• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    米曲霉固體發(fā)酵降解豆粕植酸及其生長(zhǎng)條件的優(yōu)化

    2011-03-28 10:50:48GAOYoulingWANGCaishengZHUQiuhuaQIANGuoying
    關(guān)鍵詞:植酸豆粕條件

    GAO Youling WANG Caisheng ZHU Qiuhua QIAN Guoying

    (Laboratory of Aquatic Molecular Nutrition and Physiology,Collecge of Biological and Environmental Sciences,Zhejiang Wanli Univerisity,Ningbo 315100,China)

    Soybean meal is increasingly acceptable as a protein source for animal feed due to its high content of protein(around 45%),relatively well-balanced amino acid profiles,constant composition and steady supply in relation to other traditional protein sources(e.g.cottonseed meal etc.),as well as the reasonable price[1].Antinutrients in soybean meal,however,affect the animal growth and health,and consequently limit the use of soybean meal[2].One of the major antinutrients in soybean meal is phytic acid.

    The adverse influence of diets containing phytic acid on animal growth and health has been well documented[3-6].The positive effect of solid-state fermentation on the reduction of phytic acid has been proved[7-10],which was ascribed to the phytase generation during the fermentation[8,11].The ratio of substrate to water,inoculum size and duration was identified as the major factors that influence the phytase generation and phytic acid reduction.However,so far,limited research concerned on the optimization of those factors has been done.Hence,the first aim of the present study was to determine the optimal levels of the 3 factors for minimum phytic acid content through response surface methodology in laboratory-scale solid-state fermentation with Aspergillus oryzae.

    The reduction of phytic acid may be related to the Aspergillus oryzae biomass growth.The present study therefore applied response surface methodology to predict the strain biomass growth.The second aim thus was to determine the optimal levels of the 3 factors for maximum Aspergillus oryzae biomass growth and to determine the correlation between Aspergillus oryzae biomass and phytic acid content.Ergosterol is the primary sterol that only existed in the cell membranes of filamentous fungi[12],and is a good marker of fungi biomass[12-14].Therefore,ergosterol would be used as a tool to estimate the Aspergillus oryzae biomass in the current study.

    1 MATERIALS AND METHODS

    1.1 Strain and soybean meal

    Aspergillus oryzae(CICC 40214)was purchased from China Centre of Industrial Culture Collection.Soybean meal was purchased from Ningbo Jinguan Soy Feed Co.Ltd.,and was smashed by a FW100 grinder machine(Tianjin Taisite Instrument Co.Ltd.,Tianjin,China).The soybean meal then was screened through a 0.4 mm mesh before dried in an oven at the temperature of 60℃.The dried soybean meal was stored at a drier containing silica.

    1.2 Solid-state fermentation with Aspergillus oryzae

    Aspergillus oryzae,which was in slant preservation,was transferred to potato-dextrose agar(PDA)medium(Xinran Biological,Shanghai,China),and then was incubated at 28℃for 5 to 7 days until enough amounts of spores grown on the surface of PDA medium and distributed equally.The spores were scratched by an inoculation loop and washed carefully by sterile water.The washed spores were served as the seed(CFU=1×107)after enlargement.

    Fifty grams of soybean meal was transferred to a 1 L-flask with sterilized cotton plug.The air exchanging was allowed through cotton plug.Ratio of substrate to water,inoculum size and duration were set in accordance with the Box-Benhnken design[15](Table 1 and Table 2),and the flask with substrate and water was pasteurized at 70℃for 30 min before incubation.The incubation was performed at 28℃in QYC-211 incubator(Shanghai Fuma Laboratory Instrument Co.LTD.,Shanghai,China).The fermented soybean meal was freezing dried after solidstate fermentation,subsequently smashed and kept at 4℃for further chemical analysis.

    Table 1 Levels and code of independent variables chosen for Box-Behnken design in solid-state fermentation with Aspergillus oryzae

    1.3 Optimization of solid-state fermentation with Aspergillus oryzae

    A Box-Behnken design with the ratio of substrate to water,inoculum size and duration of solid-state fer-mentation as well as 3 levels,including 5 replicates at the center point,was used for fitting a second-order response surface.A total of 17 runs were used to optimize the3 independent variables(Table 2).Each run was conducted in duplicate.The levels and code of the independent variables in the Box-Behnken design were given in Table 1.The contents of phytic acid and ergosterol in soybean meal after each run was taken as the dependent variables,and themean values of duplicate data were used.

    Table 2 Box-Behnken design matrix along with the experimental and predicted values of phytic acid and ergosterol contents in Aspergillus oryzae fermented soybean meal(DM basis)

    A quadratic polynomial regression model was assumed for predicted response.The model proposed for each response of Y was:

    Where Y is the predicted response,β0is the intercept term, βiis the linear effect, βiiis the squared effect,andβijis the interaction effect.Design Expert 7.1.3(trial version,Stat Ease Inc.,Minneapolis,USA)was used for estimating the coefficients of Eq.(1)by regression analysis of the experimental data.

