• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Outboard Inductive Damping Valve in Hydro-pneumatic Suspension

    2011-03-09 11:57:24WANGXun王勛CHENSizhong陳思忠
    Defence Technology 2011年1期

    WANG Xun(王勛),CHEN Si-zhong(陳思忠)

    (School of Mechanical and Vehicle Engineering,Beijing Institute of Technology,Beijing 100081,China)

    Introduction

    The damping coefficient of passive suspension is designed and optimized according to the requirement of the task.Once it is determined,it can not be adjusted for various roads and working conditions.The performance of suspension can not be improved further.But,the suspension with adjustable damping can choose proper damping coefficient to keep the ride comfort and driving safety as well[1].

    The adjustable damping valve can be divided in four types,i.e.mechanical damping valve,electronic damping valve,ER & MR damping valve,piezoelectric damping valve.The inductive damping valve is one of the mechanical damping valves.It can adjust the damping to fit various road conditions and working conditions without electronic control system.It is also cheaper and reliable.

    A hydro-pneumatic suspension system consists of accumulator,damping valve and cylinder.The pressure in hydro-pneumatic suspension is transferred by oil and nitrogen.In some hydro-pneumatic suspensions,the hydro-pneumatic spring serves as elastic and damping element without any special damping element.For most of vehicle’s hydro-pneumatic suspensions,the damping force is usually small and can not meet the requirements to reduce vibration rapidly for most offroad vehicles.In addition,this kind of damping force is difficult to be controlled and easy to be affected by the vehicle’s layout.The length of pipe connecting the cylinders will change the damping characteristics of the hydro-pneumatic spring.Therefore,it is necessary to design a special damping valve for the hydro-pneumatic suspension[2].

    A new outboard inductive adjustable damping valve was designed for the hydro-pneumatic suspension of off-road vehicle.It is convenient to describe the working principle and external characteristic of this valve and analyze the dynamic characteristic of the vehicle by using the mathematical model proposed in this paper.

    1 Working Principle and Structure of Outboard Inductive Damping Valve

    The structure of the valve is shown in Fig.1.It consists of a fixed valve and a floating valve in series.The floating valve is suspended between two flexible compressing springs and can slide within a certain zone restricted by a limit block.For weak excitation from the road surface,the rebound and compressive valves in floating valve can not open because the floating valve does not reach its limit.The fluid can only pass through the fixed valve and generate the damping force.For strong excitations from the road surface,the rebound and compressive valves in floating valve open because the floating valve subjected to the fluid push reaches its limit.The damping force produced by floating valve will be added to the damping force produced by the foxed valve.Therefore,this damping valve is an inductive damping valve,which can detect the roughness of the road surface and adjust the damping automatically.

    Both fixed and floating valves have rebound valve,compressive valve and bleeding orifice,respectively.In the compression stroke,the pressure difference between both ends of damping valve is too low to open the compressive valve when the beat speed of wheel is small.At this time,the oil can only pass through the bleeding orifices and enter into the accumulator.Therefore,the damping coefficient is larger because the bleeding orifice throttle area is very small.With the increase of the pressure difference between both ends of damping valve,the compressive valve opens progressively.Thus,the damping valve’s throttle area increases gradually.The damping coefficient reduces,but the damping force increases continuously.If the pressure difference increases further,the compressive valve opens maximally,then the damping valve’s throttle area does not change.Thus,the damping coefficient increases again and the damping force grows significantly.The characteristic in rebound stroke is basically the same with the compression stroke.But,the pressure drop to open the valve is larger so that the damping force in rebound stroke is bigger than that in the compression stroke.

    Fig.1 Structure of outboard inductive damping valve

    2 Mathematical Model of Damping Valve

    In the outboard damping valve,the basic damping elements include bleeding orifices,rebound valves and compressive valves.Assume that the oil is steady,incompressible,its weight can be neglected,and the effects of exist in the leakage caused by the gap in damping valves and temperature on the oil characteristics can be ignored.In this paper,the relationship between pressure drop Δp and flow rate qvcan be obtained first,and then the damping force F= Δp·A can be found out,where A is the effective area of the cylinder piston.

    2.1 Bleeding Orifice

    The oil flow through the bleeding orifice can be expressed as

    where qvbis the flow rate through the bleeding orifice,Abthe flow area of the bleeding orifice,Δpbthe pressure drop through the bleeding orifice,ρ the density of the oil,Cdthe discharge coefficient of the bleeding orifice.

