• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solvent Recovery from Soybean Oil/Hexane Miscella by PDMS Composite Membrane*

    2011-03-22 10:08:24CAIWeibin蔡衛(wèi)濱SUNYanzhi孫艷芝PIAOXianglan樸香蘭LIJiding李繼定andZHUShenlin朱慎林
    關(guān)鍵詞:香蘭

    CAI Weibin (蔡衛(wèi)濱), SUN Yanzhi (孫艷芝), PIAO Xianglan (樸香蘭), LI Jiding (李繼定)** and ZHU Shenlin (朱慎林)

    State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    1 INTRODUCTION

    Vegetable oil is mostly processed by solvent extraction using hexane as solvent at present. The solvent content of the miscella (mixture of extracted oil and solvent) in the extractor exit is always 70% to 75% (by mass). The miscella is then evaporated to separate the oil and hexane. Since the process involves solvent phase change, the evaporation process requires considerable amount of energy (about 530kJ per kg of hexane) [1]. In addition, the explosive vapor in the vegetable oil plant also brings a safety problem. Since most of the membrane separation process does not involve phase change, if evaporation is partially replaced by membrane separation, great energy can be saved.

    According to Cheryan [2], a process using membranes when compared to conventional distillation may promote substantial cost reduction for vegetable oil processing due to the pre-concentration of the miscella and the opportunity to use more compact evaporators. In addition, this new process can have environmental and safety advantages, since risks of explosion, for instance, are minimized [3].

    By analyzing the difference between the triacylglycerols (oil) and hexane, it is found that solvent recovery from miscella by membrane is feasible. The first difference is their molecular weight. Triacylglycerols has a molecular weight about 900 g·mol-1and hexane, 86 g·mol-1. Thus their molecular volume differs markedly. Moreover, they have different diffusivities. This make the membrane separation become possible. An ideal membrane for solvent recovery should combine specific properties such as high rejection of oil and a suitable permeate fluxes that are adequate for industrial scale, as well as mechanical, thermal and chemical resistances compatible with the process [1].

    Several papers reported recovery of hexane from miscella by membrane separation. In their research UF(untrafiltration), NF (nanofiltration) and RO (reverse osmosis) membrane are tested [4-8], but the results are not satisfactory. The separation performance (permeate fluxes and rejection) were rather limited,i.e., either the permeate fluxes is low, or the rejection is too low. One reason is that the membranes used in these works are mostly hydrophilic, which are mainly used in water treatment, but hexane is hydrophobic and the hydrophobicity is very strong. At the same time, it was found that membrane swelling is a severe problem.Only a few membranes could permeate hexane without being destroyed, while most membranes were destroyed very quickly. These issues greatly limited research work in this area, and till now, hexane recovery by membrane has been investigated only at bench scale.

    PDMS (polydimethylsiloxane) is one of the hydrophobic membrane materials. It is found that PDMS membrane is stable in organic solvent, and the separation performance is satisfactory [9-12]. For this reason,PDMS was selected as membrane material in this study. Cross-linked PDMS/PVDF composite membranes were prepared, in which asymmetric microporous PVDF membrane prepared with phase inversion was acted as the microporous supporting layer in the flat-plate composite membrane. It is found that,when filled with zeolite, separation performance can be improved [13-17]. Thus, zeolite filled PDMS/PVDF composite membranes were also prepared. The separation performances of the prepared membranes were then used to recover hexane from soybean oil/hexane miscella.

    2 EXPERIMENTAL

    2.1 Materials

    PVDF of 1.76 g·cm-3in density, 170,000 in molecular weight was purchased from the Solvay Company, Belgium. PDMS prepolymer with a viscosity of 20 Pa·s was received from Beijing Chemical Reagents Corporation. Hexane,n-heptane, dibutyltin dilaurate(DBTL) and tetraethylorthosilicate (TEOS) were obtained from Beijing Jingyi Chemical Reagents Corporation, Beijing, China. Zeolite is provided by The Catalyst Plant of Nankai University. Miscella was prepared from 25% (by mass) refined commercial soybean oil (Yihai Kerry Group) and 75% (by mass) hexane.PVDF was used for the preparation of porous membrane supporter. Triethyl phosphate (TEP, reagent grade,Beijing Chemical Corporation) was used as the solvent for PVDF UF membrane formation. All reagents were used as received unless otherwise mentioned.

    2.2 Preparation of PDMS/PVDF composite membranes

    The PVDF support layer was prepared by dissolving PVDF in TEP solvent to form a 15% (by mass)solution. The solution was then cast on non-woven fiber and then immersed into water to induce polymer precipitation. The residual solvents was fully exchanged with ethanol and evaporated at room temperature. The thickness of PVDF layer was controlled in the range of 45-50 μm.

    PDMS, crosslinking-agent ethyl orthosilicate and catalyst dibutyltin dilaurate were dissolved inton-heptane at room temperature. Zeolite of ZSM-5 particles was added into the solution under stirring. The resulting suspension was then sonicated for 30 min to promote the dispersion of ZSM-5 particles. After degassed under vacuum, the solution was cast onto the PVDF membrane. The membrane was first vulcanized under room temperature to evaporate the solvent, and then placed in an oven at different temperature for 5h to complete crosslinking.

