免费高清观看| 一个人免费在线观看电影| 国产精品一及| 亚洲成人av在线免费| 少妇熟女aⅴ在线视频| 大香蕉久久网| 日本黄色片子视频| 成人漫画全彩无遮挡| 国产国拍精品亚洲av在线观看| 国国产精品蜜臀av免费| 亚洲av成人av| 久久久午夜欧美精品| 插逼视频在线观看| 小蜜桃在线观看免费完整版高清| 欧美成人免费av一区二区三区| 色尼玛亚洲综合影院| 美女cb高潮喷水在线观看| 亚洲国产欧美人成| 少妇被粗大猛烈的视频| 精品人妻视频免费看| 亚洲精品日韩在线中文字幕 | 五月玫瑰六月丁香| 久久99精品国语久久久| 日韩人妻高清精品专区| 国产爱豆传媒在线观看| 亚洲精品乱码久久久久久按摩| 日韩精品青青久久久久久| 午夜福利在线在线| 99视频精品全部免费 在线| 人妻制服诱惑在线中文字幕| 亚洲无线观看免费| 亚洲国产精品国产精品| 男人狂女人下面高潮的视频| 亚洲国产精品成人综合色| a级毛片a级免费在线| 国产精品三级大全| 变态另类丝袜制服| 九九久久精品国产亚洲av麻豆| eeuss影院久久| 色噜噜av男人的天堂激情| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 97超视频在线观看视频| 久久久久久久久久黄片| 亚洲精品色激情综合| 亚洲国产欧美人成| 18禁黄网站禁片免费观看直播| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美成人精品一区二区| 国产精品美女特级片免费视频播放器| 草草在线视频免费看| 成人毛片a级毛片在线播放| 日本成人三级电影网站| 欧美不卡视频在线免费观看| 色综合色国产| 国产精品国产高清国产av| 一个人看视频在线观看www免费| 一级毛片aaaaaa免费看小| 老女人水多毛片| 成人欧美大片| 欧美+日韩+精品| 网址你懂的国产日韩在线| 不卡一级毛片| 国内精品美女久久久久久| 中文欧美无线码| 亚洲av.av天堂| АⅤ资源中文在线天堂| 国产视频首页在线观看| 亚洲最大成人av| АⅤ资源中文在线天堂| 我的女老师完整版在线观看| 国产精品国产三级国产av玫瑰| 免费电影在线观看免费观看| 99热网站在线观看| 国产精品免费一区二区三区在线| 久久这里只有精品中国| 热99在线观看视频| www.色视频.com| 精品久久国产蜜桃| 一夜夜www| 国内精品宾馆在线| 禁无遮挡网站| 日本黄色片子视频| 午夜久久久久精精品| 久久精品国产鲁丝片午夜精品| 国产v大片淫在线免费观看| 在线播放国产精品三级| 国产精品电影一区二区三区| 国产免费男女视频| 日本-黄色视频高清免费观看| 日韩av不卡免费在线播放| 少妇人妻一区二区三区视频| 国产精品久久久久久精品电影| 精品久久久久久久久av| 青青草视频在线视频观看| 久久午夜福利片| 久久精品夜色国产| 99久国产av精品| 又黄又爽又刺激的免费视频.| 天堂av国产一区二区熟女人妻| 91精品一卡2卡3卡4卡| 精品欧美国产一区二区三| 少妇裸体淫交视频免费看高清| 高清毛片免费观看视频网站| 免费搜索国产男女视频| 狂野欧美白嫩少妇大欣赏| 99热这里只有精品一区| 女的被弄到高潮叫床怎么办| 免费人成在线观看视频色| 亚洲,欧美,日韩| 免费看光身美女| 国内精品美女久久久久久| 91午夜精品亚洲一区二区三区| 91午夜精品亚洲一区二区三区| 国产精品久久久久久亚洲av鲁大| 欧美日韩在线观看h| 丰满的人妻完整版| 欧美性感艳星| 毛片一级片免费看久久久久| 少妇人妻精品综合一区二区 | 老司机影院成人| 精品人妻熟女av久视频| 乱系列少妇在线播放| 亚洲欧美日韩高清专用| 