    2.2 Compressive Valve

    The mathematical model of the compressive valve is a typical non-return valve model,as shown in Fig.2,where Acis the area of the single valve bore in the compressive valve,A1is the interaction area of valve disk with valve bore,K is the stiffness of pressing spring.

    Fig.2 Sectional view of compressive valve

    The oil flow through the compression orifice can be expressed as

    where qvcis the flow rate through the orifice of compressive valve,and Δpc1the pressure difference between both ends of the compressive valve.

    Based on Bernoulli's equation and the geometric relationship between valve disk and orifice bore,the flow rate can be written as

    where Δpc2is the pressure drop at both ends of the compressive valve disk,hcthe opening height of the non-return valve disk and Fprethe preload of the nonreturn valve.

    The total pressure drop over the non-return valve can be expressed as

    2.3 Rebound Valve

    The mathematical model of the rebound valve is a‘flat,faced,flapper’model,as shown in Fig.3,where r1is the inner radius of the valve bore,r2the outer radius,Rfthe distance between the valve’s centerline to the bore’s centerline,Rgthe radius of the gasket.When the valve opens slightly,the viscous force between the valve’s disk and seat is significantly larger than the oil’s inertia force.The flow rate qvis proportional to the cubic of the opening height hoof the valve and inversely proportional to the oil’s viscosity.Assume that the valve seat and disk are all smooth and the opening height of the valve is very small.

    Fig.3 Sectional view of rebound valve

    For the oil passing through the damping valve,the continuity equation can be written as

    Its impulse equation can be expressed as

    where v is the velocity vector of the oil flow through the valve,η the dynamic viscosity of the oil,Δpdthe pressure divergence of the oil when the rebound valve opens.

    In cylinder coordinates,the velocity can be defined as

    where vr,vφ,vzare the radial,angular and axial components of velocity,respectively,when the damping valve opens.

    And,

    where pdis the pressure difference between both sides of the disk,and r the radius variable of the valve bore.

    From Eq.(6)to(8),

    For a small bore,the inertia term is much smaller than the viscosity term and can be neglected.Thus,

    Its boundary conditions are

    From these conditions,the velocity can be calculated.

    The oil flow passing through the rebound valve can be found out,

    where m is the total number of valve bores,and qvrthe total flow rate of all rebound valve bores.

    The force on the valve disk can be obtained,which consists of static and viscous forces,

    where Δpd=pd(r) - pd(r2).

    Thus,

    The equations above are only valid for small ho/(r2-r1),and in this case,the viscous force is much larger than the inertia force.For large ho/(r2-r1),the case is different[3-5],and the mathematical model will be a non-return model.Therefore,a large open of the valve has to be avoided.The next step is to obtain the relationship between the open height hoand the force F applied on the valve disk.For simple,assume that the force F is distributed linearly along radial direction.Then,

    and

    where E is the modulus of the valve disk,F(xiàn)svthe force in one of valve bores,α the angle of the valve seat and the valve disk,sjthe thickness of the jth valve disk,and ho<hmax.

    If Eq.(15)is not fulfilled,the valve remains closed,and h=0.Combined Eq.(12),(14)and(15),and neglected the second-order term,we have

    and

    If Eq.(17)is not fulfilled,the valve can not open further.If ho=hmax,the relationship between Δp and qvwill become linear,that is,

    2.4 Outboard Inductive Damping Valve

    According to the working principle of the outboard inductive damping valve and the three mathematical models above,there are six states to analyze the characteristic of the valve,i.e.,the valve closes,opens partially and opens fully in compressing process,and the valve closes,opens partially and opens fully in rebound process.Because the structure of the fixed valve is similar to that of the floating valve,the characteristics of the fixed valve are analyzed only.

    When the wheel beat and beat speed are all small in the compressing process,the oil can not flow through the floating valve,so only the bleeding orifice of the floating valve works.In this case,the damping characteristic can be expressed as

    where qvctis the total flow rate through the inductive valve,Δpcfixthe total pressure between both ends of the fixed valve,Acbthe total area of the bleeding orifices in the fixed valve,F(xiàn)cfixpthe preload of the compressive valve in the fixed valve and A1fixthe total interaction area of the valve disks with the valve bores in the fixed valve.

    When the wheel beat is still small and the beat speed increases,the oil can not flow through the floating valve.In this case,the damping characteristic can be expressed as

    where qvc1and qvc2are the flow rate through the bleeding orifices and compressive valve bores in compressing process,Δpcfix1and Δpcfix2the pressure differences between both ends of compressive bores and both sides of the compressive valve disk in the fixed valve,hcfixthe open height of the compressive valve disk,hcmaxthe max open height of the compressive valve disk,Actthe total area of the compressive valve’s bores in the fixed valve and Kcthe preload spring’s stiffness of the compressive valve in the fixed valve.

