• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation on Flow Control for Drag Reduction of Revolution Body Using Dimpled Surface

    2011-03-09 11:57:32WANGJing王晶ZHANGChengchun張成春RENLuquan任露泉HANZhiwu韓志武
    Defence Technology 2011年1期
    關(guān)鍵詞:王晶

    WANG Jing(王晶),ZHANG Cheng-chun(張成春),REN Lu-quan(任露泉),HAN Zhi-wu(韓志武)

    (1.College of Agriculture,Jilin University,Changchun 130062 Jilin,China;2.MOE Key Laboratory of Bionics Engineering,Jilin University,Changchun 130022 Jilin,China)

    Introduction

    The drag reduction effect and methods,especially the flow control using non-smooth surfaces have been paid much more attention in recent years.Walsh[1]found that riblet surfaces can develop a lower shear stress than that of smooth surfaces on the basis of fluiddynamic reasoning.Similar studies performed by Reif in Germany were motivated by observation on shark skin.Subsequently,many researchers studied the various riblet surfaces,including a shark skin replica,and confirmed that the riblet surfaces can reduce the skin friction drag[2-7].In recent years,many researchers have paid more attention to engineering of non-smooth surface from the perspective of bionics.A typical application is the swimming suit based on the hydrodynamics of a shark skin.The investigators realize that the dimpled surface can also have the fluid dynamic effects.Bearman and Harvey[8]found that,for Reynolds number of 4×104to 3×105,the dimpled circular cylinder has a lower drag coefficient than a smooth cylinder.It was measured that,at transonic speed,the revolution bodies with dimples can reduce the total drag by 3%[9].

    In our past researches,we examined the drag reduction effect of bionic dimpled surface by wind tunnel tests.However,it is difficult to obtain the mechanism of drag reduction of the dimpled surface by experiments.Therefore,now,we focus our attention on the numerical analyses for the external flow of smooth and dimpled surfaces to obtain the drag reduction mechanism of the dimpled surface.

    1 Modeling Approach

    1.1 Governing Equation

    The governing equation can be writtenas where u is the velocity vector,and the components of u in x,y and z are u,v and w;φ is common variable;Γφis general diffusion coefficient;Sφis general source item.

    Table 1 shows the concrete terms of Eq.(1)for a compressible steady state flow.

    Table 1 Concrete terms of governing equation of flow

    1.2 Turbulence Modeling

    Some turbulence models are now widely used in engineering application,as they offer a good compromise between numerical effort and computational accuracy.SST(shear-stress transport)k-ω model developed by Menter[9]can effectively blend the robust and accurate formulation of the k-ω model in the near-wall region with the free-stream independence of the k-ε model in the far field was used in these fully turbulent simulations.The transport equations governing k and ω take the following form without regarding to the buoyancy

    where τijis the turbulent shear stress.The production term of τijin Eq.(2)and(3)is

    The blending functions F1and F2are defined as

    where

    The turbulent eddy viscosity can be calculated by using following formula

    The model constants can be calculated by using F1blending function,

    where φ1represents a generic constant in the k-ω equations and φ2the same constant in the k-ε equations.

    The k-ω model constants are given by

    The value of k-ε model constants are

    2 Computational Details

    2.1 Computational Case

    The revolution body with length of 517.5 mm and maximum diameter of 62.5 mm is shown in Fig.1.Fig.2 shows the position and dimensions of the dimples.The radius of the dimple is 1 mm;the depth of the dimple is 1 mm;the space between two adjacent dimples in axial direction is 4 mm.

    Fig.1 Main dimensions of model of revolution body

    2.2 Grids and Boundary Conditions

    The computational region is meshed by unstructured hybrid grids with tetrahedral elements and triangular prism elements.The distance of the first layer near the wall is determined according to

    Fig.2 Dimensional parameters of dimpled surface

    where uτis the wall friction velocity given by

    By solving Eq.(12),we can obtain

    where y+is the dimensionless distance of the first layer to the wall.The appropriate range of y+suiting SST kω turbulence model is y+<5,in these simulations,y+=4.U∞is the flow velocity calculated by using

    where Ma is the Mach number of flow,k the specific heat ratio of air,R the gas constant,and T the absolute temperature.k and R are 1.4 and 287 m2/s2K respectively.