人妻久久中文字幕网| 在线播放国产精品三级| 国产色爽女视频免费观看| 久久久久久久亚洲中文字幕| 一本精品99久久精品77| 精品久久久噜噜| 成人美女网站在线观看视频| 级片在线观看| 亚洲第一电影网av| 99久久人妻综合| 男女那种视频在线观看| 亚洲国产精品合色在线| 色哟哟哟哟哟哟| eeuss影院久久| 丰满人妻一区二区三区视频av| 色哟哟·www| av视频在线观看入口| 免费看日本二区| 亚洲国产日韩欧美精品在线观看| 国产爱豆传媒在线观看| 男人舔女人下体高潮全视频| 97在线视频观看| videossex国产| 日韩 亚洲 欧美在线| 国内久久婷婷六月综合欲色啪| 国产成人精品一,二区 | 又粗又硬又长又爽又黄的视频 | 国产单亲对白刺激| 真实男女啪啪啪动态图| 免费av观看视频| 熟女电影av网| www日本黄色视频网| 国产一区二区亚洲精品在线观看| 久久午夜福利片| 中文字幕免费在线视频6| 人妻制服诱惑在线中文字幕| 亚洲精品成人久久久久久| 深爱激情五月婷婷| 久99久视频精品免费| 直男gayav资源| 97超碰精品成人国产| 欧美精品一区二区大全| 高清日韩中文字幕在线| 综合色丁香网| 亚洲成人久久爱视频| 内地一区二区视频在线| 亚洲欧美日韩东京热| 精品人妻偷拍中文字幕| 久久中文看片网| 免费大片18禁| 一进一出抽搐动态| 色尼玛亚洲综合影院| 人妻制服诱惑在线中文字幕| 亚洲精品亚洲一区二区| 久久精品影院6| 亚洲五月天丁香| 亚洲精品456在线播放app| 成人欧美大片| 午夜福利在线观看免费完整高清在 | 久久久久久伊人网av| 亚洲av第一区精品v没综合| 日韩亚洲欧美综合| 日本在线视频免费播放| 亚洲,欧美,日韩| 午夜福利在线在线| 久久综合国产亚洲精品| 欧美3d第一页| h日本视频在线播放| 草草在线视频免费看| 精品久久久久久久末码| 老师上课跳d突然被开到最大视频| 国产老妇女一区| 人人妻人人澡欧美一区二区| 男女做爰动态图高潮gif福利片| 最后的刺客免费高清国语| 久久精品夜色国产| 日韩大尺度精品在线看网址| 久久久久久九九精品二区国产| 亚洲国产欧洲综合997久久,| 男女视频在线观看网站免费| 在线播放国产精品三级| 日韩一区二区视频免费看| 精品熟女少妇av免费看| 国产伦精品一区二区三区视频9| 精品久久久久久久久av| 乱系列少妇在线播放| 熟妇人妻久久中文字幕3abv| 亚洲av中文av极速乱| АⅤ资源中文在线天堂| 麻豆乱淫一区二区| av在线亚洲专区| 精品无人区乱码1区二区| 亚洲人成网站高清观看| 国产一级毛片七仙女欲春2| 久久精品综合一区二区三区| 少妇熟女欧美另类| av在线亚洲专区| 久久这里只有精品中国| 欧美成人一区二区免费高清观看| 一本精品99久久精品77| 国产午夜福利久久久久久| 97在线视频观看| 亚洲精品久久国产高清桃花| 99久久精品一区二区三区| 亚洲成人精品中文字幕电影| 岛国在线免费视频观看| 在线播放国产精品三级| 日本黄色视频三级网站网址| 99热只有精品国产| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 成年版毛片免费区| 哪个播放器可以免费观看大片| 日韩成人av中文字幕在线观看| 欧美极品一区二区三区四区| 亚洲第一电影网av| 少妇熟女aⅴ在线视频| 亚洲国产精品sss在线观看| 乱人视频在线观看| 久久久久性生活片| 少妇的逼水好多| 小说图片视频综合网站| 日韩精品有码人妻一区| 色综合站精品国产| 国产成人aa在线观看| 成人一区二区视频在线观看| 12—13女人毛片做爰片一| 精品午夜福利在线看| 