    The quadratic model representing phytic acid content(Y)as a response of the ratio of substrate to water(A),inoculum size(B)and duration(C)was extrapolated by the Eq.(2).The statistical significance of Eq.(2)was determined by Fisher's F-test.

    The quadratic model representing ergosterol content(Y)as a response of ratio of substrate to water(A),inoculum size(B)and duration(C)was extrapolated by the Eq.(3).The statistical significance of Eq.(3)was determined by Fisher's F-test.

    1.4 Chemical analysis

    Phytic acid analysis was performed in accordance with colorimetric method developed by Vaintraub et al.[16]using D201 ion exchange column(5 g D201 resin;Shanghai Huizhu Resin Co.Ltd.,Shanghai,China)and 723PC spectrophotometer.

    Ergosterol was analyzed as followings.Four grams of sample was suspended in 20%KOH solution and redistilled for 2.5 h at 90℃,followed by adding 20 mL ether with shaking.The upper phase was collected,washed and dried at 70℃,followed by adding 5 mL ethanol to dissolve.Finally the ethanol solution was filtered through a microporous filtering film(0.45μm)and the filtrate was collected for high performance liquid chromatography(HPLC)analysis using the an Agilent 1100 system with an Agilent ODSC18(4.6 mm×150 mm,5μm)analytical column.The program was run for 10 min with 97%methanol and 3%H2O as mobile phase,an injection volume of 20μL,and a flow rate of 1.2 mL/min.The samples were detected for UV absorbance(282 nm).

    2 RESULTS

    2.1 Optimization of solid-state fermentation with Aspergillus oryzae for phytic acid degradation

    The design matrix of the variables in coded units along with the predicted and experimental values of phytic acid content were presented in Table 2.The analysis of variance(ANOVA)of the quadratic regression model(Table 3)demonstrated that Eq.(2)was an extremely significant model at 99%confidence level based on the low F-value(9.28)and P-value(0.003 9)(Table 3).Terms A,C,AB,AC and A2in the current model were significant(P<0.05),which revealed that the ratio of substrate to water(at 99%confidence level),duration,the interaction between the ratio of substrate to water and inoculum size,as well as theinteraction between theratio of substrate to water and duration significantly affected the phytic acid content in soybean meal during solid-state fermentation.In contrast,the effects of inoculum size,as well as the interaction between inoculum size and duration on phytic acid content were not significant(P>0.05).In this study,the P-value of lack of fit was 0.401 4,implying the lack of fit was not significant.

    Table 3 ANOVA of the regression for phytic acid

    Results in the current study indicated that this model can be introduced to analyze the process of degradation of phytic acid in soybean meal during solidstate fermentation with Aspergillus oryzae,and to optimize the 3 conditional factors for maximum degradation of phytic acid within the given ranges.

    The graphical representations of the regression of Eq.(2)called the response surface and the contour plots of this experiment were obtained using the Design Expert and were displayed in Fig.1.The graphs were generated for the pair-wise combination of the 3 variables.

    The factors of the ratio of substrate to water and duration significantly affected the phytic acid content in soybean meal during solid-state fermentation,which could be revealed from Fig.1.It shown that the phytic acid content reduced as the the ratio of substrate to water reduced.The content of phytic acid reduced from 3.68 to 2.00 mg/g DM as the duration increased from 72 to 120 h,when the ratio of substrate to water was kept at 0.5.However,it increased from 7.27 to 9.32 mg/g DM as the duration increased from 72 to 120 h,when the ratio of substrate to water was kept at 1.5.The optimal values of the 3 factors during fermentation for obtaining the predicted minimum content of phytic acid(2.00 mg/g DM)derived from response surface achieved when the ratio of substrate to water was 0.5,inoculum size was 4%and duration was 120 h.

    Fig.1 Response surface of 3D plot(A)and contour plot(B)of phytic acid content in soybean meal(DM basis)during solid-state fermentation with Aspergillus oryzae(inoculum size at the optimal level)

    2.2 Validation of the optimal conditions of solidstate fermentation with Aspergillus oryzae for phytic acid degradation

    In order to confirm the optimized conditions,3 additional laboratory-scale solid-state fermentation runs were performed with the optimal conditions of the ratio of substrate to water,inoculum size and duration.The mean content of phytic acid in fermented soybean meal was 2.38 mg/g DM(9.50 mg/g DM in untreated soybean meal),which was closeto the predicted value(2.00 mg/g DM).The results confirmed the approriate response model.

    2.3 Optimization of solid-state fermentation with Aspergillus oryzae for ergosterol

    The design matrix of the variables in coded units along with the predicted and experimental values of ergosterol content in fermented soybean meal were presented in Table 2.The ANOVA of the quadratic regression model(Table 4)demonstrated that Eq.(3)was an extremely significant model at 99%confidence level based on the low F-value(34.43)and P-value(<0.000 1)(Table 4).Terms A,C,AB,A2and C2in the current model were significant(P<0.05),which revealed that the ratio of substrate to water(at 99%confidence level),duration(at 99%confidence level),and the interaction between the ratio of substrate to water and inoculum size significantly affected theergosterol content in solid-statefermentation.In contrast,the effects of inoculum size,interaction between the ratio of substrate to water and duration,as well as interaction between inoculum size and duration on ergosterol content were not significant(P>0.05).The interaction between theratio of substrate to water and duration,however,exhibited the tendency of significant effect(P=0.085 7).In the current study,the P-value of lack of fit was 0.487 5,implying the lack of fit was not significant.

