• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation on Flow Control for Drag Reduction of Revolution Body Using Dimpled Surface

    2011-03-09 11:57:32WANGJing王晶ZHANGChengchun張成春RENLuquan任露泉HANZhiwu韓志武
    Defence Technology 2011年1期
    關(guān)鍵詞:王晶

    WANG Jing(王晶),ZHANG Cheng-chun(張成春),REN Lu-quan(任露泉),HAN Zhi-wu(韓志武)

    (1.College of Agriculture,Jilin University,Changchun 130062 Jilin,China;2.MOE Key Laboratory of Bionics Engineering,Jilin University,Changchun 130022 Jilin,China)

    Introduction

    The drag reduction effect and methods,especially the flow control using non-smooth surfaces have been paid much more attention in recent years.Walsh[1]found that riblet surfaces can develop a lower shear stress than that of smooth surfaces on the basis of fluiddynamic reasoning.Similar studies performed by Reif in Germany were motivated by observation on shark skin.Subsequently,many researchers studied the various riblet surfaces,including a shark skin replica,and confirmed that the riblet surfaces can reduce the skin friction drag[2-7].In recent years,many researchers have paid more attention to engineering of non-smooth surface from the perspective of bionics.A typical application is the swimming suit based on the hydrodynamics of a shark skin.The investigators realize that the dimpled surface can also have the fluid dynamic effects.Bearman and Harvey[8]found that,for Reynolds number of 4×104to 3×105,the dimpled circular cylinder has a lower drag coefficient than a smooth cylinder.It was measured that,at transonic speed,the revolution bodies with dimples can reduce the total drag by 3%[9].

    In our past researches,we examined the drag reduction effect of bionic dimpled surface by wind tunnel tests.However,it is difficult to obtain the mechanism of drag reduction of the dimpled surface by experiments.Therefore,now,we focus our attention on the numerical analyses for the external flow of smooth and dimpled surfaces to obtain the drag reduction mechanism of the dimpled surface.

    1 Modeling Approach

    1.1 Governing Equation

    The governing equation can be writtenas where u is the velocity vector,and the components of u in x,y and z are u,v and w;φ is common variable;Γφis general diffusion coefficient;Sφis general source item.

    Table 1 shows the concrete terms of Eq.(1)for a compressible steady state flow.

    Table 1 Concrete terms of governing equation of flow

    1.2 Turbulence Modeling

    Some turbulence models are now widely used in engineering application,as they offer a good compromise between numerical effort and computational accuracy.SST(shear-stress transport)k-ω model developed by Menter[9]can effectively blend the robust and accurate formulation of the k-ω model in the near-wall region with the free-stream independence of the k-ε model in the far field was used in these fully turbulent simulations.The transport equations governing k and ω take the following form without regarding to the buoyancy

    where τijis the turbulent shear stress.The production term of τijin Eq.(2)and(3)is

    The blending functions F1and F2are defined as

    where

    The turbulent eddy viscosity can be calculated by using following formula

    The model constants can be calculated by using F1blending function,

    where φ1represents a generic constant in the k-ω equations and φ2the same constant in the k-ε equations.

    The k-ω model constants are given by

    The value of k-ε model constants are

    2 Computational Details

    2.1 Computational Case

    The revolution body with length of 517.5 mm and maximum diameter of 62.5 mm is shown in Fig.1.Fig.2 shows the position and dimensions of the dimples.The radius of the dimple is 1 mm;the depth of the dimple is 1 mm;the space between two adjacent dimples in axial direction is 4 mm.

    Fig.1 Main dimensions of model of revolution body

    2.2 Grids and Boundary Conditions

    The computational region is meshed by unstructured hybrid grids with tetrahedral elements and triangular prism elements.The distance of the first layer near the wall is determined according to

    Fig.2 Dimensional parameters of dimpled surface

    where uτis the wall friction velocity given by

    By solving Eq.(12),we can obtain

    where y+is the dimensionless distance of the first layer to the wall.The appropriate range of y+suiting SST kω turbulence model is y+<5,in these simulations,y+=4.U∞is the flow velocity calculated by using

    where Ma is the Mach number of flow,k the specific heat ratio of air,R the gas constant,and T the absolute temperature.k and R are 1.4 and 287 m2/s2K respectively.