好男人在线观看高清免费视频| 日本一本二区三区精品| 国产亚洲精品久久久久久毛片| 亚洲av男天堂| 国模一区二区三区四区视频| 亚洲精品乱码久久久v下载方式| 婷婷亚洲欧美| 男人舔女人下体高潮全视频| 美女xxoo啪啪120秒动态图| 非洲黑人性xxxx精品又粗又长| 在线播放无遮挡| 蜜臀久久99精品久久宅男| 嫩草影院精品99| 最近的中文字幕免费完整| 日本三级黄在线观看| 日韩国内少妇激情av| av天堂在线播放| 久久久久久大精品| 成人性生交大片免费视频hd| 99精品在免费线老司机午夜| 夜夜看夜夜爽夜夜摸| 丰满的人妻完整版| 能在线免费看毛片的网站| 国产 一区 欧美 日韩| 国产亚洲精品久久久久久毛片| 亚洲av男天堂| 久久午夜亚洲精品久久| 亚洲在线自拍视频| 亚洲中文字幕日韩| 黑人高潮一二区| 亚洲欧美中文字幕日韩二区| 联通29元200g的流量卡| 12—13女人毛片做爰片一| www.色视频.com| 少妇猛男粗大的猛烈进出视频 | 97热精品久久久久久| 高清在线视频一区二区三区 | 乱码一卡2卡4卡精品| 欧美日韩综合久久久久久| av免费在线看不卡| 久久午夜亚洲精品久久| 国产av麻豆久久久久久久| 大型黄色视频在线免费观看| 久久久久久国产a免费观看| 麻豆精品久久久久久蜜桃| 日本熟妇午夜| 成人三级黄色视频| 色播亚洲综合网| 真实男女啪啪啪动态图| 国产极品精品免费视频能看的| 欧美精品国产亚洲| 欧美xxxx性猛交bbbb| 97超碰精品成人国产| 久久国产乱子免费精品| 天美传媒精品一区二区| 日韩一区二区三区影片| 成人高潮视频无遮挡免费网站| 26uuu在线亚洲综合色| 日本av手机在线免费观看| 成年av动漫网址| 在线天堂最新版资源| 亚洲欧洲国产日韩| 成人av在线播放网站| 日本熟妇午夜| 国产精品一区二区三区四区久久| 久久精品久久久久久久性| 日本-黄色视频高清免费观看| 超碰av人人做人人爽久久| 中文字幕人妻熟人妻熟丝袜美| 成人特级黄色片久久久久久久| 我要看日韩黄色一级片| 色尼玛亚洲综合影院| 麻豆久久精品国产亚洲av| 天美传媒精品一区二区| 精品久久久久久久久久久久久| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看| 一级毛片aaaaaa免费看小| 美女大奶头视频| 欧美在线一区亚洲| 99久久精品一区二区三区| 亚洲综合色惰| 性欧美人与动物交配| 人妻夜夜爽99麻豆av| 欧美在线一区亚洲| 亚洲av中文字字幕乱码综合| 久久久午夜欧美精品| 禁无遮挡网站| 尤物成人国产欧美一区二区三区| 日韩人妻高清精品专区| 一个人观看的视频www高清免费观看| 久久久国产成人精品二区| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 99热这里只有是精品在线观看| 欧美+日韩+精品| 大又大粗又爽又黄少妇毛片口| 日韩欧美精品v在线| 国产片特级美女逼逼视频| 看免费成人av毛片| 国产成人福利小说| 女人被狂操c到高潮| 亚洲最大成人中文| 中文资源天堂在线| 国产精品免费一区二区三区在线| 午夜精品在线福利| 亚洲丝袜综合中文字幕| 最好的美女福利视频网| 日本爱情动作片www.