    Results in the experiment indicated that this model therefore could analyze the process of ergosterol generation in soybean meal during solid-state fermentation with Aspergillus oryzae,and optimizethe 3 conditional factors for maximum generation of ergosterol within the given ranges.

    Table 4 ANOVA of the regression for ergosterol

    The graphical representations of the regression of Eq.(3)called the response surface and the contour plots of this experiment were obtained using the Design Expert(Fig.2).The graphs were generated for the pair-wise combination of the 3 variables.The factors of the ratio of substrate to water and duration significantly affected the ergosterol generation during solid-state fermentation,which could be revealed from Fig.2.It showed that the ergosterol content was increased as the ratio of substrate to water reduced from 1.5 to 0.5,and as duration increased from 72 to 120 h.The optimal values of the 3 factors during fermentation for obtaining the predicted maximum content of ergosterol(406.12 mg/kg DM)derived from response surface achieved when the ratio of substrate to water was 0.5,inoculum size was 12%,and duration was 120 h.

    Fig.2 Response surface of 3D plot(A)and contour plot(B)of ergosterol content in soybean meal(DM basis)during solid-state fermentation with Aspergillus oryzae(inoculum size at the optimal level)

    2.4 Validation of the optimal conditions of solidstate fermentation with Aspergillus oryzaefor ergosterol

    In order to confirm the optimized conditions,3 additional laboratory-scale solid-state fermentation runs were performed with the optimal conditions of the ratio of substrate to water,inoculum size and duration.The mean content of ergosterol in fermented soybean meal was 396.74 mg/kg DM,which was close to the estimated value(406.12 mg/g DM).The result demonstrated the approriate response model.The model thus can be used to describe ergosterol or fungal growth pattern during solid-state fermentation in the current study.The Aspergillus oryzae dry biomass after solid-state fermentaion with optimized conditions was estimated to be 90.30 mg/kg DM.The estimation was in basis of the finding that the fungal ergosterol content was 5.50 mg/kg DM[13,17].

    2.5 Corelation of phytic acid and ergosterol content

    A significant negative correlation between phytic acid and ergosterol content of soybean meal in solidstate fermentation was detected,as the correlation coefficients(r)was 0.740 5 and P-value was 0.000 7.

    3 DISCUSSION

    A reduction of 75%of phytic acid content in the present study was higher than that in some previous studies[7,10,18].It might indicate that Aspergillus oryzae is of high efficiency in thedegradation of phytic acid during laboratory-scale solid-state fermentation with those optimized conditions.However,in the study with Penicillium canescens,the reduction of phytic acid reached to 90%[19],which might partly be ascribed to the longer fermentation duration(144 h)since the degradation of phytic acid was significantly affected by the duration as proved in the present study.The results in the present study also proved that the ratio of substrate to water of 0.5(equal to 66.66%moisture)was the optimum.The range of optimal moisture for filamentous fungi culture was from 20%to 70%[20],and the optimal moisture in the present study was reasonable since it was within the range.

    In the present study,the model based on ergosterol content was significant.It indicated that ergosterol was changed stablely with the fermentation conditions changed.Thus ergosterol was proved to be relible for estimating the fungi biomass during fermentation.The significant negative correlation between phytic acid content and ergosterol content in soybean meal implied that the phytase generation of this strain was positively correlated with the strain biomass growth.It was in agreement with a previous study conducted by Spier et al.[21].The author observed a great correlation between Aspergillus oryzae biomass growth and phytase generation in solid-state fermentation.Thus,ergosterol can be an indicator of phytase generation or phytic acid degradation in solid-state fermentation of soyban meal.

    Inoculum size did not significantly affect the degradation of phytic acid and the generation of ergosterol in the present study.This was inconsistent with a previous study conducted by Fu et al.[22].In that study,the degradation of phytic acid was significantly affected by the inoculum size in soybean meal.The variance between the two studies could be due to the different strains used.The optimal inoculum size for the degradation of phytic acid was 4%.It revealed that when the inoculum size was 4%,Aspergillus oryzae was metabolically active,and thus produced more phytase.The reason could be due to the aboundant supply of nutrients since the competition for nutrients was relatively low.

    4 CONCLUSIONS

    ①The optimal conditions for phytic acid degration are:the ratio of substrate to water of 0.5,inoculum size of 4%,and duration of 120 h;the optimal conditions for ergsoterol generation are:the ratio of substrate to water of 0.5,inoculum size of 12%,and duration of 120 h.

    ②With optimized conditions,Aspergillus oryzaeis of high efficiency for phytic acid degradation(from 9.50 to 2.38 mg/g of DM),while the ergosterol content of Aspergillus oryzae is increased to 396.74 mg/kg DM.This suggests the potential use of Aspergillus oryzae in industry-scale solid-state fermentation.