    The average friction coefficientcan be approximately calculated by using

    where ReLis the Reynolds number based on the length of revolution body,which can be defined as

    where L is the length of the revolution body,and v the kinetic viscosity coefficient defined as

    where T=299 K,ρ=1.185 kg/m3,C=110.4 K.

    Thus,the distance between the first layer grids and the wall is Δy≈0.01 mm,and the boundary layer thickness δ is

    Figure 3 shows the unstructured Cartesian hybrid grids with prism and tetrahedral elements.There are 10 layers of prisms over the surface of the revolution body.The dimpled region is provided with high-density meshes to observe the variation of the vortexes forming in the dimples.The computational region has 1.706 ×106cells composed of tetrahedral and prisms approximately.

    Fig.3 Grids in boundary layer dimpled region

    As an axially symmetric body,the revolution body can be simulated in its quarter to reduce the amount of calculation.Thus,the computational region can be defined as a quarter of a cylinder.It is 1/4 of 20Rm×10L,where Rmis the maximum radius of the revolution body,L the length.

    The pressure far-field boundary condition is used to model the compressible free-stream at Mach number of 0.4,the static pressure of 100 750.4 Pa,the temperature of 299 K.The angle of attack is α =0°.

    3 Calculation Results and Analyses

    3.1 Calculation Results

    The drag reduction ratio of the dimpled surface can be defined as

    where Csmoothis the drag coefficient of the smooth revolution body,and Cbionicthe counterpart of the dimpled one.According to Eq.(20),the drag reduction ratios of the viscous drag,the pressure drag and the total drag are all obtained.The viscous drag of the revolution body decreases by 8.05%,the pressure drag by 1.9%and the total drag by 6.24%.

    3.2 Mechanism of Friction Drag Reduction

    The viscous fiction stress of revolution body includes viscous shear stress and turbulent Reynolds stress and can be defined as

    where μ is the dynamic viscosity coefficient,μtthe turbulent viscosity coefficient.The relationship of the instantaneous velocity vx,the time averaged velocityvxand the fluctuation velocity v'is vx=vx+v'.The friction drag reduction mechanism can be explained on the basis of Eq.(21).

    Figure 4 shows the wall shear stresses of the dimpled and smooth revolution bodies.Evidently,the wall shear stress of the downstream of the dimples is reduced observably.Fig.5 compares the velocity to that of smooth body in the same location near the wall of the dimpled body,and it shows the wall shear stress reduction of the dimpled revolution body.It can be seen from Fig.5 that the flow speed in the dimples and downstream is visibly lower than that of the smooth body.In Fig.5(b),δ+is defined as

    where Δy is the distance from monitor point to the wall of the model,δ is the boundary layer thickness.Form Fig.5(b),we can deduce that the dimples reduce the flow field velocity gradient near the dimpled surface,and increase the viscous sub-layer of the boundary layer.Therefore,the viscous shear stress decreases.

    According to the physical factor of Reynolds stress,we know that the speed fluctuation can reflect the scale of Reynolds stress.Moreover,the ratio of its square root to the time averaged velocity is the turbulent intensity.Fig.6 compares the turbulent intensity and the turbulent kinetic energy of the dimpled body to the smooth one.From Fig.6,we can draw that the Reynolds stress is reduced,because the turbulent intensity near the dimpled surface is lower than that of the smooth one.The turbulent kinetic energy of the dimpled model,which is consumed by the turbulent fluctuation,is lower than that of the smooth one.

    Fig.4 Wall shear stress comparison between dimpled and smooth revolution bodies

    Fig.5 Velocity comparison between dimpled and smooth revolution bodies

    In summary,the bionic dimpled surface reduces the viscous shear stress and the Reynolds stress simultaneously.Therefore,its friction drag is reduced evidently.

    Fig.6 Turbulent comparison between dimpled and smooth revolution bodies

    3.3 Mechanism of Pressure Drag Reduction

    The pressure drag of the revolution body includes the base drag and the shock wave drag.The base drag can beexpressed as

    where Sbis the base area,and SMis the maximum cross section.Fig.7 compares the base pressures of the dimpled revolution bode to that of the smooth one.It indicates that the base pressure near the bottom of the dimpled body is higher than that of the smooth one.Namely,the dimples reduce the pressure difference.Accordingly,the pressure drag is reduced.