    The average friction coefficientcan be approximately calculated by using

    where ReLis the Reynolds number based on the length of revolution body,which can be defined as

    where L is the length of the revolution body,and v the kinetic viscosity coefficient defined as

    where T=299 K,ρ=1.185 kg/m3,C=110.4 K.

    Thus,the distance between the first layer grids and the wall is Δy≈0.01 mm,and the boundary layer thickness δ is

    Figure 3 shows the unstructured Cartesian hybrid grids with prism and tetrahedral elements.There are 10 layers of prisms over the surface of the revolution body.The dimpled region is provided with high-density meshes to observe the variation of the vortexes forming in the dimples.The computational region has 1.706 ×106cells composed of tetrahedral and prisms approximately.

    Fig.3 Grids in boundary layer dimpled region

    As an axially symmetric body,the revolution body can be simulated in its quarter to reduce the amount of calculation.Thus,the computational region can be defined as a quarter of a cylinder.It is 1/4 of 20Rm×10L,where Rmis the maximum radius of the revolution body,L the length.

    The pressure far-field boundary condition is used to model the compressible free-stream at Mach number of 0.4,the static pressure of 100 750.4 Pa,the temperature of 299 K.The angle of attack is α =0°.

    3 Calculation Results and Analyses

    3.1 Calculation Results

    The drag reduction ratio of the dimpled surface can be defined as

    where Csmoothis the drag coefficient of the smooth revolution body,and Cbionicthe counterpart of the dimpled one.According to Eq.(20),the drag reduction ratios of the viscous drag,the pressure drag and the total drag are all obtained.The viscous drag of the revolution body decreases by 8.05%,the pressure drag by 1.9%and the total drag by 6.24%.

    3.2 Mechanism of Friction Drag Reduction

    The viscous fiction stress of revolution body includes viscous shear stress and turbulent Reynolds stress and can be defined as

    where μ is the dynamic viscosity coefficient,μtthe turbulent viscosity coefficient.The relationship of the instantaneous velocity vx,the time averaged velocityvxand the fluctuation velocity v'is vx=vx+v'.The friction drag reduction mechanism can be explained on the basis of Eq.(21).

    Figure 4 shows the wall shear stresses of the dimpled and smooth revolution bodies.Evidently,the wall shear stress of the downstream of the dimples is reduced observably.Fig.5 compares the velocity to that of smooth body in the same location near the wall of the dimpled body,and it shows the wall shear stress reduction of the dimpled revolution body.It can be seen from Fig.5 that the flow speed in the dimples and downstream is visibly lower than that of the smooth body.In Fig.5(b),δ+is defined as

    where Δy is the distance from monitor point to the wall of the model,δ is the boundary layer thickness.Form Fig.5(b),we can deduce that the dimples reduce the flow field velocity gradient near the dimpled surface,and increase the viscous sub-layer of the boundary layer.Therefore,the viscous shear stress decreases.

    According to the physical factor of Reynolds stress,we know that the speed fluctuation can reflect the scale of Reynolds stress.Moreover,the ratio of its square root to the time averaged velocity is the turbulent intensity.Fig.6 compares the turbulent intensity and the turbulent kinetic energy of the dimpled body to the smooth one.From Fig.6,we can draw that the Reynolds stress is reduced,because the turbulent intensity near the dimpled surface is lower than that of the smooth one.The turbulent kinetic energy of the dimpled model,which is consumed by the turbulent fluctuation,is lower than that of the smooth one.

    Fig.4 Wall shear stress comparison between dimpled and smooth revolution bodies

    Fig.5 Velocity comparison between dimpled and smooth revolution bodies

    In summary,the bionic dimpled surface reduces the viscous shear stress and the Reynolds stress simultaneously.Therefore,its friction drag is reduced evidently.