在线观看| 性欧美人与动物交配| 国产成人一区二区在线| 黄片无遮挡物在线观看| 日韩强制内射视频| 青春草国产在线视频 | 国产在线男女| 欧美精品一区二区大全| 亚洲内射少妇av| 人妻少妇偷人精品九色| 人人妻人人澡人人爽人人夜夜 | 午夜亚洲福利在线播放| 如何舔出高潮| 在线观看免费视频日本深夜| 高清日韩中文字幕在线| 老司机影院成人| 国产激情偷乱视频一区二区| 日本免费一区二区三区高清不卡| 欧美精品国产亚洲| 久久久国产成人免费| kizo精华| 日韩中字成人| 午夜福利在线观看吧| 观看免费一级毛片| 天堂中文最新版在线下载 | av在线蜜桃| 精品久久国产蜜桃| 桃色一区二区三区在线观看| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 日日干狠狠操夜夜爽| 蜜桃亚洲精品一区二区三区| 婷婷亚洲欧美| 免费不卡的大黄色大毛片视频在线观看 | 日本撒尿小便嘘嘘汇集6| 亚洲国产日韩欧美精品在线观看| 久久人人精品亚洲av| 日韩欧美精品免费久久| 久久人妻av系列| 国产精品一区二区性色av| 久久久久久国产a免费观看| 久久人人爽人人片av| 久久久久久久久久成人| 26uuu在线亚洲综合色| 男人和女人高潮做爰伦理| 99热精品在线国产| 精品人妻偷拍中文字幕| 嫩草影院精品99| 久久草成人影院| .国产精品久久| 国产高清视频在线观看网站| 99热这里只有是精品在线观看| 亚洲最大成人中文| 九九久久精品国产亚洲av麻豆| 国产成人影院久久av| 日本三级黄在线观看| 国产成人精品久久久久久| 国产一区二区激情短视频| 午夜精品国产一区二区电影 | 国产综合懂色| 在线观看av片永久免费下载| 久久综合国产亚洲精品| 高清在线视频一区二区三区 | 国产亚洲av片在线观看秒播厂 | 国产av不卡久久| 最近2019中文字幕mv第一页| 少妇熟女aⅴ在线视频| 国产蜜桃级精品一区二区三区| 国产淫片久久久久久久久| 色5月婷婷丁香| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久| 日韩一区二区视频免费看| www日本黄色视频网| 性色avwww在线观看| 国产av麻豆久久久久久久| 国产真实伦视频高清在线观看| 国模一区二区三区四区视频| 成人欧美大片| 国产一区二区三区av在线 | 国产伦一二天堂av在线观看| 久久这里只有精品中国| av女优亚洲男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久久久丰满| 男的添女的下面高潮视频| 精品免费久久久久久久清纯| 久久精品国产鲁丝片午夜精品| 天天躁夜夜躁狠狠久久av| 免费人成视频x8x8入口观看| 国产成人午夜福利电影在线观看| 国产蜜桃级精品一区二区三区| 成人性生交大片免费视频hd| 久久精品国产亚洲av涩爱 | 日韩欧美国产在线观看| 日日啪夜夜撸| 欧美xxxx黑人xx丫x性爽| 一级毛片aaaaaa免费看小| 男人舔女人下体高潮全视频| 国产真实乱freesex| 欧美在线一区亚洲| 国产av麻豆久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人与动物交配视频| 一级黄色大片毛片| 欧美性感艳星| 日韩一区二区视频免费看| 搡女人真爽免费视频火全软件| 国产精品美女特级片免费视频播放器| www.av在线官网国产| 有码 亚洲区| 亚洲国产精品国产精品| 久久欧美精品欧美久久欧美| 亚洲高清免费不卡视频| 18+在线观看网站| 美女黄网站色视频| 一级av片app| 国产女主播在线喷水免费视频网站 | 国产日本99.