    ③There is a negative correlation between phytic acid and ergosterol content,and ergosterol can be a good indicator for phytase generation or phytic acid degradation in solid-state fermentation of soyban meal.

    [1] STOREBAKKEN T,REFSTIE S,RUYTER B.Soy products as fat and protein sources in fish feeds for intensive aquaculture[M]//DRACKLEY J K.Soy in animal nutrition.Savoy:Federation of Animal Science Societies,2000:127-170.

    [2] FRANCISG,MAKKAR H PS,BECKER K.Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish[J].Aquaculture,2001,199:197-227.

    [3] FU Q G.Anti-nutritive role of phytic acid in monogasric animals diets[J].Chinese Journal of Animal Nutrition,1998,10(4):1-10.(in Chinese)

    [4] SAJJADI M,CARTERC G.Effect of phytic acid and phytase on feed intake,growth,digestibility and trypsin activity in Atlantic salmon(Salmo salar L.)[J].Aquaculture Nutrition,2004,10:135-142.

    [5] DENSTADLI V,SKREDE A,KROGDAHL A,et al.Feed intake,growth,feed conversion,digestibility,enzyme activities and intestinal structure in Atlantic salmon(Salmo salar L.)fed graded levels of phytic acid[J].Aquaculture,2006,256:365-376.

    [6] HELLAND S,DENSTADLI V,WITTEN P E,et al.Hyper dense vertebrae and mineral content in Atlantic salmon(Salmo salar L.)fed diets with graded levels of phytic acid[J].Aquaculture,2006,261:603-614.

    [7] NAIR V C,DUVNJAK Z.Phytic acid content reduction in canola-meal by various microorganisms in asolid-state fermentation process[J].Acta Biotechnologica,1991,11:211-218.

    [8] EL-BATAL A I,KAREM H A.Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation[J].Food Research International,2001,34:715-720.

    [9] VIG A P,WALIA A.Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates,fibre and phytic acid in rapeseed(Brassica napus)meal[J].Bioresource Technology,2001,78:309-312.

    [10] EGOUNLETY M,AWORH O C.Effect of soaking,dehulling,cooking and fermentation with Rhizopus oligosporus on the oligosaccharides,trypsin inhibitor,phytic acid and tannins of soybean(Glycine max Merr.),cowpea(Vigna unguiculata L.Walp)and groundbean(Macrotyloma geocarpa Harms)[J].Journal of Food Engineering,2003,56:249-254.

    [11] PAPAGIANNI M,NOKESS E,FILERK.Production of phytaseby Aspergillus niger in submerged and solidstate fermentation[J].Process Biochemistry,1999,35:397-402.

    [12] NEWELL SY.Total and free ergosterol in mycelia of salt-marsh ascomycetes with access to whole leaves of aqueous extracts of leaves[J].Applied and Environmental Microbiology,1994,60:3479-3482.

    [13] GESSNER M O,CHAUVET E.Ergosterol-to-biomass conversion factors for aquatic hyphomycetes[J].Applied and Environmental Microbiology,1993,59:502-507.

    [14] MARíN S,RAMOS A J,SANCHIS V.Comparison of methods for the assessment of growth of food spoilage moulds in solid substrates[J].International Journal of Food Microbiology,2005,99:329-341.

    [15] BOX G E P,BEHNKEN D W.Some new three level designs for the study of quantitative variables[J].Technometrics,1960,2:455-475.

    [16] VAINTRAUB I A,LAPTEVA N A.Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing[J].Analytical Biochemistry,2005,175(1):227-230.

    [17] CHARCOSSET J Y,CHAUVET E.Effect of culture conditions on ergosterol as an indicator of biomass in the aquatic hyphomycetes[J].Applied and Environmental Microbiology,2001,67:2051-2055.

    [18] XIANG W Q,ZHONG Y C.Degradation of phytic acid in rapeseed meal by two strains of molds[J].Acta Microbiologica Sinica,1998,1:44-51.(in Chinese)

    [19] CHU X N,WANG C J,YUAN J M.A preliminary study of phytatedegraded by solid statefermentation of Penicillium canescens[J].Microbiology,1996,23:217-220.(in Chinese)

    [20] KRISHNA C.Solid-state fermentation systems—an overview[J].Critical Reviews in Biotechnology,2005,25:1-30.

    [21] SPIER M R,LETTI L A J,WOICIECHOWSKI A L,et al.A simplified model for A-Niger FS3growth during phytase formation in solid state fermentation[J].Brazilian Archives of Biology and Technology,2009,52:151-158.