    Zeolite used was ZSM-5 particles with Si/A1 ratio of 360, the size is about 4-6 μm.

    2.3 Membranes characterization

    2.3.1SEM

    The morphologies of PVDF membrane and PDMS/PVDF composite membrane were obtained by scanning electron microscope (SEM, JEOL JSM-7401F,Japan). Membranes were coated with Au/Pd in vacuum for three minutes.

    2.3.2FTIR-ATR analysis

    The change of chemical structures of PDMS before and after cross-linking was confirmed using Fourier transform infrared (FTIR) spectrometer (Nicolet,IR560) in the ranger of 4000-400 cm-1.

    2.4 Membrane conditioning

    According to Kesting [18], before each test, conditioning of polymeric membranes should be performed. Membrane conditioning consists of its immersion in a work fluid and filtration under appropriate pressure in order to remove conservants and humectants from the surface and their pores. After conditioning it is possible to increase solvent permeation and to improve membrane global performance.

    According to vad der Bruggenet al. [19], immersing polymeric membranes in hexane may cause agglomeration of hydrophobic and hydrophilic sites presented in the active layer. As a consequence, hydrophilic membranes may have their hydrophilicity reduced. Thus, before each test, membranes were immersed in oil/hexane miscella for 24 h and then filtered at room temperature, 2.4 MPa for 1 h, and 1.0 MPa for 1 h.

    2.5 Separation experiments

    Separation experiment apparatus used in this study can be seen in Fig. 1. The membrane was positioned in the stainless steel permeation cell with an effective area of 21.0 cm2. The feed solution continuously circulated from the feed tank to the upstream side of the membrane in the cell at a desired pressure,and the permeate was collected after a steady state was obtained. The compositions of the feed solution and the permeate were analyzed by gas chromatography.

    Figure 1 Schematic flow diagram of membrane evaluation equipment1—bumper; 2—electric thermometer; 3—membrane unit; 4—pressure gauge; 5—counterbalance valve; 6—feed tank; 7—plunger pump

    Separation performances of the membranes can be evaluated on the basis of total flux and retention coefficient. The permeate fluxJwas determined by measuring the mass of permeate collected and divided by time and the membrane’s effect surface area as show in Eq. (1):

    where Δmis the mass of permeate during the operation time Δtat steady state, andAis the effective membrane area.

    The retention coefficient for the oil was defined as:

    wherecfeedandcperare the oil concentration in the feed and permeate, respectively.

    3 RESULTS AND DISCUSSION

    3.1 SEM photographs of membrane

    SEM permits imaging cross section and surface membrane morphology. The morphologies of the composite membrane and PVDF membrane prepared in this study were presented in Fig. 2.

    As can be seen in Fig. 2 (a), the surface morphology of the PVDF UF membrane was rough,which was good for it to combine with PDMS layer.Fig. 2 (b) is the surface image of PDMS/PVDF composite membrane. The PDMS layer, functioning as the basis of selectivity, had a nonporous and tight structure. The surface was dense and there is no any pinhole or crack, which was important for the practical application. With the filling of zeolite, as can be seen in Fig. 2 (c), the surface became rough. This was for the presence of zeolite in the surface, but the surface was still featureless.

    The cross-section morphology of the composite membrane was shown in Figs. 2 (d) and (e). As demonstrated in the SEM photograph, there was a clear boundary between the top layer and the PVDF support layer, and the top layer combines with the support one tightly.

    3.2 FTIR results

    ATR (attenuated total reflection) Fourier transform infrared spectroscopy is commonly used to characterize chemical structure of the surface [20]. The ATR technique enables the identification of specific molecules and groups located within 100 nm from the surface layer. To obtain detailed information about the structural changes of PDMS/PVDF membranes resulted from crosslinking, FTIR spectra of the surface of PDMS/PVDF membranes and PDMS prepolymer were recorded in Fig. 3 using the ATR technique.

    Figure 2 The surface and cross-section SEM image

    Figure 3 FTIR spectrums of uncrosslinked and crosslinked PDMS

    Figure 4 FTIR-ATR spectrums of magnified area of SiOH in 1150-1000 cm-1 area 1—PDMS prepolymer;crosslinking temperature/°C: 2—30; 3—60; 4—80; 5—110;6—140

    The PDMS used in this study is hydroxyl-terminated one. The degree of the crosslinking reaction can be learned from the absorbance intensity of SiOH. The characteristic absorption bands of SiOH groups appeared at 3000-2890 cm-1and 1150-1000 cm-1.Comparing with the uncrosslinked PDMS (Fig. 3), the SiOH absorbance signals of the crosslinked membrane obviously weakened. And it could also be found that with the increase in crosslinking temperature, the absorption peak weakened (Fig. 4). These changes were the evidences of crosslinking reaction of hydroxyl-terminated PDMS with TEOS by DBTL catalysis, and with the increase in crosslinking temperature, the crosslinking degree increase, too. The crosslinking reaction is shown as the following formula [21]:

    3.3 Separation performance of the PDMS/PVDF composite membrane

    3.3.1Effect of crosslinking temperature and pressure

    Impacts of crosslinking temperature on permeate flux and oil retention was depicted in Figs. 5 and 6,respectively. It could be found that with the increase of membrane crosslinking temperature, the permeate flux decreased, while the retention of oil increased at first till reached a maximum value at 110 °C and then began to decline. This could be explained that when the crosslinking temperature is low, the crosslinking degree is low too and the PDMS layer is relatively‘loose’, leading to large permeate flux and low oil retention. With the increase of crosslinking temperature, crosslinking degree increase, which resulted in the rise of density and caused smaller available free volume of polymer matrix for diffusion. Thus, flux dropped and oil retention increased. But if crosslinking temperature is too high (140 °C), the membrane prepared became curl and defect may occur, decreasing the oil retention.

    Although membrane prepared under low crosslinking temperature had larger permeate flux, the oil retention was low, which made it not so competitive in practical use. Considering both flux and oil retention,crosslinking temperature in the region of 80-110 °C is preferable for the PDMS/PVDF composite membrane.

    From Figs. 5 and 6 the influence of feed pressure on separation performance could be found. The permeate flux increased quickly with a nearly linear increase of feed pressure. This can be explained by the pore-based model. In this model the permeate flux,J,can be calculated as follows [22]:

    where Δpand Δπrepresent pressure and osmotic pressure differential between feed and permeate, respectively, andAWis the permeability coefficient.

    Figure 5 Effect of crosslinking temperature and experiment pressure on membrane permeate flux (membrane thickness: 45 μm)crosslinking temperature/°C: ■ 30; ● 60; ▲ 80; ▼ 110; ◆ 140

    The pressure of permeate is zero and Δπdose not change much when oil content in permeate is low, and thus the relation of permeate fluxJand feed pressure is nearly linear.

    From Fig. 6 it showed that with the increase of feed pressure oil retention increased at first and then decreased. The maximum feed pressure appeared at a range of about 1.5-1.8 MPa. For application in industry, feed pressure should be adjusted to optimize flux and oil retention.

    Figure 6 Effect of crosslinking temperature and experiment pressure on oil retentioncrosslinking temperature/°C: ■ 30; ★ 60; ▲ 80; ▼ 110; ◆ 140

    3.3.2Effect of PDMS layer thickness

    To research the influence of PDMS layer thickness on separation performance, various PDMS composite membranes with different thickness (12, 30 and 45 μm) were prepared. The separation performance can be seen from Fig. 7.

    Figure 7 Effect of membrane thickness on separation performance (pressure: 1.8 MPa)□ flux; ● oil retention

    As the thickness of membrane increased, the flux showed a remarkable decrease, which was due to the increase in mass transport resistance, while the oil retention exhibited a slightly increase from 84% to 93%. It is generally recognized that membrane selectivity is determined by two factors: solubility and diffusivity. For a selected system, when membrane thickness increases, the selectivity for the component which diffusion quickly can be improved. In this work,the separation layer of the composite membrane is hydrophobic PDMS, which makes it dissolve hexane preferentially. On the other hand, hexane is much smaller than soybean molecular, which makes hexane diffuse more quickly than soybean oil. Thus, oil retention increases with the increase of membrane thickness. The result confirmed the conclusion. The oil retention does not increase much, showing that diffusivity is not the major factor in this process.

    3.3.3Separation performance of the Zeolite filled PDMS/PVDF composite membrane

    In order to see whether there was an enhancement in separation performance, Zeolite filled PDMS/PVDF composite membrane was prepared and tested (Fig. 8).In this study, ZSM-5 particles with Si/A1 ratio of 360 was selected, and the ZSM-5 content is 10% (by mass)of PDMS.

    Figure 8 Separation performance of zeolite filled composite membrane [crosslinking temperature: 80 °C, Zeolite content: 10% (by mass) of PDMS]□ flux; ● oil retention

    Comparing with the PDMS composite membrane crosslinked under 80 °C in Figs. 5 and 6, both permeate flux and oil retention increase remarkably. A maximum oil retention of 96.1% is observed at feed pressure 1.7 MPa with corresponding oil content of 0.97% and permeate flux of 2.52 kg·m-2·h-1. The permeate can be reused to extraction directly.

    The enhancement of separation performance for zeolite filled composite membrane can be explained in two aspects. First, ZSM-5 is highly hydrophobic,which makes it more affinitive to hexane than soybean oil. On the other hand, ZSM-5 has many inner pores with size about 0.51 nm×0.55 nm, which is similar to the size of hexane but much smaller than oil molecular.Thus hexane can pass the hole freely, while soybean oil is too large to go through.

    4 CONCLUSIONS

    Crosslinked PDMS/PVDF and zeolite PDMS/PVDF composite membrane were prepared, characterized by FTIR, SEM, and employed in hexane recovery from hexane/soybean oil miscella. Experimental results indicated that permeate flux decreased with the increase of crosslinking temperature, while oil retention increase at the beginning and then decreased. Temperature range of 80-110 °C is preferable for crosslinking. The increase of PDMS layer thickness resulted in a sharp drop in permeate flux and a slightly increase in oil retention. The permeate flux increased with the increase of feed pressure, while oil retention had a maximum value. Zeolite filled PDMS composite membrane can increase separation performance remarkably. Under the feed pressure of 1.7 MPa, permeate flux is 2.52 kg·m-2·h-1and oil retention is 96.1%. The result demonstrated that the PDMS/PVDF composite membranes are effective for recovering hexane from hexane/oil miscella.