    When the wheel beat is still small,the beat speed is high enough and the valve opens fully in the compressing process,the oil can not flow through the floating valve.In this case,the damping characteristic can be expressed as

    If the wheel beat and the beat speed are quite small in the rebound process,the oil can not flow through the floating valve,thus,only the bleeding orifice of the fixed valve works.In this case,the damping characteristic can be expressed as

    where Δprfixis the total pressure difference between both ends of the fixed valve,Δprfix1and Δprfix2the pressure differences between both ends of the rebound valve bores and the rebound valve disks of the fixed valve,Artthe total area of the rebound valve bores in the fixed valve,rr1and rr2the inner and outer radii of the rebound valve bore in the fixed valve,Rrfthe distance between the centerline of the fixed valve and the centerline of fixed valve bore,Rrithe radius of the gasket in the fixed valve,αsdthe angle of the valve seat and the valve disk in the fixed valve,sithickness of the ith valve disk,mnthe number of rebound valve bores in the fixed valve.

    When the wheel beat is still small and the beat speed increases in the rebound process,the oil can not flow through the floating valve.In this case,the damping characteristic can be expressed as

    where qvr1and qvr2are the flow rate through the bleeding orifices and the rebound valve bores respectively,homaxthe maximum open height of the rebound valve disk.

    When the wheel beat is still small and the beat speed is high enough and the valve opens fully in the rebound process,the oil can not flow through the floating valve.In this case,the damping characteristic can be expressed as

    The external characteristic curves are shown in Fig.4.When the wheel beat is small,the oil can not flow through the floating valve.Only the fixed valve works,so the damping force is small.If the wheel beat is larger,the oil can flow through the floating valve.The damping force produced by the floating valve will be added to the damping force produced by the fixed valve,thus,the damping force is large.The damping force of the floating valve is designed as 50%of the damping force of the fixed valve.

    Fig.4 External characteristics of outboard inductive damping valve

    3 Comparison of Outboard Inductive Damping Valve and Common Damping Valve

    We take a new-type domestic off-road vehicle as an example.The effects of the outboard inductive valve and the common outboard valve on the vehicle comfort and ground adhesion are analyzed by using a 1/4 suspension dynamic model.The main parameters of the original suspension system with common valve are listed in Table.1.For comparison,the transition speed of the outboard inductive valve is the same with that of the common valve.The damping force of the common valve is about 120%of that of the fixed valve in the outboard inductive valve.

    Table 1 Parameters of a suspension system

    The travel zone of the floating valve is set as±15 mm.The RMS of sprung mass acceleration and tire load of the vehicle equipped with the outboard inductive valve and the common outboard valve in grade D,E and F road are shown in Fig.5 to Fig.10.When the speed of the vehicle is low,The RMS of sprung mass acceleration of the suspension equipped with the outboard inductive valve is lower than that of the suspension equipped with the common outboard valve.With the increase of the velocity,the stroke of suspension increases and the probability that the outboard inductive valve enters into hard mode increases also,so the sprung mass acceleration RMS of the suspension with the outboard inductive valve increases more than that of the common valve.When the vehicle speed is low,RMS of tire load of the suspension with the inductive valve is similar to that of the common valve.With the increase of the vehicle speed,the probability that the outboard inductive valve enters into hard mode increases gradually.Thus,the tire load RMS of the suspension the inductive valve is lower than that of the common valve.Therefore,the outboard inductive valve can improve the ride comfort at low speed,while it can improve the ground adherent at high speed.

    4 Test of Outboard Inductive Damping Valve’s External Characteristics

    The mathematical model and adjustment logic of the inductive valve can be verified by using bench test.The bench test and data processing method are based on an automobile standard—QC/T545-_1999.The external characteristics of the damping valve are measured in a test bench,as shown in Fig.11.

    Fig.5 Sprung mass acceleration vs.vehicle velocity(in grade D road)

    Fig.6 Dynamic wheel force vs.vehicle velocity(in grade D road)

    Fig.7 Sprung mass acceleration vs.vehicle velocity(in grade E road)

    Fig.8 Dynamic wheel force vs.vehicle velocity(in grade E road)

    Fig.9 Sprung mass acceleration vs.vehicle velocity(in grade F road)

    Fig.10 Dynamic wheel force vs.vehicle velocity(in grade F road)

    The installation is shown in Fig.11.The input excitation signals are a sine signal with 40 mm in amplitude and 1 Hz in frequency and a sine signal with 30 mm in amplitude and 2 Hz in frequency.The results are shown in Fig.12 and Fig.13,respectively.The damping forces are positive in rebound process and negative in compressing process.