    Fig.6 Turbulent comparison between dimpled and smooth revolution bodies

    3.3 Mechanism of Pressure Drag Reduction

    The pressure drag of the revolution body includes the base drag and the shock wave drag.The base drag can beexpressed as

    where Sbis the base area,and SMis the maximum cross section.Fig.7 compares the base pressures of the dimpled revolution bode to that of the smooth one.It indicates that the base pressure near the bottom of the dimpled body is higher than that of the smooth one.Namely,the dimples reduce the pressure difference.Accordingly,the pressure drag is reduced.

    3.4 Analysis of Boundary Layer Control Using Dimpled Surface

    Figure 8 shows the flow pattern in the dimple and the velocity vector on the dimpled surface.Evidently,there are a low-speed rotating vortexes forming in the dimples.Therefore,it is deduced that the dimples produce two effects.First,the low speed rotating vortexes in the dimples can be entitled an air cushion effect.Second,it produces friction drag against to the other area and results in a driving effect.

    Fig.7 Base static pressure comparison between dimpled and smooth revolution bodies

    Fig.8 Flow pattern of interior dimples and velocity vector of dimpled surface

    Figure 9 compares the streamlines on the dimpled surface to that on the smooth one.Obviously,the streamlines of the dimpled revolution body are rarer than those of the smooth one.It indicates that the flow does not entry into the dimples,but passes over the air cushion and further explains the existence of the air cushion effect.

    Fig.9 Streamline comparison between dimpled and smooth revolution bodies

    4 Conclusions

    Following conclusions can be drawn from the numerical simulation with SST k-ω model.

    1)At the Mach number of 0.4,the dimpled surface arranged on the rearward of the revolution body reduces the viscous drag by 8.05%,the pressure by 1.9%and the total drag by 6.24%.

    2)The dimples simultaneously reduce the wall shear stress and the Reynolds stress,then,the skin friction drag decreases.The dimples can also weaken the pumping action on the dead water region behind the revolution body caused by the external flow,which is the reason why the pressure drag decreases.

    3)The basic reason of the skin friction drag reduction is that the dimples control and correct the boundary layer.The low speed rotating airflows in the dimples hinder the exterior airflow and the wall of the dimples to contact directly.It can be regarded as an air cushion effect.Secondly,the low speed rotating vortexes forming in the dimples can produce a friction drag against to the other area and results in a driving effect.

    [1]Walsh M J.Riblets as a viscous drag reduction technique[J].AIAA Journal,1983,21(4):485 -486.

    [2]Reif W E,Dinkelacher A.Hydrodynamics of the squamation in fast swimming sharks[J].Neues Jahrbuch für Geologieund Palaeontologie,(Abhandlungen),1982,164:184-187.

    [3]Bechert D W,Bartenwerfer M,Hoppe G,et al.Drag reduction mechanisms derived from shark skin[C].Proceedings of the 15th ICAS Congress,London,1986:1044-1068.

    [4]Choi K S.Near-wall structures of a turbulent boundary layer with riblets[J].J Fluid Mech,1989,208:417 -458.

    [5]Walsh M J,Sellers W L,McGinley C B.Riblet drag at flight conditions[J].Journal of Aircraft,1989,26(6):570-575.

    [6]Bechert D W,Bruse M,Hage W.Experiments with three dimensional riblets as an idealized model of shark skin[J].Exp Fluids,2000,28:403 -412.

    [7]Bechert D W,Bruse M,Hage W,et al.Fluid mechanics of biological surfaces and their technological application[J].Naturwissenschaften,2000,87:157-171.

    [8]Bearman P W,Harvey J K.Control of circular cylinder flow by the use of dimples[J].AIAA Journal,1993,31:1753-1756.

    [9]REN Lu-quan,ZHANG Cheng-chun,TIAN Li-mei.Experiment study on drag reduction for bodies of revolution using bionic non-smoothness[J].Journal of Jilin University(Eng and Techn Ed),2005,35(4):431-436.

    [10]Menter F R.Two-equation eddy-viscosity models for engineering applications[J].AIAA Journal,1994,32:1598-1605.