    1 Koseoglu, S.S., Engelgau, D.E., “Membrane applications and research in the edible oil industry”,J.Amer.Oil Chem.Soc., 67, 239-249 (1990).

    2 Cheryan, M., “Membrane technology in the vegetable oil industry”,Membr.Technol., 207, 5-7 (2005).

    3 Stafie, N., Stamatialis, D.F., Wessling, M., “Insight into the transportation of hexane-solute systems through tailor-made composite membranes”,J.Membr.Sci., 228, 103-116 (2004).

    4 Koseoglu, S.S., Lawhon, J.T., Lusas, E.W., “Membrane processing of crude vegetable oil: Pilot plant scale removal of solvent from oil miscellas”,JAOCS., 67, 315-322 (1990).

    5 Ribeiro, A.P.B., de Moura, J.M.L.N., Goncalves, L.A.G., Petrus,J.C.C., Viotto, L.A., “Solvent recovery from soybean oil/hexane miscella by polymeric membranes”,J.Membr.Sci., 282, 328-336(2006).

    6 Liu, H.X., Zhu, J.H., Zhao, J.T., Li, D., “Membrane applications in edible oil degumming and solvent recovery”,Cereals and Oils Processing, 9, 78-81 (2006).

    7 Wu, C. S., Lee, E., “Ultrafiltration of soybean oil/hexane extracted by porous ceramic membranes”,Journal of Membrane Science, 154,251-259 (1999).

    8 Koike, S., Subramanian, R., Nabetani, H., Nakajima, M., “Separation of oil constituents in organic solvents using polymeric membranes”,JAOCS, 79 (9), 937-942 (2002).

    9 Chen, J., Li, J. D., Lin, Y. Z., Chen, C. X., “Pervaporation performance of polydimethylsiloxane membranes for separation of bezene/cyclohexane mixtures”,J.App.Poly.Sci., 112, 2425-2433 (2009).

    10 Zhao, C. W., Li, J. D., Qi, R. B., Chen, J., Luan, Z. K., “Pervaporation separation ofn-heptane/sulfer species mixtures with polydimethylsiloxane membranes”,Sep.Purif.Technol., 63, 220-225(2008).

    11 Zhang, X.Y., Chen, C.X., Chen, Z., Hao, J., Li, J.D., “Preparation of silicone polymer membrane for separation of solvents from lube oil”,Membr.Sci.and Technol., 25, 19-23 (2003).

    12 Okamoto, K.I., Butsuen, A., Tsuru, S., “Pervaporation of water-ethanol mixtures through polydimethylsiloxane block-copolymer membrane”,Polymer J., 19, 747-756 (1987).

    13 Zhan, X., Li, J.D., Chen, J., “Pervaporation of ethanol/water mixtures with high flux by zeolite-filled PDMS/PVDF nanofiltration membranes”,Chin.J.Polym.Sci., 27 (6), 771-780 (2009).

    14 Jia, M.D., Peinemann, K.V., Behling, R.D., “Preparation and characterization of thin-film zeolite-PDMS composite membranes”,J Mem Sci., 73, 119-128 (1992).

    15 Vankelecom, I.F.J., De Beukelaer, S., Uytterhoeven, J.B., “Sorption and pervaporation of aroma compounds using zeolite filled PDMS membranes”,J PhysChem B., 101, 5186-5190 (1997).

    16 Moermans, B., Beuckelaer, W.D., Vankelecom, I.F.J., “Incorporation of nano-sized zeolites in membranes”,Chem.Commun., 24,2467-2468 (2000).

    17 Bowen, T.C., Meier, R.G., Vane, L.M., “Stability of MFI zeolite-flled PDMS membranes during pervaporative ethanol recovery from aqueous mixtures containing acetic acid”,J.Membr.Sci., 298,117-125 (2007).

    18 Kesting, R.E. “Synthetic Polymeric Membranes: A Structural Perspective”, Wiley-Interscience Publication, New York, 1985.

    19 Van der, Bruggen, B., Geens, J., Vandecasteele, C., “Fluxes and rejections for nanofiltration with solvent stable polymeric membranes in water, ethanol andn-hexane”,Chem.Eng.Sci., 57, 2511-2518(2002).

    20 Hillborg, H., Gedde, U.W., “Hydrophobicity changes in silicone rubbers”,IEEETrans.Dielectr.Electr.Insul., 6, 5-12 (1999).

    21 Chen, C.Y., Wang, J., Chen, Z., “Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG”,Langmuir, 20, 10186-10193 (2004).