免费观看| 麻豆久久精品国产亚洲av| 好男人在线观看高清免费视频| 国产极品精品免费视频能看的| 一边摸一边抽搐一进一小说| 少妇高潮的动态图| 国产黄a三级三级三级人| 亚洲在线观看片| 国产私拍福利视频在线观看| 欧美丝袜亚洲另类| 亚洲第一区二区三区不卡| 一区二区三区四区激情视频 | 久久中文看片网| 久久精品国产99精品国产亚洲性色| 免费观看在线日韩| 一区二区三区免费毛片| 久久久久久久久久成人| 国产男人的电影天堂91| 一卡2卡三卡四卡精品乱码亚洲| 91午夜精品亚洲一区二区三区| 在线观看午夜福利视频| 欧美+日韩+精品| 精品久久国产蜜桃| 老女人水多毛片| 亚洲精品成人久久久久久| 亚洲成人久久爱视频| 成年女人看的毛片在线观看| 欧美成人a在线观看| 成人高潮视频无遮挡免费网站| 97在线视频观看| 99热这里只有是精品50| 草草在线视频免费看| 日本黄色片子视频| 在线观看av片永久免费下载| 美女内射精品一级片tv| 国产午夜精品论理片| 久久精品影院6| 亚洲av成人精品一区久久| 日韩精品有码人妻一区| 免费看日本二区| 天天躁夜夜躁狠狠久久av| 淫秽高清视频在线观看| 在线播放国产精品三级| 欧美+亚洲+日韩+国产| 国产精品女同一区二区软件| 亚洲av成人精品一区久久| 久久这里只有精品中国| 国产精品久久久久久久久免| 亚洲激情五月婷婷啪啪| av女优亚洲男人天堂| 亚洲中文字幕日韩| 国产精品久久视频播放| 国产黄片美女视频| а√天堂www在线а√下载| 国产精品人妻久久久久久| 哪里可以看免费的av片| 国产日韩欧美在线精品| 99热网站在线观看| 麻豆精品久久久久久蜜桃| 波多野结衣高清无吗| 国产亚洲精品久久久com| 高清午夜精品一区二区三区 | 亚洲最大成人中文| 欧美性猛交黑人性爽| 麻豆一二三区av精品| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 亚洲av不卡在线观看| 精华霜和精华液先用哪个| 麻豆av噜噜一区二区三区| 三级国产精品欧美在线观看| 一本久久精品| 在线天堂最新版资源| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 国产黄色视频一区二区在线观看 | 亚洲精品自拍成人| 麻豆精品久久久久久蜜桃| 国产三级在线视频| 啦啦啦啦在线视频资源| 成人三级黄色视频| 蜜桃亚洲精品一区二区三区| 亚洲乱码一区二区免费版| 久久精品久久久久久久性| 中文欧美无线码| 国产精品伦人一区二区| eeuss影院久久| 久久久久久久久久久丰满| 久久精品国产清高在天天线| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 日韩一区二区视频免费看| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看| 一级二级三级毛片免费看| 伦精品一区二区三区| 日日摸夜夜添夜夜爱| 国产精品乱码一区二三区的特点| 亚洲国产精品成人综合色| 国产老妇女一区| 国产精华一区二区三区| 人妻夜夜爽99麻豆av| 一级黄片播放器| 美女大奶头视频| 国产在视频线在精品| 久久人人爽人人爽人人片va| 欧美最黄视频在线播放免费| 噜噜噜噜噜久久久久久91| 欧美+日韩+精品| 少妇猛男粗大的猛烈进出视频 | 两个人的视频大全免费| 国产精品美女特级片免费视频播放器| 亚洲激情五月婷婷啪啪| 少妇熟女欧美另类| 亚洲乱码一区二区免费版| 亚洲精品456在线播放app| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 99热网站在线观看| 大又大粗又爽又黄少妇毛片口| 丰满乱子伦码专区| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 波野结衣二区三区在线| 日本一二三区视频观看| 欧美精品一区二区大全| 久久99热6这里只有精品| 欧美日本亚洲视频在线播放|