    3.4 Analysis of Boundary Layer Control Using Dimpled Surface

    Figure 8 shows the flow pattern in the dimple and the velocity vector on the dimpled surface.Evidently,there are a low-speed rotating vortexes forming in the dimples.Therefore,it is deduced that the dimples produce two effects.First,the low speed rotating vortexes in the dimples can be entitled an air cushion effect.Second,it produces friction drag against to the other area and results in a driving effect.

    Fig.7 Base static pressure comparison between dimpled and smooth revolution bodies

    Fig.8 Flow pattern of interior dimples and velocity vector of dimpled surface

    Figure 9 compares the streamlines on the dimpled surface to that on the smooth one.Obviously,the streamlines of the dimpled revolution body are rarer than those of the smooth one.It indicates that the flow does not entry into the dimples,but passes over the air cushion and further explains the existence of the air cushion effect.

    Fig.9 Streamline comparison between dimpled and smooth revolution bodies

    4 Conclusions

    Following conclusions can be drawn from the numerical simulation with SST k-ω model.

    1)At the Mach number of 0.4,the dimpled surface arranged on the rearward of the revolution body reduces the viscous drag by 8.05%,the pressure by 1.9%and the total drag by 6.24%.

    2)The dimples simultaneously reduce the wall shear stress and the Reynolds stress,then,the skin friction drag decreases.The dimples can also weaken the pumping action on the dead water region behind the revolution body caused by the external flow,which is the reason why the pressure drag decreases.

    3)The basic reason of the skin friction drag reduction is that the dimples control and correct the boundary layer.The low speed rotating airflows in the dimples hinder the exterior airflow and the wall of the dimples to contact directly.It can be regarded as an air cushion effect.Secondly,the low speed rotating vortexes forming in the dimples can produce a friction drag against to the other area and results in a driving effect.

    [1]Walsh M J.Riblets as a viscous drag reduction technique[J].AIAA Journal,1983,21(4):485 -486.

    [2]Reif W E,Dinkelacher A.Hydrodynamics of the squamation in fast swimming sharks[J].Neues Jahrbuch für Geologieund Palaeontologie,(Abhandlungen),1982,164:184-187.

    [3]Bechert D W,Bartenwerfer M,Hoppe G,et al.Drag reduction mechanisms derived from shark skin[C].Proceedings of the 15th ICAS Congress,London,1986:1044-1068.

    [4]Choi K S.Near-wall structures of a turbulent boundary layer with riblets[J].J Fluid Mech,1989,208:417 -458.

    [5]Walsh M J,Sellers W L,McGinley C B.Riblet drag at flight conditions[J].Journal of Aircraft,1989,26(6):570-575.

    [6]Bechert D W,Bruse M,Hage W.Experiments with three dimensional riblets as an idealized model of shark skin[J].Exp Fluids,2000,28:403 -412.

    [7]Bechert D W,Bruse M,Hage W,et al.Fluid mechanics of biological surfaces and their technological application[J].Naturwissenschaften,2000,87:157-171.

    [8]Bearman P W,Harvey J K.Control of circular cylinder flow by the use of dimples[J].AIAA Journal,1993,31:1753-1756.

    [9]REN Lu-quan,ZHANG Cheng-chun,TIAN Li-mei.Experiment study on drag reduction for bodies of revolution using bionic non-smoothness[J].Journal of Jilin University(Eng and Techn Ed),2005,35(4):431-436.

    [10]Menter F R.Two-equation eddy-viscosity models for engineering applications[J].AIAA Journal,1994,32:1598-1605.