    The damping stage is changed at-15 mm in rebound process and+15 mm in compressing process,as shown in Fig.12 and Fig.13.It shows that the designed adjustment logic is very proper and the outboard

    Fig.11 Test bench

    Fig.12 Damping force vs.displacement(1 Hz±40 mm)

    Fig.13 Damping force vs.displacement(2 Hz±30 mm)

    inductive valve can be adjusted according to the input amplitude.

    The calculated and tested results of damping force are shown in Fig.14.The maximum difference is only 8.3%.It shows that the mathematical model of the valve is quite accurate and the developed outboard inductive damping valve without any electronic control can automatically adjust the damping.

    Fig.14 Comparison of simulation and test results

    5 Conclusions

    A novel outboard inductive damping valve is designed for a hydro-pneumatic suspension,in which the damping coefficient can be adjusted without any electronic control.Its mathematical model is proposed.The comfort and tire load characteristics of the inductive damping valve and common damping valve are compared in grade D,E and F roads.The external characteristic of the inductive valve is verified by bench test.The results show that the mathematical model of the valve is quite accurate and the developed valve can improve the ride comfort at low vehicle speed and ground adherent at high vehicle speed,then it can improve the speed of the off-road vehicle.Therefore,this outboard inductive damping valve is suitable for applications in high speed off-road vehicles.

    [1]YU De-fu.Design study of smoothness-to-safety ratio in suspension shock absorber outer characteristic[J].Vehicle and Power Technology,2002,(3):30 -32.

    [2]John C D.The shock absorber handbook[M].USA:Society of Automotive Engineers,Inc,1999.

    [3]Duym S W.Simulation tools,modeling and identification,for an automotive shock absorber in the context of vehicle dynamics[J].Vehicle System Dynamics,2000,33:261-283.

    [4]LANG H H.A study of the characteristics of automotive hydraulic dampings at high stroking frequencies[D].USA:The University of Michigan,1977.

    [5]Segel L,LANG H H.The mechanics of automotive hydraulic dampings at at high stroking frequencies[J].Vehicle System Dynamics,1981,10:82 -85.