    22 Mulder, M., Basic Principles of Membrane Technology, 2nd ed.,Kluwer Academic Publishers, Dorcrecht (1996).

    猜你喜歡
    香蘭
    “香蘭”氣質(zhì):“一帶一路”語境下的紹興文化戰(zhàn)略
    草鬼婆香蘭
    函數(shù)與方程思想在高中數(shù)學(xué)解題中的應(yīng)用
    書 畫
    紅寶塔
    骨髓增生異常綜合征引起假性低血糖1例
    閨蜜
    棋子娘子和案子
    故事會(2012年7期)2012-03-28 12:56:06
    丟失的鏈墜
    故事林(2011年13期)2011-05-14 17:29:49
    悄悄話兒悄悄說
    故事林(2010年10期)2010-05-14 17:29:36
    欧美精品av麻豆av| 精品第一国产精品| 欧美人与性动交α欧美软件| 老鸭窝网址在线观看| 久久久久久久国产电影| 国产免费视频播放在线视频| 大话2 男鬼变身卡| 自线自在国产av| 一区在线观看完整版| 亚洲激情五月婷婷啪啪| 国产精品成人在线| 精品一区二区三区四区五区乱码 | 国产淫语在线视频| 国产精品一二三区在线看| 一本大道久久a久久精品| 亚洲情色 制服丝袜| 777米奇影视久久| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av高清一级| 老司机影院成人| 十分钟在线观看高清视频www| 精品少妇黑人巨大在线播放| 亚洲国产精品国产精品| 秋霞在线观看毛片| 好男人视频免费观看在线| 又粗又硬又长又爽又黄的视频| 免费高清在线观看视频在线观看| 黄色视频不卡| 赤兔流量卡办理| 在线观看人妻少妇| 亚洲精品中文字幕在线视频| 亚洲精品国产av成人精品| 国产日韩一区二区三区精品不卡| 美女主播在线视频| 久久婷婷青草| 国产精品久久久久久久久免| 亚洲,一卡二卡三卡| 亚洲一区二区三区欧美精品| avwww免费| 在线观看www视频免费| netflix在线观看网站| 男女高潮啪啪啪动态图| 日韩不卡一区二区三区视频在线| 人成视频在线观看免费观看| 岛国毛片在线播放| 日韩视频在线欧美| 国产在视频线精品| 9色porny在线观看| 国产一区亚洲一区在线观看| 两性夫妻黄色片| 在线天堂最新版资源| 久久鲁丝午夜福利片| 日韩电影二区| 亚洲精品一区蜜桃| 日韩中文字幕欧美一区二区 | 高清av免费在线| 香蕉国产在线看| 欧美精品一区二区大全| 亚洲人成77777在线视频| 不卡视频在线观看欧美| 男人添女人高潮全过程视频| 晚上一个人看的免费电影| 最近2019中文字幕mv第一页| 亚洲欧美一区二区三区久久| 亚洲精品国产色婷婷电影| 一级毛片电影观看| 成人国产av品久久久| 一级毛片黄色毛片免费观看视频| 香蕉丝袜av| 天天添夜夜摸| 美女高潮到喷水免费观看| 伦理电影大哥的女人| 精品国产一区二区三区久久久樱花| 99精国产麻豆久久婷婷| 国产av精品麻豆| 天天添夜夜摸| 亚洲av电影在线进入| 在线天堂中文资源库| 亚洲精品一二三| 亚洲人成网站在线观看播放| tube8黄色片| 久久久国产欧美日韩av| 国产xxxxx性猛交| tube8黄色片| 男女午夜视频在线观看| 国产日韩欧美亚洲二区| 18禁观看日本| 亚洲国产欧美日韩在线播放| 韩国高清视频一区二区三区| 亚洲第一青青草原| 免费看不卡的av| 国产精品国产av在线观看| 久久亚洲国产成人精品v| 1024香蕉在线观看| 午夜福利乱码中文字幕| 久久国产精品男人的天堂亚洲| kizo精华| 国产熟女欧美一区二区| 一区在线观看完整版| 亚洲精品,欧美精品| 美女主播在线视频| 婷婷色综合大香蕉| 欧美精品一区二区免费开放| 日本午夜av视频| 亚洲av成人精品一二三区| 日本一区二区免费在线视频| av福利片在线| 免费观看a级毛片全部| 免费高清在线观看视频在线观看| 这个男人来自地球电影免费观看 | 欧美国产精品一级二级三级| 亚洲成国产人片在线观看| 日本wwww免费看| 哪个播放器可以免费观看大片| 这个男人来自地球电影免费观看 | 97人妻天天添夜夜摸| 亚洲五月色婷婷综合| 国产亚洲一区二区精品| 欧美国产精品va在线观看不卡| 啦啦啦在线观看免费高清www| 各种免费的搞黄视频| 爱豆传媒免费全集在线观看| 桃花免费在线播放| 日本vs欧美在线观看视频| 亚洲av成人精品一二三区| 欧美日韩视频精品一区| 欧美人与性动交α欧美精品济南到| 99久久精品国产亚洲精品| 国产成人欧美在线观看 | 少妇被粗大的猛进出69影院| 日韩一区二区视频免费看| avwww免费| 亚洲,欧美,日韩| 女性生殖器流出的白浆| av.