    猜你喜歡
    王晶
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Pitman–Yor process mixture model for community structure exploration considering latent interaction patterns?
    顧費(fèi)淳、王晶作品
    王晶作品
    大眾文藝(2021年16期)2021-09-11 09:05:06
    婆媳育兒“持久戰(zhàn)”:隔輩親究竟是愛孫還是誤孫?
    票房大賣的秘訣,王晶說是:“別把自己看得太了不起”
    電影(2019年6期)2019-09-02 01:42:28
    國內(nèi)外城市安全防災(zāi)規(guī)劃和管理體系研究綜述
    王晶:人類命運(yùn)治理簡史
    Computational identifi cation and characterization of microRNAs and their targets inPenaeus monodon*
    Cell therapy for spinal cord injury with olfactory ensheathing glia cells(OECs)
    久久久久人妻精品一区果冻| 妹子高潮喷水视频| 国产高清国产精品国产三级| 久久午夜综合久久蜜桃| 免费久久久久久久精品成人欧美视频 | 麻豆成人av视频| 18+在线观看网站| 国产精品99久久久久久久久| 80岁老熟妇乱子伦牲交| 亚洲av成人精品一区久久| tube8黄色片| 中文在线观看免费www的网站| 久久久久久久亚洲中文字幕| 在线观看免费视频网站a站| 日韩熟女老妇一区二区性免费视频| 亚洲精品自拍成人| 大码成人一级视频| 精品一区二区三区视频在线| 久久久久久人妻| 国产伦理片在线播放av一区| 人妻夜夜爽99麻豆av| 国产真实伦视频高清在线观看| 少妇的逼好多水| 日本欧美国产在线视频| 老熟女久久久| 中文字幕人妻丝袜制服| 成人国产av品久久久| 国产在线视频一区二区| 欧美xxxx性猛交bbbb| 一级av片app| 欧美一级a爱片免费观看看| h视频一区二区三区| 两个人免费观看高清视频 | av网站免费在线观看视频| 街头女战士在线观看网站| 亚洲av国产av综合av卡| 黄片无遮挡物在线观看| 亚洲av成人精品一二三区| 午夜av观看不卡| 亚洲熟女精品中文字幕| 这个男人来自地球电影免费观看 | 亚洲,欧美,日韩| 久久国产精品大桥未久av | 中文乱码字字幕精品一区二区三区| 精品一区二区三区视频在线| 欧美精品亚洲一区二区| 在线免费观看不下载黄p国产| 日韩一区二区三区影片| a级片在线免费高清观看视频| 大话2 男鬼变身卡| 久久久久久久久大av| 97在线视频观看| 国产av国产精品国产| 精品少妇久久久久久888优播| 最近中文字幕高清免费大全6| 99久久综合免费| av女优亚洲男人天堂| 亚洲精品成人av观看孕妇| 中文乱码字字幕精品一区二区三区| 久久久国产精品麻豆| 亚洲丝袜综合中文字幕| 国产午夜精品一二区理论片| 中国美白少妇内射xxxbb| 男女无遮挡免费网站观看| 又爽又黄a免费视频| 国产精品伦人一区二区| 中文字幕亚洲精品专区| 一级av片app| 日韩电影二区| 亚洲在久久综合| 欧美日韩一区二区视频在线观看视频在线| 国产av码专区亚洲av| 日本免费在线观看一区| 日本黄大片高清| 久久99精品国语久久久| 日产精品乱码卡一卡2卡三| 69精品国产乱码久久久| 亚洲伊人久久精品综合| av福利片在线| 人妻人人澡人人爽人人| 中文在线观看免费www的网站| 国产白丝娇喘喷水9色精品| 日本av免费视频播放| 女人精品久久久久毛片| 2021少妇久久久久久久久久久| 久久精品国产亚洲av天美| 