    av黄色大香蕉| 久久人人爽人人片av| 又黄又爽又刺激的免费视频.| 精品久久久久久成人av| 亚洲人成网站在线播| 天堂影院成人在线观看| 午夜精品一区二区三区免费看| 又黄又爽又刺激的免费视频.| 又黄又爽又刺激的免费视频.| 成人一区二区视频在线观看| 欧美最黄视频在线播放免费| 成人永久免费在线观看视频| 一个人看视频在线观看www免费| 三级经典国产精品| 精品国产三级普通话版| 日日摸夜夜添夜夜爱| 熟女人妻精品中文字幕| 看黄色毛片网站| 我的老师免费观看完整版| 国产精品,欧美在线| 国产精品久久久久久av不卡| 国产精品永久免费网站| av天堂中文字幕网| 色吧在线观看| 一本一本综合久久| 欧美最黄视频在线播放免费| 成人毛片a级毛片在线播放| 在线免费观看的www视频| 美女内射精品一级片tv| 国产 一区 欧美 日韩| 亚洲av二区三区四区| 国产精品福利在线免费观看| 在线观看美女被高潮喷水网站| 欧美色视频一区免费| 九九爱精品视频在线观看| 特级一级黄色大片| 国内少妇人妻偷人精品xxx网站| 深夜精品福利| 精品人妻熟女av久视频| 国产亚洲精品av在线| ponron亚洲| 婷婷色综合大香蕉| 性色avwww在线观看| 色综合亚洲欧美另类图片| 免费看a级黄色片| 2021天堂中文幕一二区在线观| 亚洲精品成人久久久久久| 91午夜精品亚洲一区二区三区| 天天躁夜夜躁狠狠久久av| 国产av在哪里看| 亚洲欧美成人综合另类久久久 | 成年女人毛片免费观看观看9| 精品久久久久久久久久久久久| 国产激情偷乱视频一区二区| 天天一区二区日本电影三级| 夜夜看夜夜爽夜夜摸| 午夜影院日韩av| 亚洲一级一片aⅴ在线观看| 国产成人福利小说| 免费人成视频x8x8入口观看| 亚洲欧美中文字幕日韩二区| 男人狂女人下面高潮的视频| 欧美成人a在线观看| 亚洲无线观看免费| 小蜜桃在线观看免费完整版高清| 国产精品野战在线观看| 亚洲国产精品合色在线| 麻豆久久精品国产亚洲av| 91av网一区二区| 国产黄a三级三级三级人| 卡戴珊不雅视频在线播放| 国产人妻一区二区三区在| 成人亚洲精品av一区二区| 免费人成在线观看视频色| 国产精品国产高清国产av| 国产精品综合久久久久久久免费| 国产一区二区在线观看日韩| 精品久久国产蜜桃| 日韩欧美精品免费久久| 国产v大片淫在线免费观看| 久久久久精品国产欧美久久久| 中文字幕免费在线视频6| 欧美三级亚洲精品| 国产极品精品免费视频能看的| 色在线成人网| 国产av不卡久久| 亚洲精品国产av成人精品 | 三级经典国产精品| 午夜影院日韩av| 免费高清视频大片| 97热精品久久久久久| 色av中文字幕| 国产精品99久久久久久久久| 99国产极品粉嫩在线观看| 变态另类丝袜制服| 在现免费观看毛片| 亚洲图色成人| 免费一级毛片在线播放高清视频| 国产精品一区二区三区四区免费观看 | 久久久久久久久久久丰满| 亚洲中文日韩欧美视频| 在线a可以看的网站| 国产三级在线视频| 99久久中文字幕三级久久日本| 欧美性感艳星| 亚洲欧美日韩高清专用| 成熟少妇高潮喷水视频| 久久久欧美国产精品| 亚洲第一电影网av| 日韩欧美在线乱码| 人人妻人人澡人人爽人人夜夜 | 国产亚洲欧美98| 欧美人与善性xxx| 欧美又色又爽又黄视频| 日本-黄色视频高清免费观看| 色播亚洲综合网| 久久国内精品自在自线图片| 老师上课跳d突然被开到最大视频| 一个人看的www免费观看视频| 一区福利在线观看| 亚洲七黄色美女视频| 少妇熟女欧美另类| 午夜视频国产福利| 亚洲国产精品合色在线| 日本五十路高清| 国产一区二区亚洲精品在线观看| 久久午夜亚洲精品久久| 九九爱精品视频在线观看| 天天一区二区日本电影三级| 人人妻人人澡欧美一区二区| 亚洲内射少妇av| 在线观看一区二区三区| 久久精品国产亚洲av香蕉五月| 黄片wwwwww| 全区人妻精品视频| 成人毛片a级毛片在线播放| 色综合亚洲欧美另类图片| 国产高清有码在线观看视频| 成年免费大片在线观看| 成人欧美大片| 成年女人看的毛片在线观看| 亚洲美女视频黄频| 日日摸夜夜添夜夜爱| 久久久国产成人精品二区| 小蜜桃在线观看免费完整版高清| 精品一区二区三区人妻视频| 婷婷六月久久综合丁香| 超碰av人人做人人爽久久| 久久精品夜色国产| 99精品在免费线老司机午夜| 国产视频一区二区在线看| 久久这里只有精品中国| 91久久精品国产一区二区成人| 国内精品宾馆在线| 免费观看精品视频网站| 少妇丰满av| 午夜亚洲福利在线播放| 亚洲专区国产一区二区| 久久久久性生活片| 精品日产1卡2卡| 免费观看精品视频网站| 天堂影院成人在线观看| 