    [22] FU H Y,LI L M,CAI H Y.Effect of strain and fermentation condition on antinutrients in soybean meal[J].Animal Husbandry and Veterinary Medicine,2009,41:32-35.(in Chinese)

    猜你喜歡
    植酸豆粕條件
    排除多余的條件
    選擇合適的條件
    不同植酸磷/非植酸磷比例對(duì)肉雞生長(zhǎng)性能和營(yíng)養(yǎng)物質(zhì)利用率的影響
    豆粕:養(yǎng)殖飼料需求回升 國(guó)內(nèi)豆粕價(jià)格上漲
    豆粕:貿(mào)易談判持續(xù)進(jìn)行 國(guó)內(nèi)豆粕價(jià)格振蕩
    豆粕:貿(mào)易談判再生變數(shù) 國(guó)內(nèi)豆粕價(jià)格上漲
    2017年第一季度豆粕市場(chǎng)回顧及第二季度展望
    為什么夏天的雨最多
    飼料中植酸的抗?fàn)I養(yǎng)作用
    超量使用植酸酶時(shí)所需的關(guān)鍵特性
    各种免费的搞黄视频| 亚洲精品日本国产第一区| 另类精品久久| 亚洲视频免费观看视频| 天天躁夜夜躁狠狠久久av| 国产一区亚洲一区在线观看| 日韩免费高清中文字幕av| 亚洲精品国产av蜜桃| av视频免费观看在线观看| 香蕉丝袜av| 日韩不卡一区二区三区视频在线| 亚洲精品av麻豆狂野| 激情视频va一区二区三区| 精品国产一区二区三区四区第35| 精品福利永久在线观看| 久久99蜜桃精品久久| av福利片在线| 日产精品乱码卡一卡2卡三| 亚洲视频免费观看视频| 亚洲男人天堂网一区| 99精国产麻豆久久婷婷| 永久网站在线| 久久人妻熟女aⅴ| 久久国产精品大桥未久av| 国产一区二区激情短视频 | 日韩制服丝袜自拍偷拍| 飞空精品影院首页| 欧美 日韩 精品 国产| 97人妻天天添夜夜摸| 午夜激情av网站| 国产精品99久久99久久久不卡 | 日韩一区二区三区影片| 晚上一个人看的免费电影| 午夜福利一区二区在线看| 国产女主播在线喷水免费视频网站| 亚洲一级一片aⅴ在线观看| 精品久久久精品久久久| 国产日韩欧美在线精品| 中文天堂在线官网| 国产人伦9x9x在线观看 | 亚洲天堂av无毛| 黑人欧美特级aaaaaa片| 麻豆乱淫一区二区| 亚洲精品美女久久久久99蜜臀 | 久久久久久久久久久久大奶| www.精华液| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 男的添女的下面高潮视频| 免费久久久久久久精品成人欧美视频| 秋霞在线观看毛片| 日本黄色日本黄色录像| 精品国产乱码久久久久久小说| 欧美日韩视频高清一区二区三区二| 另类精品久久| 国产成人精品在线电影| 国产精品人妻久久久影院| 美国免费a级毛片| 国产日韩欧美亚洲二区| 亚洲一码二码三码区别大吗| av一本久久久久| 亚洲五月色婷婷综合| 考比视频在线观看| 中文欧美无线码| 美女xxoo啪啪120秒动态图| 性色av一级| 99re6热这里在线精品视频| 两性夫妻黄色片| 欧美精品av麻豆av| 国产精品蜜桃在线观看| 亚洲经典国产精华液单| 大码成人一级视频| 免费黄色在线免费观看| 国产精品国产av在线观看| 日韩av不卡免费在线播放| 男女高潮啪啪啪动态图| 国产极品粉嫩免费观看在线| 久久国产亚洲av麻豆专区| 国产精品蜜桃在线观看| 你懂的网址亚洲精品在线观看| 18禁裸乳无遮挡动漫免费视频| 日韩免费高清中文字幕av| 国产精品麻豆人妻色哟哟久久| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 最近中文字幕高清免费大全6| 精品久久久精品久久久| 午夜老司机福利剧场| 99久国产av精品国产电影| 亚洲av综合色区一区| 国产乱人偷精品视频| 国产成人精品一,二区| 天天躁日日躁夜夜躁夜夜| 国产精品香港三级国产av潘金莲 | 亚洲精品自拍成人| 日韩三级伦理在线观看| 久久影院123| 一区二区三区四区激情视频| a级毛片黄视频| 成年av动漫网址| 热99久久久久精品小说推荐| 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 国产精品免费大片| av国产久精品久网站免费入址| 亚洲一区中文字幕在线| 亚洲欧美清纯卡通| 777久久人妻少妇嫩草av网站| 亚洲五月色婷婷综合| 女的被弄到高潮叫床怎么办| 国产日韩欧美在线精品| 90打野战视频偷拍视频| 两性夫妻黄色片| 黄色毛片三级朝国网站| 天天躁狠狠躁夜夜躁狠狠躁| av在线观看视频网站免费| 国产综合精华液| 午夜精品国产一区二区电影| 满18在线观看网站| xxxhd国产人妻xxx| 少妇精品久久久久久久| 欧美精品人与动牲交sv欧美| 黄片播放在线免费| 波多野结衣av一区二区av| 纵有疾风起免费观看全集完整版| 日本爱情动作片www.