黄色配什么色好看| 国产一区二区在线观看av| 91精品伊人久久大香线蕉| 如何舔出高潮| 日本-黄色视频高清免费观看| 菩萨蛮人人尽说江南好唐韦庄| 国产成人免费无遮挡视频| 一级av片app| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 一本一本综合久久| 99热这里只有是精品50| 久久久久国产网址| 亚洲精品色激情综合| 一区二区三区乱码不卡18| 亚洲国产精品国产精品| 夜夜看夜夜爽夜夜摸| 亚洲伊人久久精品综合| 精品卡一卡二卡四卡免费| 免费黄网站久久成人精品| 免费大片黄手机在线观看| 欧美日韩视频精品一区| 少妇猛男粗大的猛烈进出视频| 纯流量卡能插随身wifi吗| 久久久精品免费免费高清| 日日啪夜夜爽| 亚洲国产精品一区三区| 亚洲情色 制服丝袜| 一级毛片我不卡| 久久久久久久久久久丰满| 熟女av电影| 精品熟女少妇av免费看| 五月伊人婷婷丁香| 少妇裸体淫交视频免费看高清| 久久久久精品性色| 久久精品国产a三级三级三级| 国产免费又黄又爽又色| 五月开心婷婷网| 久久国产乱子免费精品| 成人18禁高潮啪啪吃奶动态图 | 26uuu在线亚洲综合色| 国产日韩一区二区三区精品不卡 | 国产欧美另类精品又又久久亚洲欧美| 久久97久久精品| 亚洲成人一二三区av| 赤兔流量卡办理| 日韩人妻高清精品专区| 黑人高潮一二区| 亚洲,一卡二卡三卡| 日韩欧美精品免费久久| 国产精品蜜桃在线观看| 亚洲av成人精品一区久久| 国产探花极品一区二区| 国产成人精品福利久久| 最近中文字幕2019免费版| 男人舔奶头视频| 一本—道久久a久久精品蜜桃钙片| 日本猛色少妇xxxxx猛交久久| 一区二区三区四区激情视频| 久久国内精品自在自线图片| 国产69精品久久久久777片| 亚洲精品一区蜜桃| 国产成人一区二区在线| 成人免费观看视频高清| 纵有疾风起免费观看全集完整版| 日韩伦理黄色片| 国产综合精华液| 国产乱来视频区| 国产av一区二区精品久久| 国产精品久久久久久久电影| 国产精品国产三级专区第一集| 成人漫画全彩无遮挡| 久久99精品国语久久久| 最新的欧美精品一区二区| 精品午夜福利在线看| 99九九线精品视频在线观看视频| 午夜91福利影院| 秋霞在线观看毛片| 久久久国产欧美日韩av| 91成人精品电影| 内射极品少妇av片p| 免费观看av网站的网址| 中文欧美无线码| 一级毛片电影观看| 99九九在线精品视频 | 国产成人精品福利久久| 中文天堂在线官网| 桃花免费在线播放| 亚洲,一卡二卡三卡| 黄色视频在线播放观看不卡| 久久久久久人妻| 少妇高潮的动态图| 欧美精品一区二区免费开放| 精品久久国产蜜桃| 在线 av 中文字幕| 国产欧美日韩精品一区二区| 久久青草综合色| 老司机亚洲免费影院| 亚洲国产欧美日韩在线播放 | 精品人妻偷拍中文字幕| 观看av在线不卡| 日韩强制内射视频| 女性被躁到高潮视频| 亚洲图色成人| 久久鲁丝午夜福利片| 久久免费观看电影| xxx大片免费视频| 国模一区二区三区四区视频| 久久影院123| 日韩 亚洲 欧美在线| 熟妇人妻不卡中文字幕| 久久av网站| av网站免费在线观看视频| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频 | 乱人伦中国视频| 国内少妇人妻偷人精品xxx网站| 丰满迷人的少妇在线观看| 狠狠精品人妻久久久久久综合| 最近中文字幕2019免费版| 777米奇影视久久| 韩国av在线不卡| .