在线天堂| 日本av免费视频播放| 性少妇av在线| 国产男女内射视频| 黑人猛操日本美女一级片| 成人影院久久| av在线播放精品| netflix在线观看网站| 一本大道久久a久久精品| 中文乱码字字幕精品一区二区三区| www日本在线高清视频| 秋霞在线观看毛片| 国产又爽黄色视频| 亚洲精品美女久久av网站| 中文字幕人妻丝袜制服| 精品福利永久在线观看| 欧美日韩成人在线一区二区| 午夜老司机福利片| 美女扒开内裤让男人捅视频| 国产激情久久老熟女| 午夜免费鲁丝| 精品少妇内射三级| 久久精品亚洲熟妇少妇任你| 少妇 在线观看| 在线亚洲精品国产二区图片欧美| 18禁观看日本| 亚洲国产毛片av蜜桃av| 男女床上黄色一级片免费看| 亚洲人成77777在线视频| 国产av码专区亚洲av| 国产免费福利视频在线观看| 国产福利在线免费观看视频| 亚洲一区二区三区欧美精品| bbb黄色大片| 日韩中文字幕视频在线看片| 激情五月婷婷亚洲| 热re99久久国产66热| 亚洲精品第二区| 亚洲专区中文字幕在线 | 亚洲精品视频女| 天天躁夜夜躁狠狠久久av| 免费观看性生交大片5| 精品少妇久久久久久888优播| 99久久综合免费| 欧美人与性动交α欧美软件| 少妇 在线观看| 国产精品蜜桃在线观看| 99久久人妻综合| 美女午夜性视频免费| 美女高潮到喷水免费观看| 成年美女黄网站色视频大全免费| 这个男人来自地球电影免费观看 | 在线 av 中文字幕| 国产乱来视频区| 老熟女久久久| 精品一品国产午夜福利视频| 国产成人欧美| 欧美日韩福利视频一区二区| 99久久精品国产亚洲精品| 中国三级夫妇交换| 黑人猛操日本美女一级片| 国产片内射在线| 天美传媒精品一区二区| 高清欧美精品videossex| 久久久久久免费高清国产稀缺| 韩国精品一区二区三区| 欧美97在线视频| 九色亚洲精品在线播放| 免费观看性生交大片5| a级片在线免费高清观看视频| 亚洲国产最新在线播放| 欧美人与性动交α欧美软件| 色婷婷久久久亚洲欧美| 欧美日韩av久久| 免费看av在线观看网站| 一二三四在线观看免费中文在| 丝袜在线中文字幕| 国产精品久久久av美女十八| 国产毛片在线视频| 母亲3免费完整高清在线观看| 国产精品亚洲av一区麻豆 | 亚洲成人国产一区在线观看 | 日韩一区二区视频免费看| 女性生殖器流出的白浆| 亚洲一码二码三码区别大吗| 91aial.com中文字幕在线观看| 国产男人的电影天堂91| 亚洲,一卡二卡三卡| 亚洲精品第二区| 999久久久国产精品视频| 久久毛片免费看一区二区三区| 免费高清在线观看日韩| 纵有疾风起免费观看全集完整版| 日韩av在线免费看完整版不卡| 国产成人欧美在线观看 | 看非洲黑人一级黄片| 免费观看a级毛片全部| 国产97色在线日韩免费| 青春草亚洲视频在线观看| 咕卡用的链子| 国产老妇伦熟女老妇高清| 国产成人91sexporn| 国产97色在线日韩免费| 久久精品熟女亚洲av麻豆精品| 99热全是精品| av在线app专区| 悠悠久久av| www.自偷自拍.com| 久久婷婷青草| 赤兔流量卡办理| 大话2 男鬼变身卡| 少妇被粗大猛烈的视频| 日韩av免费高清视频| 色视频在线一区二区三区| 亚洲欧美清纯卡通| 国产日韩欧美视频二区| 国产野战对白在线观看| 欧美老熟妇乱子伦牲交| av.在线天堂| 99国产精品免费福利视频| 国产精品人妻久久久影院| 久久ye,这里只有精品| 美国免费a级毛片| 精品少妇一区二区三区视频日本电影 | 成人黄色视频免费在线看| 亚洲一级一片aⅴ在线观看| 亚洲色图综合在线观看| 国产亚洲av高清不卡| 久久国产精品男人的天堂亚洲| 国产精品.久久久| 欧美精品一区二区免费开放| 啦啦啦在线观看免费高清www| 热re99久久国产66热| 最近2019中文字幕mv第一页| 在线亚洲精品国产二区图片欧美| 亚洲精华国产精华液的使用体验| 久久精品国产亚洲av高清一级| 国产精品秋霞免费鲁丝片| 久久精品久久精品一区二区三区| 老司机在亚洲福利影院| 亚洲伊人色综图| 欧美日本中文国产一区发布| 伊人亚洲综合成人网| 成人国产av品久久久| 国产成人欧美在线观看 | 美女大奶头黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 欧美久久黑人一区二区| www日本在线高清视频| 麻豆精品久久久久久蜜桃| 久久狼人影院| 成人亚洲精品一区在线观看| 欧美精品人与动牲交sv欧美| 国产97色在线日韩免费| 高清不卡的av网站| 亚洲一区中文字幕在线| 自线自在国产av| videos熟女内射| 成年人免费黄色播放视频| 香蕉国产在线看| 国产亚洲午夜精品一区二区久久| 超碰成人久久| 狠狠精品人妻久久久久久综合| 1024香蕉在线观看| 国产免费福利视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产亚洲av麻豆专区| 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 