18+在线观看网站| 中文字幕av在线有码专区| 日韩国内少妇激情av| 国产高清不卡午夜福利| ponron亚洲| 国产成年人精品一区二区| 亚洲精品久久国产高清桃花| 蜜桃亚洲精品一区二区三区| 国产亚洲精品综合一区在线观看| 成人毛片a级毛片在线播放| 亚洲av美国av| 亚洲婷婷狠狠爱综合网| 欧美中文日本在线观看视频| 久久久久久久久中文| 免费在线观看影片大全网站| 99久久精品热视频| 午夜福利在线观看吧| 亚洲久久久久久中文字幕| 亚洲国产精品合色在线| 97人妻精品一区二区三区麻豆| 亚洲婷婷狠狠爱综合网| 亚洲无线观看免费| 亚洲自偷自拍三级| 成年av动漫网址| 亚洲成人久久性| 一夜夜www| 久久久a久久爽久久v久久| 男人舔奶头视频| 99国产精品一区二区蜜桃av| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆| 99久国产av精品国产电影| 久久亚洲国产成人精品v| 国产伦精品一区二区三区视频9| 1024手机看黄色片| 久久久久国产网址| 久久人人爽人人爽人人片va| 国产精品永久免费网站| 91午夜精品亚洲一区二区三区| 91久久精品国产一区二区成人| 中文字幕久久专区| 91av网一区二区| 精品欧美国产一区二区三| 看片在线看免费视频| 91午夜精品亚洲一区二区三区| 中出人妻视频一区二区| 免费人成视频x8x8入口观看| av卡一久久| 夜夜夜夜夜久久久久| 老师上课跳d突然被开到最大视频| 成人亚洲欧美一区二区av| 一区福利在线观看| 久久韩国三级中文字幕| 欧美极品一区二区三区四区| 大香蕉久久网| 看非洲黑人一级黄片| 久久6这里有精品| 老司机福利观看| 人妻制服诱惑在线中文字幕| 又粗又爽又猛毛片免费看| 成年女人永久免费观看视频| 亚洲欧美中文字幕日韩二区| 人人妻人人看人人澡| 亚洲自拍偷在线| 69人妻影院| 97超级碰碰碰精品色视频在线观看| 欧美日韩综合久久久久久| 听说在线观看完整版免费高清| 亚洲四区av| 一个人看视频在线观看www免费| 五月玫瑰六月丁香| 日本在线视频免费播放| 日本色播在线视频| 国产精品一区www在线观看| 国产毛片a区久久久久| 国产成人福利小说| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆| 三级毛片av免费| 国产老妇女一区| 日韩欧美免费精品| 成人一区二区视频在线观看| 国产精品国产三级国产av玫瑰| 女人被狂操c到高潮| 日本-黄色视频高清免费观看| 亚洲七黄色美女视频| av专区在线播放| 国产精品av视频在线免费观看| 久久精品国产亚洲网站| 中文亚洲av片在线观看爽| 天美传媒精品一区二区| 99精品在免费线老司机午夜| 免费av毛片视频| 成人鲁丝片一二三区免费| 人妻夜夜爽99麻豆av| 色播亚洲综合网| 在线播放无遮挡| 五月玫瑰六月丁香| 色av中文字幕| 成人三级黄色视频| 夜夜夜夜夜久久久久| 人妻夜夜爽99麻豆av| 美女内射精品一级片tv| 日韩国内少妇激情av| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| 欧美日韩精品成人综合77777| 在线免费十八禁| 国产精品1区2区在线观看.| 中国国产av一级| 精品一区二区三区av网在线观看| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 国产av一区在线观看免费| 午夜日韩欧美国产| 亚洲av二区三区四区| 亚洲精品日韩av片在线观看| av视频在线观看入口| 精品久久久久久久久久久久久| 亚洲欧美精品自产自拍| 香蕉av资源在线| 日韩欧美免费精品| 老司机午夜福利在线观看视频| 免费人成在线观看视频色| 国产老妇女一区| 天堂√8在线中文| 99热全是精品| 久久鲁丝午夜福利片| 精品一区二区免费观看| 久久久国产成人免费| 国产精品不卡视频一区二区| 久久精品国产自在天天线| 美女cb高潮喷水在线观看| 男女那种视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久伊人网av| 亚洲精品456在线播放app| 日韩人妻高清精品专区| 精品人妻熟女av久视频| 老熟妇仑乱视频hdxx| 美女cb高潮喷水在线观看| 成年版毛片免费区| 欧美zozozo另类| 国产伦一二天堂av在线观看| 国产一区亚洲一区在线观看| 最后的刺客免费高清国语| 长腿黑丝高跟| 18禁在线播放成人免费| 日韩 亚洲 欧美在线| 免费一级毛片在线播放高清视频| 午夜福利在线在线| 最近中文字幕高清免费大全6| 级片在线观看| 