国产精品久久| 97在线视频观看| 国产深夜福利视频在线观看| 91午夜精品亚洲一区二区三区| 天堂8中文在线网| 在线观看人妻少妇| 99热国产这里只有精品6| 日韩欧美精品免费久久| 国产毛片在线视频| 有码 亚洲区| 蜜桃久久精品国产亚洲av| 成年美女黄网站色视频大全免费 | 啦啦啦啦在线视频资源| 中文字幕人妻丝袜制服| 国产精品一区二区在线不卡| 91成人精品电影| 最新的欧美精品一区二区| 美女福利国产在线| 伦精品一区二区三区| 美女国产视频在线观看| 久久精品国产亚洲网站| 国产av码专区亚洲av| 伦理电影免费视频| 成年女人在线观看亚洲视频| 日本wwww免费看| 精品人妻熟女av久视频| 色网站视频免费| 免费大片18禁| 精品99又大又爽又粗少妇毛片| 国产成人一区二区在线| freevideosex欧美| 亚洲成人手机| 国产淫语在线视频| 国产极品天堂在线| av国产精品久久久久影院| 亚洲av在线观看美女高潮| 国产精品.久久久| 欧美日韩视频精品一区| av在线播放精品| 新久久久久国产一级毛片| 边亲边吃奶的免费视频| 亚洲欧洲精品一区二区精品久久久 | 在线精品无人区一区二区三| 男女啪啪激烈高潮av片| 精品午夜福利在线看| 卡戴珊不雅视频在线播放| 又粗又硬又长又爽又黄的视频| 亚洲精品aⅴ在线观看| 日本色播在线视频| 精品久久久精品久久久| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 国产精品免费大片| 日韩 亚洲 欧美在线| 99热这里只有精品一区| 夫妻性生交免费视频一级片| 美女主播在线视频| 青青草视频在线视频观看| 三级国产精品片| 亚洲久久久国产精品| 街头女战士在线观看网站| 国产一区亚洲一区在线观看| 亚洲欧美中文字幕日韩二区| 精品亚洲成国产av| 成年美女黄网站色视频大全免费 | 久久久久精品久久久久真实原创| 久久韩国三级中文字幕| 午夜精品国产一区二区电影| kizo精华| 国产精品国产三级专区第一集| 亚洲精品国产成人久久av| 国产精品国产三级国产专区5o| 黄色配什么色好看| 国产黄片视频在线免费观看| 精品一品国产午夜福利视频| 一本—道久久a久久精品蜜桃钙片| 啦啦啦啦在线视频资源| 日韩av不卡免费在线播放| 精品国产国语对白av| 亚洲精华国产精华液的使用体验| 久久久久视频综合| 丝袜喷水一区| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品古装| 人妻夜夜爽99麻豆av| 久久国产亚洲av麻豆专区| 日韩精品免费视频一区二区三区 | 国产在线视频一区二区| 日韩强制内射视频| 亚洲丝袜综合中文字幕| 亚洲自偷自拍三级| 国产成人精品一,二区| 国产欧美日韩综合在线一区二区 | 亚洲av日韩在线播放| 国产成人免费无遮挡视频| 久久毛片免费看一区二区三区| 亚洲国产av新网站| 乱人伦中国视频| 国产一区二区在线观看日韩| 简卡轻食公司| 人妻一区二区av| 久久久国产欧美日韩av| 韩国av在线不卡| 免费黄频网站在线观看国产| 免费观看av网站的网址| 一本—道久久a久久精品蜜桃钙片| 99久国产av精品国产电影| 亚洲国产欧美日韩在线播放 | 少妇丰满av| 91久久精品国产一区二区成人| 丰满饥渴人妻一区二区三| 久久ye,这里只有精品| 亚洲,一卡二卡三卡| 久久精品国产亚洲av天美| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 麻豆乱淫一区二区| 女人久久www免费人成看片| 美女国产视频在线观看| 亚洲精品日本国产第一区| 午夜视频国产福利| 日韩精品有码人妻一区| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看 | 午夜91福利影院| 赤兔流量卡办理| 国产一区二区在线观看av| av国产久精品久网站免费入址| 亚洲不卡免费看| 欧美精品人与动牲交sv欧美| 最近中文字幕高清免费大全6| 国产91av在线免费观看| 高清午夜精品一区二区三区| 大片电影免费在线观看免费| 麻豆精品久久久久久蜜桃| 久久久久久久久久成人| 日韩中字成人| 国内精品宾馆在线| 久久久久久久久久成人| 亚洲伊人久久精品综合| 亚洲国产色片| 