久久久国产精品麻豆| 欧美日韩福利视频一区二区| 人人妻人人添人人爽欧美一区卜| av不卡在线播放| 熟妇人妻不卡中文字幕| 老汉色av国产亚洲站长工具| 亚洲av中文av极速乱| 国产国语露脸激情在线看| 久久精品久久精品一区二区三区| 国产亚洲一区二区精品| 一区福利在线观看| 天天操日日干夜夜撸| 女人精品久久久久毛片| 搡老乐熟女国产| 97人妻天天添夜夜摸| 极品少妇高潮喷水抽搐| 日韩熟女老妇一区二区性免费视频| 国产国语露脸激情在线看| 亚洲综合精品二区| 亚洲第一av免费看| 大陆偷拍与自拍| 亚洲欧洲国产日韩| 黄色怎么调成土黄色| 一级a爱视频在线免费观看| 久久久国产欧美日韩av| 午夜福利免费观看在线| 99精品久久久久人妻精品| 久久久精品94久久精品| 国产精品久久久久久精品电影小说| 久久毛片免费看一区二区三区| 香蕉国产在线看| 啦啦啦视频在线资源免费观看| 女的被弄到高潮叫床怎么办| 中文字幕人妻丝袜一区二区 | 秋霞在线观看毛片| 亚洲在久久综合| 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区蜜桃| 免费高清在线观看日韩| 午夜久久久在线观看| 韩国高清视频一区二区三区| 岛国毛片在线播放| e午夜精品久久久久久久| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 亚洲成人av在线免费| 成人国产麻豆网| 黄色怎么调成土黄色| 免费黄频网站在线观看国产| 视频在线观看一区二区三区| 丁香六月欧美| 国产精品久久久av美女十八| 欧美日韩成人在线一区二区| 黄色毛片三级朝国网站| 国产日韩欧美亚洲二区| 母亲3免费完整高清在线观看| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 超色免费av| 日本猛色少妇xxxxx猛交久久| 亚洲熟女毛片儿| 日本黄色日本黄色录像| e午夜精品久久久久久久| 最近手机中文字幕大全| 国产精品国产av在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品久久精品一区二区三区| 丝袜喷水一区| 老鸭窝网址在线观看| 欧美精品av麻豆av| 嫩草影视91久久| 久久精品人人爽人人爽视色| 国产激情久久老熟女| 精品国产超薄肉色丝袜足j| 国产精品av久久久久免费| 中国国产av一级| 国产片特级美女逼逼视频| 久久av网站| 亚洲免费av在线视频| 韩国高清视频一区二区三区| 叶爱在线成人免费视频播放| 欧美精品av麻豆av| 精品人妻一区二区三区麻豆| 老鸭窝网址在线观看| 9191精品国产免费久久| 蜜桃在线观看..| 日本vs欧美在线观看视频| 一二三四在线观看免费中文在| 久久女婷五月综合色啪小说| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线| 日韩人妻精品一区2区三区| 日本爱情动作片www.在线观看| 成年av动漫网址| 亚洲一码二码三码区别大吗| 国精品久久久久久国模美| 国产淫语在线视频| 国产 一区精品| 国产片特级美女逼逼视频| www.av在线官网国产| 啦啦啦在线观看免费高清www| 999精品在线视频| 伊人亚洲综合成人网| 好男人视频免费观看在线| 久久毛片免费看一区二区三区| 性少妇av在线| 在线免费观看不下载黄p国产| 美女高潮到喷水免费观看| 少妇的丰满在线观看| 久久久精品区二区三区| 中文字幕人妻丝袜制服| 精品少妇久久久久久888优播| 国产成人系列免费观看| 亚洲精品日韩在线中文字幕| 美女福利国产在线| 少妇被粗大的猛进出69影院| 日韩制服骚丝袜av| 黄网站色视频无遮挡免费观看| 黄频高清免费视频| 啦啦啦中文免费视频观看日本| 欧美av亚洲av综合av国产av | 美女国产高潮福利片在线看| 在线天堂中文资源库| 男女国产视频网站| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 久久精品亚洲熟妇少妇任你| 国产探花极品一区二区| 一级片'在线观看视频| www.