    猜你喜歡
    王晶
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Pitman–Yor process mixture model for community structure exploration considering latent interaction patterns?
    顧費(fèi)淳、王晶作品
    王晶作品
    大眾文藝(2021年16期)2021-09-11 09:05:06
    婆媳育兒“持久戰(zhàn)”:隔輩親究竟是愛孫還是誤孫?
    票房大賣的秘訣,王晶說是:“別把自己看得太了不起”
    電影(2019年6期)2019-09-02 01:42:28
    國內(nèi)外城市安全防災(zāi)規(guī)劃和管理體系研究綜述
    王晶:人類命運(yùn)治理簡史
    Computational identifi cation and characterization of microRNAs and their targets inPenaeus monodon*
    Cell therapy for spinal cord injury with olfactory ensheathing glia cells(OECs)
    亚洲精华国产精华液的使用体验| 国产精品人妻久久久久久| 亚洲在久久综合| 黑丝袜美女国产一区| 免费高清在线观看视频在线观看| av又黄又爽大尺度在线免费看| 久久97久久精品| 国产乱来视频区| 在线观看一区二区三区激情| 欧美日韩综合久久久久久| 欧美bdsm另类| 亚洲 欧美一区二区三区| 韩国av在线不卡| 97在线人人人人妻| 亚洲人成77777在线视频| 免费人妻精品一区二区三区视频| 精品第一国产精品| 久久人人爽人人片av| 美女中出高潮动态图| 大陆偷拍与自拍| 日韩伦理黄色片| 美女xxoo啪啪120秒动态图| 欧美精品亚洲一区二区| 赤兔流量卡办理| 交换朋友夫妻互换小说| 高清av免费在线| 久久国内精品自在自线图片| 国产免费又黄又爽又色| 日本免费在线观看一区| av又黄又爽大尺度在线免费看| 美国免费a级毛片| 日韩制服丝袜自拍偷拍| 99视频精品全部免费 在线| 99热国产这里只有精品6| 天堂8中文在线网| 久久人人爽人人片av| 人妻 亚洲 视频| 满18在线观看网站| 男女边吃奶边做爰视频| 建设人人有责人人尽责人人享有的| 精品人妻在线不人妻| 国产福利在线免费观看视频| 在线观看三级黄色| 国产精品熟女久久久久浪| 新久久久久国产一级毛片| 国产免费现黄频在线看| 国产成人91sexporn| 男男h啪啪无遮挡| 国产精品久久久久久精品古装| 亚洲欧美成人精品一区二区| 男人操女人黄网站| 日日爽夜夜爽网站| 超碰97精品在线观看| 亚洲欧美成人精品一区二区| 一区二区三区精品91| 久久ye,这里只有精品| 亚洲五月色婷婷综合| 两个人免费观看高清视频| 中文天堂在线官网| 欧美国产精品一级二级三级| 水蜜桃什么品种好| 亚洲成av片中文字幕在线观看 | 国产精品国产三级专区第一集| 亚洲精品国产色婷婷电影| 成年人午夜在线观看视频| 精品一区二区三卡| 男的添女的下面高潮视频| 777米奇影视久久| 中文字幕精品免费在线观看视频 | 大片电影免费在线观看免费| 久久人人爽av亚洲精品天堂| 一级毛片电影观看| av在线播放精品| 999精品在线视频| 午夜福利,免费看| 欧美日韩成人在线一区二区| 在线观看国产h片| 日韩一区二区三区影片| 看免费成人av毛片| 亚洲av.av天堂| 久久精品国产综合久久久 | 自拍欧美九色日韩亚洲蝌蚪91| 免费日韩欧美在线观看| 热99久久久久精品小说推荐| 国产精品国产三级专区第一集| 精品第一国产精品| 自线自在国产av| 免费av不卡在线播放| av免费在线看不卡| 国产亚洲精品久久久com| 