少妇高潮的动态图| 亚洲欧洲日产国产| 在线亚洲精品国产二区图片欧美 | 精品人妻偷拍中文字幕| 日韩成人av中文字幕在线观看| 老熟女久久久| 亚洲真实伦在线观看| 美女福利国产在线| 久久久精品免费免费高清| av福利片在线| 亚洲人与动物交配视频| 九草在线视频观看| 一级a做视频免费观看| 亚洲成人一二三区av| av在线老鸭窝| 久久久久久久久久久免费av| 中文字幕亚洲精品专区| 久久久国产精品麻豆| 亚洲av男天堂| 五月天丁香电影| 天堂俺去俺来也www色官网| 国产高清国产精品国产三级| 国产美女午夜福利| 精品国产一区二区三区久久久樱花| 日韩大片免费观看网站| 一级毛片久久久久久久久女| 晚上一个人看的免费电影| 亚洲国产精品一区二区三区在线| 18禁在线播放成人免费| 内地一区二区视频在线| 亚洲在久久综合| 91久久精品国产一区二区三区| 少妇精品久久久久久久| 亚洲天堂av无毛| 51国产日韩欧美| 天堂中文最新版在线下载| 国产免费视频播放在线视频| 国产av一区二区精品久久| 一本—道久久a久久精品蜜桃钙片| 亚洲精品中文字幕在线视频 | 欧美日韩视频精品一区| 一本久久精品| 黄色一级大片看看| 国产男女内射视频| 新久久久久国产一级毛片| 美女脱内裤让男人舔精品视频| 777米奇影视久久| 中文字幕制服av| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 狠狠精品人妻久久久久久综合| av网站免费在线观看视频| 国产免费视频播放在线视频| 免费看不卡的av| √禁漫天堂资源中文www| 国产在线一区二区三区精| 亚洲精品,欧美精品| 成年人午夜在线观看视频| 大香蕉久久网| 一级a做视频免费观看| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| 黄色毛片三级朝国网站 | 免费大片18禁| 亚洲欧美成人精品一区二区| 大码成人一级视频| 中文字幕人妻熟人妻熟丝袜美| 汤姆久久久久久久影院中文字幕| 国产免费一区二区三区四区乱码| 亚洲久久久国产精品| 久久人人爽人人爽人人片va| 国产爽快片一区二区三区| 久久人妻熟女aⅴ| 丰满少妇做爰视频| h日本视频在线播放| 伦理电影免费视频| 久久久a久久爽久久v久久| 欧美日韩视频精品一区| 国产亚洲精品久久久com| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 免费观看a级毛片全部| 国产精品久久久久久精品电影小说| 日韩,欧美,国产一区二区三区| 国国产精品蜜臀av免费| 涩涩av久久男人的天堂| 一区二区三区精品91| 人妻人人澡人人爽人人| 欧美高清成人免费视频www| 亚洲自偷自拍三级| 国产精品蜜桃在线观看| 国产精品一区二区性色av| 18禁在线播放成人免费| 精品一品国产午夜福利视频| 久久99一区二区三区| 精品少妇内射三级| 国产精品不卡视频一区二区| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看| 日韩在线高清观看一区二区三区| 欧美日韩视频精品一区| 热99国产精品久久久久久7| 一个人免费看片子| 人妻制服诱惑在线中文字幕| 亚洲精品日韩av片在线观看| 视频中文字幕在线观看| 久久久久久久亚洲中文字幕| 成人黄色视频免费在线看| 久久韩国三级中文字幕| 国产午夜精品一二区理论片| 高清毛片免费看| 亚洲精华国产精华液的使用体验| 在线观看免费日韩欧美大片 | 国产在视频线精品| 日韩,欧美,国产一区二区三区| 大片电影免费在线观看免费| 丝袜脚勾引网站| 久久国产精品大桥未久av | 女性生殖器流出的白浆| 免费不卡的大黄色大毛片视频在线观看| 成年av动漫网址| 黄片无遮挡物在线观看| 麻豆成人午夜福利视频| 九九在线视频观看精品| 9色porny在线观看| av专区在线播放| 国产亚洲午夜精品一区二区久久| 