自偷自拍.com| 免费人妻精品一区二区三区视频| 日韩欧美精品免费久久| 国产伦理片在线播放av一区| 久久久久国产一级毛片高清牌| 国产爽快片一区二区三区| 一级,二级,三级黄色视频| 中文字幕高清在线视频| 午夜免费男女啪啪视频观看| 各种免费的搞黄视频| 午夜精品国产一区二区电影| 国产黄色免费在线视频| 人妻人人澡人人爽人人| 久久久久精品人妻al黑| 国产激情久久老熟女| 高清在线视频一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲自偷自拍图片 自拍| 欧美黑人欧美精品刺激| 国产高清国产精品国产三级| 日韩成人av中文字幕在线观看| 国产色婷婷99| 操出白浆在线播放| 国产精品免费视频内射| 五月开心婷婷网| 国产精品 欧美亚洲| av线在线观看网站| 国产 一区精品| 国产 精品1| 国产伦人伦偷精品视频| 天美传媒精品一区二区| 男女无遮挡免费网站观看| 一区二区av电影网| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 国产免费视频播放在线视频| kizo精华| 十分钟在线观看高清视频www| 国产精品蜜桃在线观看| 麻豆av在线久日| 不卡av一区二区三区| 国产成人精品福利久久| 久久影院123| 亚洲国产看品久久| 一本色道久久久久久精品综合| 国产精品久久久久久久久免| 麻豆av在线久日| 五月天丁香电影| 亚洲人成77777在线视频| 我的亚洲天堂| 热99久久久久精品小说推荐| 成年女人毛片免费观看观看9 | 18禁国产床啪视频网站| 精品一区二区免费观看| 欧美亚洲日本最大视频资源| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 在线精品无人区一区二区三| 一边亲一边摸免费视频| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 啦啦啦啦在线视频资源| 亚洲精品日韩在线中文字幕| a级毛片黄视频| 欧美最新免费一区二区三区| 黄色怎么调成土黄色| 国产毛片在线视频| 久久久久人妻精品一区果冻| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 免费在线观看黄色视频的| 韩国av在线不卡| 香蕉丝袜av| 欧美日韩视频高清一区二区三区二| avwww免费| 在线观看三级黄色| 久久精品国产a三级三级三级| av福利片在线| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 天天躁日日躁夜夜躁夜夜| 国产免费现黄频在线看| 啦啦啦视频在线资源免费观看| 亚洲久久久国产精品| 色视频在线一区二区三区| 亚洲欧美成人精品一区二区| av一本久久久久| 欧美黑人精品巨大| 777米奇影视久久| 波多野结衣av一区二区av| 最新在线观看一区二区三区 | 2021少妇久久久久久久久久久| 90打野战视频偷拍视频| 久久久久久久久免费视频了| 亚洲,欧美精品.| 国产人伦9x9x在线观看| 亚洲精华国产精华液的使用体验| 欧美少妇被猛烈插入视频| 在线观看一区二区三区激情| 日韩大片免费观看网站| 国产亚洲av片在线观看秒播厂| 色吧在线观看| 国产精品久久久av美女十八| 亚洲国产av影院在线观看| 老司机靠b影院| 最黄视频免费看| 天天躁夜夜躁狠狠躁躁| 极品人妻少妇av视频| videos熟女内射| 亚洲精品乱久久久久久| 天天影视国产精品| 色吧在线观看| 一个人免费看片子| 日韩大片免费观看网站| 国产精品久久久av美女十八| 成人国语在线视频| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| avwww免费| 成人三级做爰电影| 一个人免费看片子| 最近最新中文字幕免费大全7| 日日啪夜夜爽| 少妇人妻久久综合中文| 国产野战对白在线观看| 日韩中文字幕视频在线看片| 午夜影院在线不卡| www.精华液| 80岁老熟妇乱子伦牲交| av一本久久久久| 十八禁网站网址无遮挡| 国产1区2区3区精品| 亚洲成色77777| 国产精品久久久久成人av| 成人毛片60女人毛片免费| 国产精品一区二区精品视频观看| 亚洲精品自拍成人| 精品国产超薄肉色丝袜足j| 99精品久久久久人妻精品| 国产欧美日韩一区二区三区在线| 一区二区av电影网| 国产精品麻豆人妻色哟哟久久| 高清av免费在线| 成人午夜精彩视频在线观看| av天堂久久9| 老汉色av国产亚洲站长工具| 卡戴珊不雅视频在线播放| 欧美最新免费一区二区三区| 最近手机中文字幕大全| 亚洲av日韩在线播放| 欧美 亚洲 国产 日韩一| 午夜福利网站1000一区二区三区| 精品少妇一区二区三区视频日本电影 | 精品免费久久久久久久清纯 | 极品人妻少妇av视频| 国产野战对白在线观看| 中文精品一卡2卡3卡4更新| 日韩 欧美 亚洲 中文字幕| 国产精品三级大全| a级片在线免费高清观看视频| 人人妻人人添人人爽欧美一区卜| 国产一区二区激情短视频 | 国产福利在线免费观看视频| 97精品久久久久久久久久精品| 男女边摸边吃奶| 美女国产高潮福利片在线看| 18在线观看网站| 亚洲av综合色区一区| 亚洲欧美成人综合另类久久久| 亚洲成人免费av在线播放| 大片电影免费在线观看免费| 午夜福利一区二区在线看| 亚洲国产精品一区三区| 九草在线视频观看| 日韩免费高清中文字幕av| 男的添女的下面高潮视频| 久久久精品区二区三区| 久久久久精品久久久久真实原创| 女人高潮潮喷娇喘18禁视频| 精品午夜福利在线看| 亚洲视频免费观看视频|