日韩人妻高清精品专区| 久久综合国产亚洲精品| 国产在视频线在精品| 大型黄色视频在线免费观看| 搡老妇女老女人老熟妇| 级片在线观看| 日韩一本色道免费dvd| 狠狠狠狠99中文字幕| 乱码一卡2卡4卡精品| 日日啪夜夜撸| 卡戴珊不雅视频在线播放| 久久久精品大字幕| 人人妻人人澡欧美一区二区| 97热精品久久久久久| 看黄色毛片网站| 久久99热这里只有精品18| 在现免费观看毛片| 亚洲中文字幕一区二区三区有码在线看| 午夜福利在线观看吧| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 亚洲av五月六月丁香网| 久久韩国三级中文字幕| 免费av不卡在线播放| 欧美zozozo另类| 亚洲欧美日韩东京热| av在线天堂中文字幕| 午夜日韩欧美国产| 中国国产av一级| 人人妻人人看人人澡| 国产精品三级大全| 看片在线看免费视频| 九色成人免费人妻av| 国产色婷婷99| 国产国拍精品亚洲av在线观看| 久久人妻av系列| 久久久久久伊人网av| 色尼玛亚洲综合影院| 国内揄拍国产精品人妻在线| 久久久久久久久久久丰满| 一区福利在线观看| 久久久久精品国产欧美久久久| 国产高清激情床上av| 成年av动漫网址| 久久精品夜夜夜夜夜久久蜜豆| 一卡2卡三卡四卡精品乱码亚洲| 深夜a级毛片| 又爽又黄无遮挡网站| 亚洲乱码一区二区免费版| 99热6这里只有精品| 久久欧美精品欧美久久欧美| 少妇人妻精品综合一区二区 | 精品一区二区三区视频在线观看免费| 好男人在线观看高清免费视频| 国产成人精品久久久久久| 久久国内精品自在自线图片| 悠悠久久av| 在线免费十八禁| 一进一出抽搐gif免费好疼| 亚洲国产精品成人久久小说 | 成年女人永久免费观看视频| 人人妻人人看人人澡| 91久久精品国产一区二区三区| 少妇的逼水好多| 成年女人永久免费观看视频| 在线播放无遮挡| 美女xxoo啪啪120秒动态图| 97超碰精品成人国产| 舔av片在线| 国产午夜精品论理片| 一级毛片久久久久久久久女| 日韩精品中文字幕看吧| 久久天躁狠狠躁夜夜2o2o| 国产精品1区2区在线观看.| 六月丁香七月| 欧美三级亚洲精品| 能在线免费观看的黄片| av在线观看视频网站免费| 美女高潮的动态| 精品人妻视频免费看| 久久久国产成人精品二区| 91av网一区二区| 色av中文字幕| 国产私拍福利视频在线观看| 国产色爽女视频免费观看| 五月玫瑰六月丁香| 精品久久久久久久人妻蜜臀av| 淫秽高清视频在线观看| 国产探花极品一区二区| 亚洲av熟女| 看十八女毛片水多多多| 久久久久国内视频| 亚洲一区二区三区色噜噜| 午夜爱爱视频在线播放| 免费看a级黄色片| 成年女人毛片免费观看观看9| 欧美日韩精品成人综合77777| 亚洲人成网站在线播| 国产精品久久久久久精品电影| 最近最新中文字幕大全电影3| 久久久久久久久久黄片| 国产av麻豆久久久久久久| 久久久精品94久久精品| 国产精品99久久久久久久久| 六月丁香七月| 亚洲一区二区三区色噜噜| 免费观看的影片在线观看| 亚洲电影在线观看av| 欧美色视频一区免费| 22中文网久久字幕| 韩国av在线不卡| 无遮挡黄片免费观看| 国产单亲对白刺激| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| 99热只有精品国产| 精品久久久久久久人妻蜜臀av| 激情 狠狠 欧美| 国产成人freesex在线 | 国产精品一区二区性色av| 亚洲人与动物交配视频| 搡老岳熟女国产| 日本三级黄在线观看| 精品一区二区免费观看| 啦啦啦韩国在线观看视频| 淫秽高清视频在线观看| 国产精品国产高清国产av| 午夜老司机福利剧场| 在线观看66精品国产| 亚洲欧美日韩卡通动漫| 国产久久久一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 男女下面进入的视频免费午夜| 国产中年淑女户外野战色| 国产精品一区二区三区四区免费观看 | 岛国在线免费视频观看| 特级一级黄色大片| 国产精品女同一区二区软件| 成人综合一区亚洲| 亚洲av成人精品一区久久| 91狼人影院| 天堂√8在线中文| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 亚洲不卡免费看| 亚洲美女黄片视频| 三级毛片av免费| 麻豆久久精品国产亚洲av| 成人漫画全彩无遮挡| 欧美潮喷喷水| АⅤ资源中文在线天堂| 国产色婷婷99| 国产精品av视频在线免费观看| 亚洲精品乱码久久久v下载方式| 久久久久久九九精品二区国产| 卡戴珊不雅视频在线播放| 