自线自在国产av| 日韩伦理黄色片| 亚洲成人一二三区av| 亚洲av欧美aⅴ国产| 精品卡一卡二卡四卡免费| 亚洲无线观看免费| 久久ye,这里只有精品| 午夜影院在线不卡| 成人国产av品久久久| 汤姆久久久久久久影院中文字幕| 免费观看的影片在线观看| 久久久久国产网址| 亚洲欧美日韩卡通动漫| kizo精华| 搡老乐熟女国产| 日日摸夜夜添夜夜添av毛片| 国产国拍精品亚洲av在线观看| 乱人伦中国视频| 国产成人91sexporn| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 国产片特级美女逼逼视频| 欧美+日韩+精品| 色视频在线一区二区三区| 97超碰精品成人国产| 中文精品一卡2卡3卡4更新| 久久久久久久久久久丰满| 国内揄拍国产精品人妻在线| 国产精品蜜桃在线观看| 三级国产精品欧美在线观看| 欧美日韩av久久| 久久久久久久久久久久大奶| 色视频www国产| 亚洲av.av天堂| 久热这里只有精品99| 欧美性感艳星| 肉色欧美久久久久久久蜜桃| 免费黄色在线免费观看| 一区在线观看完整版| 精品人妻一区二区三区麻豆| √禁漫天堂资源中文www| 在线精品无人区一区二区三| 能在线免费看毛片的网站| 三级国产精品欧美在线观看| 久久99热6这里只有精品| 少妇被粗大猛烈的视频| 午夜影院在线不卡| 视频中文字幕在线观看| 九九在线视频观看精品| 久久久久国产精品人妻一区二区| 午夜av观看不卡| 国产高清三级在线| 一级毛片久久久久久久久女| av福利片在线观看| 一级黄片播放器| 国产一区二区三区av在线| 丰满饥渴人妻一区二区三| 国产极品天堂在线| 热re99久久精品国产66热6| 中文欧美无线码| 纯流量卡能插随身wifi吗| 国产精品成人在线| 99热这里只有是精品在线观看| 伊人亚洲综合成人网| 夜夜骑夜夜射夜夜干| 你懂的网址亚洲精品在线观看| 美女内射精品一级片tv| 五月开心婷婷网| 久久午夜福利片| 99视频精品全部免费 在线| 久久午夜福利片| 天堂中文最新版在线下载| 人妻人人澡人人爽人人| 国产高清不卡午夜福利| 在线观看免费高清a一片| 夫妻性生交免费视频一级片| 国语对白做爰xxxⅹ性视频网站| 欧美日本中文国产一区发布| 好男人视频免费观看在线| 国产熟女欧美一区二区| 亚洲国产精品成人久久小说| 国产精品无大码| 欧美一级a爱片免费观看看| 国产综合精华液| 肉色欧美久久久久久久蜜桃| 国产乱来视频区| 少妇人妻久久综合中文| 久热这里只有精品99| 久久 成人 亚洲| 日韩av在线免费看完整版不卡| 狠狠精品人妻久久久久久综合| 中文精品一卡2卡3卡4更新| 99re6热这里在线精品视频| 亚洲综合精品二区| 欧美精品一区二区免费开放| 久久久a久久爽久久v久久| 亚洲精品国产色婷婷电影| av有码第一页| 狂野欧美激情性bbbbbb| 亚洲av成人精品一二三区| 免费人成在线观看视频色| 美女xxoo啪啪120秒动态图| 亚洲成色77777| 99热这里只有是精品在线观看| 亚洲综合色惰| 国产探花极品一区二区| 国产精品熟女久久久久浪| 亚洲天堂av无毛| av专区在线播放| 丰满少妇做爰视频| 久久国产乱子免费精品| 欧美一级a爱片免费观看看| 久久久久久久精品精品| 精品熟女少妇av免费看| 国产69精品久久久久777片| 99热网站在线观看| 亚洲,欧美,日韩| a 毛片基地| 国产成人免费观看mmmm| 亚洲无线观看免费| 亚洲国产精品成人久久小说| 国产欧美日韩综合在线一区二区 | 菩萨蛮人人尽说江南好唐韦庄| 久久久欧美国产精品| 亚洲国产最新在线播放| 男女边摸边吃奶| 国产一区有黄有色的免费视频| 偷拍熟女少妇极品色| 日本-黄色视频高清免费观看| 成人二区视频| 黑人猛操日本美女一级片| 伦理电影大哥的女人| 最近的中文字幕免费完整| 极品人妻少妇av视频| 久久毛片免费看一区二区三区|