李飛祥
(1.鄭州大學(xué)數(shù)學(xué)系,鄭州 450001;2.安陽(yáng)師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南安陽(yáng) 455000)
不確定非完整系統(tǒng)的自適應(yīng)有限時(shí)間鎮(zhèn)定
李飛祥1,2
(1.鄭州大學(xué)數(shù)學(xué)系,鄭州 450001;2.安陽(yáng)師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南安陽(yáng) 455000)
研究了一類具有非線性參數(shù)化鏈?zhǔn)椒峭暾到y(tǒng)自適應(yīng)有限控制問(wèn)題.基于參數(shù)分離技術(shù),input-state-scaling變換技巧和backstepping設(shè)計(jì)方法構(gòu)造連續(xù)時(shí)變反饋有限時(shí)間自適應(yīng)控制律.通過(guò)切換策略有效克服系統(tǒng)在x0(t0)=0不能控的現(xiàn)象,該控制律保證閉環(huán)系統(tǒng)同Lyapunov穩(wěn)定和有限時(shí)間收斂.
自適應(yīng);有限時(shí)間穩(wěn)定;非完整系統(tǒng);非線性參數(shù)化
近幾年來(lái),非完整系統(tǒng)的控制問(wèn)題引起了廣泛關(guān)注.這些已有結(jié)果大多是通過(guò)時(shí)變或非光滑狀態(tài)反饋控制律來(lái)完成系統(tǒng)的漸近(指數(shù))鎮(zhèn)定.由于系統(tǒng)在復(fù)雜的工作環(huán)境中,受各種干擾因素的影響,具有不確定性是不可避免的.本文研究了一類具有非線性參數(shù)化的鏈?zhǔn)椒峭暾到y(tǒng)的有限時(shí)間鎮(zhèn)定問(wèn)題.通過(guò)參數(shù)分離技術(shù)解決了參數(shù)的非線性化問(wèn)題,并通過(guò)input-state-scaling[1]和backstepping[2]技術(shù)顯示設(shè)計(jì)狀態(tài)反饋控制器.
本文考慮如下一類不確定鏈?zhǔn)椒峭暾到y(tǒng)
其中(x0,x)=(x0,x1,…,xn)∈Rn+1,(u0,u1)∈R2分別表示系統(tǒng)的狀態(tài)和控制輸入,fi,i=0,1,…,n為其相應(yīng)變量的連續(xù)函數(shù),θ∈Rm為未知參數(shù)向量,di為未知虛擬控制系數(shù),fi,i=0,1,…,n為其相應(yīng)變量的C1函數(shù)且滿足fi(0,θ)=0.控制目標(biāo)是設(shè)計(jì)魯棒自適應(yīng)控制器
使閉環(huán)系統(tǒng)狀態(tài)有限時(shí)間調(diào)節(jié)到零點(diǎn).
為此,在本文中對(duì)系統(tǒng)(1)作如下假設(shè):
假設(shè)1存在正數(shù)ci1和ci2使得ci1≤di≤ci2.
假設(shè)2存在非負(fù)光滑函數(shù)fˉi滿足
在系統(tǒng)分析之前,我們首先介紹有限時(shí)間穩(wěn)定的概念和一些引理.
其中f:U0→Rn在包含原點(diǎn)x=0的一個(gè)開鄰域U0內(nèi)關(guān)于x連續(xù).如果系統(tǒng)的平衡點(diǎn)x=0是Lyapunov穩(wěn)定,
并且在一個(gè)U?U0鄰域內(nèi)是有限時(shí)間收斂的,則稱x=0是局部有限時(shí)間穩(wěn)定的.
引理1對(duì)以系統(tǒng)(1)存在光滑函數(shù)γ0(x0)≥1和γi(x0,x1,…,xi,u0)≥1使得
其中Θ≥1是一個(gè)依賴θ的不確定常數(shù).
引理2[3]對(duì)于任意實(shí)數(shù)xi, i=1,…,n和0<b<1,有
當(dāng)b=p/q<1,其中p>0和q>0都為奇數(shù),則
在這部分我們利用backstepping方法設(shè)計(jì)系統(tǒng)的自適應(yīng)有限控制器.首先處理x0(0)≠0,然后再討論x0(0)≠0的情形.系統(tǒng)的下三角結(jié)構(gòu)蘊(yùn)含了u0和u1可以分離設(shè)計(jì).
