蔡宇澤
(沙洲職業(yè)工學(xué)院基礎(chǔ)科學(xué)系,江蘇張家港 215600)
環(huán)域上p-Ginzburg-Landau泛函的徑向極小元的C1,a收斂性
蔡宇澤
(沙洲職業(yè)工學(xué)院基礎(chǔ)科學(xué)系,江蘇張家港 215600)
研究了p-Ginzburg-Landau型泛函的徑向極小元在環(huán)域上的極限行為.在極小元的惟一性與正則化的基礎(chǔ)上,建立了極小元的C1,a局部一致有界性,進(jìn)而得到了極小元的C1,a局部收斂性.關(guān)鍵詞:徑向極小元;p-Ginzburg-Landau型泛函;極限行為
文獻(xiàn)[5]研究了環(huán)域上徑向極小元uε當(dāng)ε→0時(shí)的極限行為,討論了uε的零點(diǎn)分布,運(yùn)用局部分析技巧證明了零點(diǎn)分布在環(huán)域的邊界附近,利用迭代的方法,建立了能量的局部一致估計(jì),在此基礎(chǔ)上,證明了如下結(jié)論:
文獻(xiàn)[6]通過(guò)研究環(huán)域上徑向極小元的極限行為,證明了徑向極小元在環(huán)域上的惟一性與正則化,并得到了如下兩個(gè)結(jié)論:
[1]LEI Yu-tian.Radial Minimizer of a Ginzburg-Landau functional with Nonvanishing Dirichlet Boundary Condition[J].Nonlinear Anal,2005,60(1):117-128.
[2]LEI Yu-tian.Radial Minimizer of a Ginzburg-Landau Type withp∈() n-1,n[J].Nonlinear Anal,2008,69(12):4534-4549.
[3]LEI Yu-tian.Asymptotic estimation for a p-Ginzburg-Landau type minimizer in higher dimensions[J].Pacific J Math,2006,226: 103-135.
[4]LEI Yu-tian.Asymptotic estimations for a p-Ginzburg-Landau type mini-mizer[J].Math Nachr,2007,280:1559-1576.
[5]蔡宇澤,雷雨田.環(huán)域上p-Ginzburg-Landau泛函的徑向極小元[J].吉林大學(xué)學(xué)報(bào)理學(xué)版,2009,47(4):683-690.
[6]蔡宇澤.環(huán)域上p-Ginzburg-Landau泛函的徑向極小元的惟一性與正則化[J].常熟理工學(xué)院學(xué)報(bào),2010,25(2):7-10.
Uniqueness and Regularization of Radial Minimizer of a Ginzburg-Landau Functional in an Annular Domain
CAI Yu-ze
(Shazhou Polytechnical Institute Of Technology,Zhangjiagang 215600,China)
This paper is concerned with the limiting behavior of a radial minimizer of a p-Ginzburg-Landau type functional on an annular domain.Based on the nonexistence of the zero of the radial minimizer in this annular domain,the author discusses the uniqueness of the radial minimizers.
radial minimizer;p-Ginzburg-Landau functional;limiting behavior
A
1008-2794(2011)10-0024-04
2011-05-05
江蘇省高校自然科學(xué)基金(06KJB110056)資助項(xiàng)目.
蔡宇澤(1977—),男,江蘇張家港人,沙洲職業(yè)工學(xué)院基礎(chǔ)科學(xué)系講師,碩士,研究方向:基礎(chǔ)數(shù)學(xué).