看片在线看免费视频| 国产伦精品一区二区三区视频9| 三级毛片av免费| 免费观看在线日韩| 久久天躁狠狠躁夜夜2o2o| 国产探花极品一区二区| 一级毛片久久久久久久久女| 天堂网av新在线| www日本黄色视频网| 国产真实乱freesex| 久久久久国产网址| 成年女人永久免费观看视频| 国产大屁股一区二区在线视频| 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 精品一区二区三区视频在线观看免费| 乱人视频在线观看| 真实男女啪啪啪动态图| 深夜a级毛片| 久久久色成人| 欧美日本视频| 精品乱码久久久久久99久播| 欧美色欧美亚洲另类二区| 悠悠久久av| 国产黄色视频一区二区在线观看 | 亚洲人成网站在线播| 日韩中字成人| 成人亚洲精品av一区二区| 久久亚洲精品不卡| 成熟少妇高潮喷水视频| 欧美bdsm另类| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 成人亚洲精品av一区二区| 日本色播在线视频| 晚上一个人看的免费电影| 亚洲av二区三区四区| 91在线精品国自产拍蜜月| 亚洲成av人片在线播放无| 成年女人永久免费观看视频| 精品久久久久久久久久免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 伦精品一区二区三区| 听说在线观看完整版免费高清| 久久久久免费精品人妻一区二区| 精品午夜福利在线看| 亚洲av电影不卡..在线观看| 久久欧美精品欧美久久欧美| 日本欧美国产在线视频| 又黄又爽又免费观看的视频| 天堂动漫精品| 欧美成人免费av一区二区三区| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久av不卡| 尾随美女入室| 久久人人爽人人爽人人片va| 亚洲av电影不卡..在线观看| 日产精品乱码卡一卡2卡三| 99在线视频只有这里精品首页| 亚洲经典国产精华液单| 日本免费a在线| 日韩欧美在线乱码| АⅤ资源中文在线天堂| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| 美女高潮的动态| 欧美+亚洲+日韩+国产| 亚洲四区av| 亚洲精品一卡2卡三卡4卡5卡| 最近中文字幕高清免费大全6| 亚洲人成网站在线观看播放| 亚洲av成人av| 日本三级黄在线观看| 97人妻精品一区二区三区麻豆| 国产精品一二三区在线看| 成人av一区二区三区在线看| 美女cb高潮喷水在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品日韩在线中文字幕 | 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩东京热| 免费看美女性在线毛片视频| 看黄色毛片网站| 亚洲国产欧美人成| 老女人水多毛片| 精品国产三级普通话版| 国产v大片淫在线免费观看| 最好的美女福利视频网| 国产麻豆成人av免费视频| 麻豆久久精品国产亚洲av| 午夜免费激情av| av福利片在线观看| 欧美zozozo另类| 日韩,欧美,国产一区二区三区 | 在线国产一区二区在线| 亚洲国产欧美人成| 亚洲丝袜综合中文字幕| 天堂动漫精品| 天堂网av新在线| 波多野结衣高清作品| 淫妇啪啪啪对白视频| 亚洲自偷自拍三级| 亚洲在线观看片| 亚州av有码| 淫妇啪啪啪对白视频| 欧美精品国产亚洲| 国产探花在线观看一区二区| 亚洲av免费在线观看| 亚洲在线观看片| 99在线人妻在线中文字幕| 日韩大尺度精品在线看网址| 久久久久久久久久黄片| 亚洲在线自拍视频| 长腿黑丝高跟| 国产精品野战在线观看| 久久久久久久午夜电影| 亚洲人成网站在线观看播放| 日韩强制内射视频| 搡老熟女国产l中国老女人| 成年女人永久免费观看视频| 青春草视频在线免费观看| 亚洲一级一片aⅴ在线观看| 国产 一区 欧美 日韩| 一区福利在线观看| 国产精品永久免费网站| 深夜精品福利| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 久久久久精品国产欧美久久久| 久久久成人免费电影| 亚洲精品乱码久久久v下载方式| 色噜噜av男人的天堂激情| 久久草成人影院| 亚洲精品日韩在线中文字幕 | 99在线人妻在线中文字幕| 99精品在免费线老司机午夜| 菩萨蛮人人尽说江南好唐韦庄 | 成年版毛片免费区| 一个人观看的视频www高清免费观看| 国产成人精品久久久久久| 欧美色视频一区免费| 国产精品久久久久久亚洲av鲁大| 少妇熟女欧美另类| 精品人妻视频免费看|