国产一区有黄有色的免费视频| 免费观看在线日韩| 精品久久久久久电影网| 国产精品一区二区在线不卡| 国产精品久久久久久精品古装| 久久鲁丝午夜福利片| 国产一区二区在线观看日韩| 中文字幕av电影在线播放| 午夜精品国产一区二区电影| 免费av不卡在线播放| 国产精品国产三级国产av玫瑰| 又黄又粗又硬又大视频| 赤兔流量卡办理| 国产精品偷伦视频观看了| 久久青草综合色| 久久久久久久大尺度免费视频| 成年人免费黄色播放视频| 国产国语露脸激情在线看| 99久久综合免费| 新久久久久国产一级毛片| 制服丝袜香蕉在线| 成人18禁高潮啪啪吃奶动态图| 婷婷成人精品国产| 九九在线视频观看精品| 欧美精品av麻豆av| 熟妇人妻不卡中文字幕| 久久99一区二区三区| 国产精品三级大全| 另类精品久久| 国产在线免费精品| 亚洲av福利一区| 国产 精品1| 国产精品人妻久久久久久| 91aial.com中文字幕在线观看| 久久99热这里只频精品6学生| 中文字幕制服av| 免费av不卡在线播放| 精品久久蜜臀av无| 热re99久久精品国产66热6| 亚洲国产日韩一区二区| 久久久久久伊人网av| 欧美 亚洲 国产 日韩一| 久久狼人影院| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 亚洲精品第二区| 国产亚洲av片在线观看秒播厂| 亚洲,欧美精品.| 亚洲精品日韩在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 美女内射精品一级片tv| 丝袜在线中文字幕| 人人妻人人爽人人添夜夜欢视频| 国产永久视频网站| 亚洲内射少妇av| 性色avwww在线观看| 超碰97精品在线观看| 免费人成在线观看视频色| 你懂的网址亚洲精品在线观看| 日日撸夜夜添| 午夜老司机福利剧场| 中文字幕亚洲精品专区| 熟女av电影| 永久免费av网站大全| 草草在线视频免费看| 9色porny在线观看| 9热在线视频观看99| 精品亚洲乱码少妇综合久久| 亚洲欧美成人精品一区二区| 日本-黄色视频高清免费观看| 男人操女人黄网站| 男女高潮啪啪啪动态图| 2021少妇久久久久久久久久久| 中文字幕亚洲精品专区| a级片在线免费高清观看视频| 国产精品久久久久久久电影| 日本色播在线视频| 国产精品欧美亚洲77777| 精品久久久精品久久久| 亚洲精品456在线播放app| 国产淫语在线视频| 欧美xxⅹ黑人| 最近最新中文字幕免费大全7| 免费观看性生交大片5| 成年人午夜在线观看视频| 欧美97在线视频| 国产探花极品一区二区| 纵有疾风起免费观看全集完整版| 91国产中文字幕| 亚洲欧洲国产日韩| 一边亲一边摸免费视频| 亚洲精品国产色婷婷电影| 国产成人免费无遮挡视频| 欧美xxxx性猛交bbbb| 国产亚洲精品第一综合不卡 | 久久99精品国语久久久| 亚洲av男天堂| 国精品久久久久久国模美| 少妇 在线观看| av在线老鸭窝| 日韩,欧美,国产一区二区三区| 日本与韩国留学比较| 9色porny在线观看| 国产一区有黄有色的免费视频| 成人毛片a级毛片在线播放| 欧美亚洲 丝袜 人妻 在线| 男女午夜视频在线观看 | 日韩一本色道免费dvd| 欧美人与性动交α欧美精品济南到 | 韩国高清视频一区二区三区| 国产亚洲精品第一综合不卡 | 亚洲欧洲精品一区二区精品久久久 | 女性被躁到高潮视频| 女人被躁到高潮嗷嗷叫费观| 亚洲精品美女久久av网站| 最黄视频免费看| 国产精品久久久久成人av| 日韩在线高清观看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| 久久免费观看电影| 久久 成人 亚洲| 国产淫语在线视频| 美女国产视频在线观看| 亚洲成人一二三区av| 亚洲第一区二区三区不卡| 成人18禁高潮啪啪吃奶动态图| 97在线人人人人妻| 欧美日韩精品成人综合77777| 