在线观看| 欧美成人午夜免费资源| 伊人亚洲综合成人网| 久久午夜综合久久蜜桃| 国产乱人偷精品视频| 最近最新中文字幕大全免费视频 | 十分钟在线观看高清视频www| 在现免费观看毛片| 91精品三级在线观看| 亚洲国产av新网站| 黄色视频在线播放观看不卡| 亚洲中文av在线| 亚洲一级一片aⅴ在线观看| 国产精品99久久99久久久不卡 | 波多野结衣一区麻豆| 毛片一级片免费看久久久久| 成年女人在线观看亚洲视频| 日韩伦理黄色片| 一级毛片我不卡| 日韩视频在线欧美| 中文字幕人妻熟女乱码| 国产老妇伦熟女老妇高清| kizo精华| 欧美bdsm另类| 热99国产精品久久久久久7| kizo精华| 一本色道久久久久久精品综合| 中文乱码字字幕精品一区二区三区| 赤兔流量卡办理| av免费观看日本| 丰满少妇做爰视频| 熟女av电影| 亚洲美女视频黄频| 少妇 在线观看| 欧美日本中文国产一区发布| 午夜激情久久久久久久| 亚洲精品国产av蜜桃| 狠狠婷婷综合久久久久久88av| √禁漫天堂资源中文www| 久热久热在线精品观看| 大话2 男鬼变身卡| 丰满迷人的少妇在线观看| 久久久久久人妻| 男女免费视频国产| 久久 成人 亚洲| 久久久精品区二区三区| av视频免费观看在线观看| 精品国产露脸久久av麻豆| 国产一区二区三区av在线| 国产精品三级大全| 王馨瑶露胸无遮挡在线观看| 我要看黄色一级片免费的| 少妇人妻精品综合一区二区| 久久久久精品性色| 婷婷色av中文字幕| 午夜福利一区二区在线看| 免费女性裸体啪啪无遮挡网站| 久久久久精品久久久久真实原创| 一级毛片电影观看| 夜夜骑夜夜射夜夜干| 久热久热在线精品观看| 中文天堂在线官网| 日日摸夜夜添夜夜爱| 亚洲国产毛片av蜜桃av| 如日韩欧美国产精品一区二区三区| 亚洲精品国产av蜜桃| 久久久久久久久久人人人人人人| 久久久久人妻精品一区果冻| 国产日韩欧美在线精品| 久久精品久久久久久噜噜老黄| 久久久久网色| 黄色配什么色好看| 啦啦啦在线观看免费高清www| 亚洲精品日韩在线中文字幕| 午夜福利影视在线免费观看| 亚洲国产日韩一区二区| www.精华液| 黄色 视频免费看| 成年美女黄网站色视频大全免费| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区 | 日韩中文字幕欧美一区二区 | 国产在线视频一区二区| 97在线视频观看| 久久人人97超碰香蕉20202| 满18在线观看网站| 色播在线永久视频| 99国产精品免费福利视频| 爱豆传媒免费全集在线观看| 天天躁夜夜躁狠狠躁躁| 91国产中文字幕| 高清欧美精品videossex| 日韩视频在线欧美| 国产精品偷伦视频观看了| 久久久久国产一级毛片高清牌| 亚洲久久久国产精品| 一级,二级,三级黄色视频| 国产亚洲午夜精品一区二区久久| 国产成人a∨麻豆精品| 免费在线观看视频国产中文字幕亚洲 | 99国产综合亚洲精品| 国产极品粉嫩免费观看在线| 欧美日韩视频高清一区二区三区二| 国产精品99久久99久久久不卡 | 十八禁网站网址无遮挡| 成人黄色视频免费在线看| 黄片播放在线免费| 在线观看www视频免费| 亚洲第一青青草原| 国产精品偷伦视频观看了| 国产一区二区 视频在线| 麻豆精品久久久久久蜜桃| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片| 国产成人av激情在线播放| 久久久久久免费高清国产稀缺| 伦精品一区二区三区| 亚洲av国产av综合av卡| 国产精品偷伦视频观看了| 久久久久人妻精品一区果冻| 黄色怎么调成土黄色| 九色亚洲精品在线播放| 极品少妇高潮喷水抽搐| 欧美人与善性xxx| 少妇被粗大猛烈的视频| 久久国产亚洲av麻豆专区| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线观看99| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 秋霞伦理黄片| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区国产| 大片免费播放器 马上看| 青春草视频在线免费观看| 中文字幕人妻熟女乱码| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 1024视频免费在线观看| 天堂8中文在线网| 亚洲国产成人一精品久久久| 最近最新中文字幕大全免费视频 | 深夜精品福利| 国产精品成人在线| 国产免费视频播放在线视频| 女人高潮潮喷娇喘18禁视频| 国产成人精品无人区| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 肉色欧美久久久久久久蜜桃| 有码 亚洲区| 免费看av在线观看网站| 90打野战视频偷拍视频| 777米奇影视久久| 亚洲成人一二三区av| 精品酒店卫生间| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区国产| 