2.1 x0(0)≠0時(shí)的系統(tǒng)分析
對(duì)于x0-子系統(tǒng),我們?cè)O(shè)計(jì)控制律如下
其中k0是一個(gè)正的設(shè)計(jì)常數(shù),0是Θ第一次估計(jì),選取Lyapunov函數(shù)
定理1x0-子系統(tǒng)在控制律(8)作用下有限時(shí)間自適應(yīng)穩(wěn)定.
因此,對(duì)于任意給定的有限時(shí)刻ts>0,都有x0(ts)≠0,故(8)式中的u0(t)≠0, ?t≥ts.從而控制設(shè)計(jì)的input-state-scaling變換能夠執(zhí)行.當(dāng)t∈[0, ts)時(shí),采用(36)式定義的u0以及產(chǎn)生的新的控制律u1,當(dāng)t≥ts切換輸入u0,u1到(8),(33),從而得到本文的主要結(jié)果.
定理2在假設(shè)1-2下,存在狀態(tài)反饋控制律(8),(33)和自適應(yīng)律(11)和(34),并應(yīng)用上述切換控制策略,使不確定非完整系統(tǒng)(1)到狀態(tài)全局有限時(shí)間調(diào)節(jié)到原點(diǎn).
令α=2n/(2n+1)∈(0,1),則由引理3有
本文考慮一類帶有非線性參數(shù)化鏈?zhǔn)椒峭暾到y(tǒng)的有限時(shí)間自適應(yīng)鎮(zhèn)定問(wèn)題.基于參數(shù)分離技術(shù)處理非線性參數(shù),利用input-state-scaling變換技巧和backstepping設(shè)計(jì)方法,設(shè)計(jì)自適應(yīng)控制器.該控制器保證閉環(huán)系統(tǒng)同時(shí)是Lyapunov穩(wěn)定和有限時(shí)間收斂的.
[1]Astolfi A.Discontinuous control of nonholonomic systems[J].Systems&Control Letters,1996,27:37-45.
[2]Bhat S,Bernstein D.Continuous finite-time stabilization of the translational and rotational double integrators[J].IEEE Trans on Automatic Control,1998,43:678-682.
[3]Jiang Z P.Robust exponential regulation of nonholonomic systems with uncertainties[J].Automatica,2000,36:189-209.
[4]Lin W,Qian C.Adaptive control of nonlinearly parameterized systems:a nonsmooth feedback framework[J].IEEE Trans on Automatic Control,2002,47:757-774.
[5]Hong Y.Finite-time stabilization and stabilizability of a class of controllable systems[J].Systems&Control Letters,2002,46:231-236.
[6]Do K,Pan J.Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts[J].System&Control Letters,2002, 46:195-205.
Adaptive Finite-Time Stabilization of Nonholonomic Systems with Uncertainties
LI Fei-xiang1,2
(1.Department of Mathematics,Zhengzhou University,Zhengzhou 450001,China; 2.School of Mathematics and Statistics,Anyang Normal University,Anyang 455000,China)
In this paper,adaptive finite-time control is presented for a class of uncertain nonholonomic systems in chained form with nonlinear parameterization.Using parameter separation,state scaling and backstepping,an adaptive finite-time control law is obtained in the form of continuous time-invariant feedback.Both Lyapunov stability and finite time convergence are guaranteed by appropriately choosing the design parameters.An adaptive control based switching strategy is used to overcome the uncontrollability problem associated withx0(t0)=0.
adaptive;finite-time stability;nonholonomic systems;input-state-scaling;nonlinear parameterization
O231
A
1008-2794(2011)10-0048-05
2011-09-02
國(guó)家自然科學(xué)基金(61073065);河南省教育科學(xué)“十二五”規(guī)劃資助項(xiàng)目([2011]-JKGHAD-0199).
李飛祥(1981—),男,河南洛陽(yáng)人,安陽(yáng)師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院講師,碩士,研究方向:基礎(chǔ)數(shù)學(xué).