国产精品嫩草影院av在线观看| 久久久久久久久久成人| 亚洲精品色激情综合| 亚洲精品456在线播放app| 成年美女黄网站色视频大全免费| 热re99久久国产66热| 80岁老熟妇乱子伦牲交| 成人国语在线视频| 纯流量卡能插随身wifi吗| 国产福利在线免费观看视频| 在线观看免费高清a一片| 在线观看免费视频网站a站| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影小说| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 91成人精品电影| 久久99精品国语久久久| 国产 精品1| 亚洲av电影在线进入| 久久久精品94久久精品| 久久久久久久亚洲中文字幕| www.色视频.com| 激情视频va一区二区三区| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区 | 亚洲精品第二区| 99视频精品全部免费 在线| 欧美日韩视频高清一区二区三区二| 亚洲国产毛片av蜜桃av| 少妇人妻 视频| 久久精品夜色国产| 亚洲av日韩在线播放| 久久 成人 亚洲| 免费看不卡的av| 18禁裸乳无遮挡动漫免费视频| 黄色 视频免费看| 伊人亚洲综合成人网| 丝袜美足系列| 欧美激情极品国产一区二区三区 | 捣出白浆h1v1| av天堂久久9| 国产色爽女视频免费观看| 国产一区二区三区av在线| 丝袜脚勾引网站| 波野结衣二区三区在线| 日日摸夜夜添夜夜爱| 午夜免费男女啪啪视频观看| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| 亚洲国产色片| 制服丝袜香蕉在线| 亚洲精品国产av成人精品| 99国产精品免费福利视频| 一级片'在线观看视频| 久久人人97超碰香蕉20202| 婷婷色麻豆天堂久久| 人妻人人澡人人爽人人| videosex国产| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 亚洲综合色网址| 久久久久久久国产电影| 美女主播在线视频| 性色av一级| 男的添女的下面高潮视频| 一本久久精品| 亚洲av电影在线进入| 日本av手机在线免费观看| 亚洲人成网站在线观看播放| 国产精品欧美亚洲77777| av在线老鸭窝| 成人国产av品久久久| 国精品久久久久久国模美| 久久久欧美国产精品| 成人国语在线视频| 自线自在国产av| 国产一区二区三区av在线| 最近的中文字幕免费完整| 国产精品久久久久久久电影| 成人无遮挡网站| 欧美日本中文国产一区发布| 校园人妻丝袜中文字幕| 18+在线观看网站| 精品午夜福利在线看| 九九爱精品视频在线观看| 免费人妻精品一区二区三区视频| 一边摸一边做爽爽视频免费| freevideosex欧美| 亚洲精品成人av观看孕妇| 国产成人精品久久久久久| 亚洲高清免费不卡视频| 精品酒店卫生间| 午夜免费鲁丝| 国产成人一区二区在线| 制服人妻中文乱码| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 日本91视频免费播放| 久久这里只有精品19| 亚洲国产成人一精品久久久| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 汤姆久久久久久久影院中文字幕| 一二三四在线观看免费中文在 | 精品少妇内射三级| 少妇高潮的动态图| av在线播放精品| 欧美人与善性xxx| 久久午夜综合久久蜜桃| 日韩在线高清观看一区二区三区| 在线观看国产h片| 成人午夜精彩视频在线观看| 高清av免费在线| 一级爰片在线观看| 国产精品国产三级国产av玫瑰| 国产在线一区二区三区精| 国产欧美日韩综合在线一区二区| 亚洲国产成人一精品久久久| 久久久久精品久久久久真实原创| 在线亚洲精品国产二区图片欧美| 