91精品三级在线观看| av片东京热男人的天堂| 一二三四在线观看免费中文在| 欧美人与善性xxx| 七月丁香在线播放| 曰老女人黄片| 人人妻人人爽人人添夜夜欢视频| 国产国语露脸激情在线看| 热99国产精品久久久久久7| 18禁国产床啪视频网站| 少妇人妻 视频| 国产精品熟女久久久久浪| 国产伦理片在线播放av一区| 日韩一卡2卡3卡4卡2021年| www日本在线高清视频| 久久久欧美国产精品| 99热国产这里只有精品6| 最近手机中文字幕大全| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 欧美日韩国产mv在线观看视频| 日韩精品免费视频一区二区三区| 亚洲精品,欧美精品| 男男h啪啪无遮挡| 免费少妇av软件| 老鸭窝网址在线观看| 搡老乐熟女国产| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美一区二区三区黑人 | 精品国产一区二区三区四区第35| 欧美亚洲 丝袜 人妻 在线| 热re99久久国产66热| 国产淫语在线视频| 亚洲熟女精品中文字幕| 日韩精品免费视频一区二区三区| 美女大奶头黄色视频| 精品少妇久久久久久888优播| 久久精品国产鲁丝片午夜精品| 亚洲国产精品一区二区三区在线| www.熟女人妻精品国产| 午夜精品国产一区二区电影| 免费观看av网站的网址| 欧美少妇被猛烈插入视频| 国产精品久久久久久久久免| 成年美女黄网站色视频大全免费| 国产精品一区二区在线不卡| av线在线观看网站| 精品福利永久在线观看| 日本爱情动作片www.在线观看| 国产精品久久久av美女十八| 街头女战士在线观看网站| av电影中文网址| 宅男免费午夜| 精品一区二区免费观看| 国产 精品1| 亚洲精品美女久久久久99蜜臀 | 高清视频免费观看一区二区| 视频区图区小说| 久久久久精品性色| 国产一区二区激情短视频 | 亚洲婷婷狠狠爱综合网| 久久国产精品男人的天堂亚洲| 香蕉丝袜av| 大片电影免费在线观看免费| 侵犯人妻中文字幕一二三四区| 精品人妻熟女毛片av久久网站| 一本色道久久久久久精品综合| 国产精品国产三级国产专区5o| 大陆偷拍与自拍| 欧美精品av麻豆av| 三上悠亚av全集在线观看| 亚洲第一区二区三区不卡| 男女高潮啪啪啪动态图| 韩国精品一区二区三区| 伊人亚洲综合成人网| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 日韩中字成人| 青春草国产在线视频| 美女大奶头黄色视频| 欧美人与性动交α欧美软件| 久久久久久久久久久免费av| 成人漫画全彩无遮挡| 精品一区二区三卡| 91国产中文字幕| 婷婷色综合www| 国产伦理片在线播放av一区| 精品久久久久久电影网| 亚洲欧美精品综合一区二区三区 | 亚洲伊人久久精品综合| 中文乱码字字幕精品一区二区三区| 99re6热这里在线精品视频| 国产精品人妻久久久影院| 美女视频免费永久观看网站| 高清黄色对白视频在线免费看| 啦啦啦中文免费视频观看日本| 欧美av亚洲av综合av国产av | 少妇被粗大猛烈的视频| 国产精品99久久99久久久不卡 | 国产成人精品无人区| 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 免费在线观看黄色视频的| 亚洲一区中文字幕在线| 精品酒店卫生间| 午夜久久久在线观看| 狠狠精品人妻久久久久久综合| 亚洲一码二码三码区别大吗| 国精品久久久久久国模美| h视频一区二区三区| 国产国语露脸激情在线看| 免费黄色在线免费观看| 一级毛片黄色毛片免费观看视频| 色视频在线一区二区三区| 精品一区二区三卡| 亚洲国产av影院在线观看| 少妇 在线观看| 熟女电影av网| 久久精品久久精品一区二区三区| 男女无遮挡免费网站观看| 精品一区二区三区四区五区乱码 | 大话2 男鬼变身卡| 啦啦啦视频在线资源免费观看| 午夜福利乱码中文字幕| 亚洲美女视频黄频| 一边摸一边做爽爽视频免费| 亚洲欧美精品自产自拍| xxxhd国产人妻xxx| 日韩欧美一区视频在线观看| 亚洲av.av天堂| 欧美亚洲日本最大视频资源| 伊人亚洲综合成人网| 日韩免费高清中文字幕av| 久久鲁丝午夜福利片| 丰满乱子伦码专区| 日本91视频免费播放| 波多野结衣一区麻豆| 最近的中文字幕免费完整| 中文字幕另类日韩欧美亚洲嫩草| 黄色怎么调成土黄色| 久久狼人影院| 最黄视频免费看| 水蜜桃什么品种好| 久久久久久久久久人人人人人人| 日韩成人av中文字幕在线观看| 美女中出高潮动态图| 十分钟在线观看高清视频www| 蜜桃国产av成人99| 精品人妻偷拍中文字幕| 午夜福利影视在线免费观看| 国产在线免费精品| 黄片播放在线免费| 午夜福利一区二区在线看| 18禁裸乳无遮挡动漫免费视频| 自线自在国产av| 日本午夜av视频| 在线免费观看不下载黄p国产| 国产福利在线免费观看视频| 婷婷色综合www| 国产成人一区二区在线| 一区二区三区精品91| a级毛片黄视频| 