国产极品粉嫩免费观看在线| 女的被弄到高潮叫床怎么办| 观看av在线不卡| 在线观看www视频免费| 国产精品国产三级专区第一集| 51国产日韩欧美| 美女大奶头黄色视频| 国内精品宾馆在线| 亚洲成色77777| 国产精品三级大全| 免费看av在线观看网站| 免费av不卡在线播放| 欧美精品国产亚洲| 建设人人有责人人尽责人人享有的| 人妻一区二区av| 欧美日韩精品成人综合77777| 国产精品嫩草影院av在线观看| 久久毛片免费看一区二区三区| 高清黄色对白视频在线免费看| 爱豆传媒免费全集在线观看| 亚洲欧美清纯卡通| av在线老鸭窝| 欧美日韩成人在线一区二区| 亚洲欧美日韩卡通动漫| 亚洲少妇的诱惑av| 最近最新中文字幕大全免费视频 | 亚洲五月色婷婷综合| 天天操日日干夜夜撸| av不卡在线播放| 永久网站在线| 色婷婷久久久亚洲欧美| 国产精品 国内视频| 男人爽女人下面视频在线观看| 97超碰精品成人国产| 男女边吃奶边做爰视频| 蜜桃在线观看..| 男女国产视频网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲情色 制服丝袜| 免费在线观看完整版高清| 亚洲情色 制服丝袜| 亚洲,欧美,日韩| 校园人妻丝袜中文字幕| 日本黄色日本黄色录像| 啦啦啦视频在线资源免费观看| 免费看光身美女| 人人妻人人添人人爽欧美一区卜| www.av在线官网国产| 黄色毛片三级朝国网站| 最近中文字幕2019免费版| 精品国产国语对白av| 免费av不卡在线播放| 咕卡用的链子| 国产免费一级a男人的天堂| 男人爽女人下面视频在线观看| 午夜福利网站1000一区二区三区| 国产成人aa在线观看| 国产黄色免费在线视频| 亚洲精品第二区| 超色免费av| 麻豆精品久久久久久蜜桃| 18在线观看网站| 国产日韩欧美视频二区| 日本午夜av视频| 女的被弄到高潮叫床怎么办| 亚洲伊人久久精品综合| 巨乳人妻的诱惑在线观看| 九色成人免费人妻av| 亚洲精品久久成人aⅴ小说| 免费久久久久久久精品成人欧美视频 | 精品国产露脸久久av麻豆| 夜夜骑夜夜射夜夜干| 满18在线观看网站| 99热全是精品| 少妇被粗大猛烈的视频| 乱码一卡2卡4卡精品| 成人国产av品久久久| 五月天丁香电影| 22中文网久久字幕| 妹子高潮喷水视频| 亚洲美女视频黄频| 国产精品麻豆人妻色哟哟久久| 爱豆传媒免费全集在线观看| 人妻 亚洲 视频| 成人漫画全彩无遮挡| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 在线天堂最新版资源| 成年人午夜在线观看视频| 一级,二级,三级黄色视频| 三级国产精品片| 欧美日韩精品成人综合77777| 亚洲图色成人| 国产成人精品婷婷| 欧美激情 高清一区二区三区| 天美传媒精品一区二区| 黑丝袜美女国产一区| 亚洲av免费高清在线观看| 边亲边吃奶的免费视频| 日韩一区二区三区影片| 国产极品粉嫩免费观看在线| av在线app专区| 国产成人精品婷婷| 熟女av电影| 日日爽夜夜爽网站| 中文字幕人妻丝袜制服| 人妻少妇偷人精品九色| 亚洲精品,欧美精品| 国产成人欧美| 99久久中文字幕三级久久日本| 亚洲第一av免费看| 在线看a的网站| 男女边摸边吃奶| 久久久久久久精品精品| 日本欧美视频一区| 亚洲国产精品专区欧美| a 毛片基地| 最近最新中文字幕大全免费视频 | 看免费av毛片| 国产高清三级在线| 最黄视频免费看| 国产精品一二三区在线看| 伊人亚洲综合成人网| 亚洲欧美清纯卡通| 亚洲av电影在线进入| av国产精品久久久久影院| 亚洲,欧美精品.