国产男女超爽视频在线观看| 黄色怎么调成土黄色| 国产成人午夜福利电影在线观看| 亚洲成av片中文字幕在线观看 | 亚洲欧洲日产国产| 亚洲国产毛片av蜜桃av| 最新中文字幕久久久久| 999精品在线视频| 国产黄色免费在线视频| 老司机亚洲免费影院| 午夜福利在线免费观看网站| 国产综合精华液| kizo精华| 国产精品欧美亚洲77777| 久久久精品94久久精品| 国产成人精品一,二区| 99热国产这里只有精品6| 一区二区三区激情视频| 麻豆av在线久日| 五月天丁香电影| 国产精品av久久久久免费| 国产成人a∨麻豆精品| 十八禁网站网址无遮挡| 免费av中文字幕在线| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 精品亚洲乱码少妇综合久久| 亚洲天堂av无毛| 性色av一级| 国产精品国产三级专区第一集| 久久青草综合色| 久久这里有精品视频免费| 各种免费的搞黄视频| 少妇精品久久久久久久| 日日撸夜夜添| 乱人伦中国视频| 日本wwww免费看| 成年av动漫网址| 免费播放大片免费观看视频在线观看| 蜜桃国产av成人99| 国产精品国产三级专区第一集| 一级a爱视频在线免费观看| 永久网站在线| 免费在线观看视频国产中文字幕亚洲 | 国产成人欧美| 青草久久国产| 国产精品国产三级国产专区5o| 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 大陆偷拍与自拍| av电影中文网址| 精品国产一区二区三区久久久樱花| av国产久精品久网站免费入址| 女性生殖器流出的白浆| 在线观看美女被高潮喷水网站| 尾随美女入室| 9色porny在线观看| 亚洲在久久综合| 久久久久久久精品精品| av视频免费观看在线观看| 欧美国产精品一级二级三级| 波多野结衣av一区二区av| 这个男人来自地球电影免费观看 | 嫩草影院入口| 秋霞伦理黄片| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 亚洲成国产人片在线观看| 在线观看人妻少妇| 美女国产视频在线观看| 国产乱人偷精品视频| 日韩一卡2卡3卡4卡2021年| 日日啪夜夜爽| 性少妇av在线| 亚洲av在线观看美女高潮| 欧美日韩精品成人综合77777| 香蕉精品网在线| 一区在线观看完整版| 女人被躁到高潮嗷嗷叫费观| 久久精品久久久久久噜噜老黄| 国产乱人偷精品视频| 成人国产av品久久久| 国产综合精华液| 捣出白浆h1v1| 国产免费视频播放在线视频| 色94色欧美一区二区| av卡一久久| 叶爱在线成人免费视频播放| 热99国产精品久久久久久7| 亚洲一码二码三码区别大吗| 亚洲国产色片| 亚洲av中文av极速乱| 国产乱来视频区| 成人黄色视频免费在线看| 欧美亚洲日本最大视频资源| 国产欧美日韩综合在线一区二区| 伊人久久国产一区二区| 一本色道久久久久久精品综合| 亚洲第一av免费看| 欧美精品国产亚洲| 一区二区日韩欧美中文字幕| 男女国产视频网站| 尾随美女入室| 一二三四中文在线观看免费高清| 精品国产一区二区三区久久久樱花| 午夜福利影视在线免费观看| 在线看a的网站| 欧美日韩精品网址| 男女啪啪激烈高潮av片| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 一区二区三区激情视频| 国产精品一国产av| 狠狠精品人妻久久久久久综合| 国产一区二区在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产一区二区| 国产不卡av网站在线观看| 男女国产视频网站| 久久久欧美国产精品| 国产精品三级大全| 午夜免费观看性视频| 亚洲欧洲日产国产| 国产av一区二区精品久久| 少妇的丰满在线观看| 精品国产一区二区三区四区第35| 日韩大片免费观看网站| 丁香六月天网| 成年女人毛片免费观看观看9 | 中文欧美无线码| 久久精品久久久久久久性| 欧美精品一区二区免费开放| 亚洲精品中文字幕在线视频| 美女主播在线视频| 韩国精品一区二区三区| 搡女人真爽免费视频火全软件| 中文字幕亚洲精品专区| 国产 一区精品| 晚上一个人看的免费电影| 国产熟女午夜一区二区三区| 香蕉精品网在线| 如日韩欧美国产精品一区二区三区| 国产一级毛片在线| 最黄视频免费看| 国产深夜福利视频在线观看| 久久久久久伊人网av| 丝袜喷水一区| 各种免费的搞黄视频| 欧美精品高潮呻吟av久久| 欧美精品国产亚洲| 午夜福利乱码中文字幕| 成人影院久久| 国产成人一区二区在线| 啦啦啦在线免费观看视频4| 黄色配什么色好看| 91精品伊人久久大香线蕉| 日韩熟女老妇一区二区性免费视频| 黄色毛片三级朝国网站| 国产免费现黄频在线看| 亚洲国产欧美网| 老司机影院毛片| 人妻人人澡人人爽人人| 国产精品一区二区在线观看99| 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站| 久久久久国产精品人妻一区二区| 日产精品乱码卡一卡2卡三| 久久精品夜色国产|