| 男女高潮啪啪啪动态图| 久久狼人影院| 黑人高潮一二区| 国产亚洲av片在线观看秒播厂| 人人妻人人澡人人看| 欧美 日韩 精品 国产| 国产精品成人在线| 国产日韩欧美视频二区| a级毛片在线看网站| 成年人午夜在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 精品国产国语对白av| 性高湖久久久久久久久免费观看| 青青草视频在线视频观看| kizo精华| 国产高清国产精品国产三级| 在线观看免费视频网站a站| 久久ye,这里只有精品| 岛国毛片在线播放| 女性被躁到高潮视频| 在线观看免费日韩欧美大片| 十八禁高潮呻吟视频| 男女边吃奶边做爰视频| 看免费成人av毛片| www日本在线高清视频| 亚洲一区二区三区欧美精品| 亚洲精品国产av蜜桃| 五月玫瑰六月丁香| 色5月婷婷丁香| 国产免费视频播放在线视频| 成年美女黄网站色视频大全免费| 韩国高清视频一区二区三区| 亚洲av男天堂| 蜜桃在线观看..| 男男h啪啪无遮挡| 精品福利永久在线观看| 久久久久久久大尺度免费视频| 黑人高潮一二区| 国产伦理片在线播放av一区| 99久久综合免费| 国产永久视频网站| 国产爽快片一区二区三区| 久久久久视频综合| 欧美人与善性xxx| 一本久久精品| 国产精品偷伦视频观看了| 十八禁高潮呻吟视频| av一本久久久久| 日韩熟女老妇一区二区性免费视频| 精品一区二区三区视频在线| 69精品国产乱码久久久| 国产精品麻豆人妻色哟哟久久| 精品第一国产精品| 在线天堂最新版资源| 青春草国产在线视频| 国产麻豆69| 考比视频在线观看| 卡戴珊不雅视频在线播放| 精品福利永久在线观看| 国产爽快片一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线| xxx大片免费视频| 亚洲av在线观看美女高潮| 久久久久精品久久久久真实原创| 久久久久久人人人人人| 国产一区二区在线观看日韩| 中文字幕制服av| 日韩不卡一区二区三区视频在线| 天天躁夜夜躁狠狠躁躁| 亚洲欧洲国产日韩| 亚洲图色成人| 国产成人免费观看mmmm| 一个人免费看片子| 各种免费的搞黄视频| 亚洲国产看品久久| 大片电影免费在线观看免费| 久久精品熟女亚洲av麻豆精品| 男女边吃奶边做爰视频| 18+在线观看网站| 青青草视频在线视频观看| 看免费成人av毛片| 亚洲高清免费不卡视频| 久久久久久久久久人人人人人人| 婷婷色综合www| 日本黄大片高清| 亚洲国产色片| 视频在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 男女啪啪激烈高潮av片| 18禁观看日本| 2018国产大陆天天弄谢| 久久精品人人爽人人爽视色| 最近2019中文字幕mv第一页| 亚洲美女视频黄频| 国产日韩欧美亚洲二区| 亚洲情色 制服丝袜| 永久网站在线| 午夜精品国产一区二区电影| 久久久精品94久久精品| 插逼视频在线观看| 999精品在线视频| 九色成人免费人妻av| 大香蕉久久网| 97精品久久久久久久久久精品| 日本vs欧美在线观看视频| 人妻一区二区av| 老司机影院成人| 久久精品国产自在天天线| 在线观看免费视频网站a站| 99久久综合免费| 大香蕉久久成人网| 国产色婷婷99| 啦啦啦视频在线资源免费观看| av网站免费在线观看视频| 天天躁夜夜躁狠狠躁躁| 国产高清国产精品国产三级| 精品熟女少妇av免费看| 国产欧美日韩一区二区三区在线| 丰满乱子伦码专区| 老司机影院毛片| 亚洲av综合色区一区| 亚洲av福利一区| 国产免费现黄频在线看| a级毛片黄视频| 婷婷色综合大香蕉| 一区二区日韩欧美中文字幕 | 国产高清三级在线| 一区二区三区四区激情视频| 伊人亚洲综合成人网| 精品人妻一区二区三区麻豆| 黄色怎么调成土黄色| 美女大奶头黄色视频| av在线app专区| 免费观看性生交大片5| 日韩av不卡免费在线播放| 久久久国产欧美日韩av| 亚洲,一卡二卡三卡| 日韩一本色道免费dvd| 久久久国产欧美日韩av| 中文字幕av电影在线播放| 汤姆久久久久久久影院中文字幕| 午夜影院在线不卡| 毛片一级片免费看久久久久| 日产精品乱码卡一卡2卡三|