• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Outboard Inductive Damping Valve in Hydro-pneumatic Suspension

    2011-03-09 11:57:24WANGXun王勛CHENSizhong陳思忠
    Defence Technology 2011年1期

    WANG Xun(王勛),CHEN Si-zhong(陳思忠)

    (School of Mechanical and Vehicle Engineering,Beijing Institute of Technology,Beijing 100081,China)

    Introduction

    The damping coefficient of passive suspension is designed and optimized according to the requirement of the task.Once it is determined,it can not be adjusted for various roads and working conditions.The performance of suspension can not be improved further.But,the suspension with adjustable damping can choose proper damping coefficient to keep the ride comfort and driving safety as well[1].

    The adjustable damping valve can be divided in four types,i.e.mechanical damping valve,electronic damping valve,ER & MR damping valve,piezoelectric damping valve.The inductive damping valve is one of the mechanical damping valves.It can adjust the damping to fit various road conditions and working conditions without electronic control system.It is also cheaper and reliable.

    A hydro-pneumatic suspension system consists of accumulator,damping valve and cylinder.The pressure in hydro-pneumatic suspension is transferred by oil and nitrogen.In some hydro-pneumatic suspensions,the hydro-pneumatic spring serves as elastic and damping element without any special damping element.For most of vehicle’s hydro-pneumatic suspensions,the damping force is usually small and can not meet the requirements to reduce vibration rapidly for most offroad vehicles.In addition,this kind of damping force is difficult to be controlled and easy to be affected by the vehicle’s layout.The length of pipe connecting the cylinders will change the damping characteristics of the hydro-pneumatic spring.Therefore,it is necessary to design a special damping valve for the hydro-pneumatic suspension[2].

    A new outboard inductive adjustable damping valve was designed for the hydro-pneumatic suspension of off-road vehicle.It is convenient to describe the working principle and external characteristic of this valve and analyze the dynamic characteristic of the vehicle by using the mathematical model proposed in this paper.

    1 Working Principle and Structure of Outboard Inductive Damping Valve

    The structure of the valve is shown in Fig.1.It consists of a fixed valve and a floating valve in series.The floating valve is suspended between two flexible compressing springs and can slide within a certain zone restricted by a limit block.For weak excitation from the road surface,the rebound and compressive valves in floating valve can not open because the floating valve does not reach its limit.The fluid can only pass through the fixed valve and generate the damping force.For strong excitations from the road surface,the rebound and compressive valves in floating valve open because the floating valve subjected to the fluid push reaches its limit.The damping force produced by floating valve will be added to the damping force produced by the foxed valve.Therefore,this damping valve is an inductive damping valve,which can detect the roughness of the road surface and adjust the damping automatically.

    Both fixed and floating valves have rebound valve,compressive valve and bleeding orifice,respectively.In the compression stroke,the pressure difference between both ends of damping valve is too low to open the compressive valve when the beat speed of wheel is small.At this time,the oil can only pass through the bleeding orifices and enter into the accumulator.Therefore,the damping coefficient is larger because the bleeding orifice throttle area is very small.With the increase of the pressure difference between both ends of damping valve,the compressive valve opens progressively.Thus,the damping valve’s throttle area increases gradually.The damping coefficient reduces,but the damping force increases continuously.If the pressure difference increases further,the compressive valve opens maximally,then the damping valve’s throttle area does not change.Thus,the damping coefficient increases again and the damping force grows significantly.The characteristic in rebound stroke is basically the same with the compression stroke.But,the pressure drop to open the valve is larger so that the damping force in rebound stroke is bigger than that in the compression stroke.

    Fig.1 Structure of outboard inductive damping valve

    2 Mathematical Model of Damping Valve

    In the outboard damping valve,the basic damping elements include bleeding orifices,rebound valves and compressive valves.Assume that the oil is steady,incompressible,its weight can be neglected,and the effects of exist in the leakage caused by the gap in damping valves and temperature on the oil characteristics can be ignored.In this paper,the relationship between pressure drop Δp and flow rate qvcan be obtained first,and then the damping force F= Δp·A can be found out,where A is the effective area of the cylinder piston.

    2.1 Bleeding Orifice

    The oil flow through the bleeding orifice can be expressed as

    where qvbis the flow rate through the bleeding orifice,Abthe flow area of the bleeding orifice,Δpbthe pressure drop through the bleeding orifice,ρ the density of the oil,Cdthe discharge coefficient of the bleeding orifice.

    2.2 Compressive Valve

    The mathematical model of the compressive valve is a typical non-return valve model,as shown in Fig.2,where Acis the area of the single valve bore in the compressive valve,A1is the interaction area of valve disk with valve bore,K is the stiffness of pressing spring.

    Fig.2 Sectional view of compressive valve

    The oil flow through the compression orifice can be expressed as

    where qvcis the flow rate through the orifice of compressive valve,and Δpc1the pressure difference between both ends of the compressive valve.

    Based on Bernoulli's equation and the geometric relationship between valve disk and orifice bore,the flow rate can be written as

    where Δpc2is the pressure drop at both ends of the compressive valve disk,hcthe opening height of the non-return valve disk and Fprethe preload of the nonreturn valve.

    The total pressure drop over the non-return valve can be expressed as

    2.3 Rebound Valve

    The mathematical model of the rebound valve is a‘flat,faced,flapper’model,as shown in Fig.3,where r1is the inner radius of the valve bore,r2the outer radius,Rfthe distance between the valve’s centerline to the bore’s centerline,Rgthe radius of the gasket.When the valve opens slightly,the viscous force between the valve’s disk and seat is significantly larger than the oil’s inertia force.The flow rate qvis proportional to the cubic of the opening height hoof the valve and inversely proportional to the oil’s viscosity.Assume that the valve seat and disk are all smooth and the opening height of the valve is very small.

    Fig.3 Sectional view of rebound valve

    For the oil passing through the damping valve,the continuity equation can be written as

    Its impulse equation can be expressed as

    where v is the velocity vector of the oil flow through the valve,η the dynamic viscosity of the oil,Δpdthe pressure divergence of the oil when the rebound valve opens.

    In cylinder coordinates,the velocity can be defined as

    where vr,vφ,vzare the radial,angular and axial components of velocity,respectively,when the damping valve opens.

    And,

    where pdis the pressure difference between both sides of the disk,and r the radius variable of the valve bore.

    From Eq.(6)to(8),

    For a small bore,the inertia term is much smaller than the viscosity term and can be neglected.Thus,

    Its boundary conditions are

    From these conditions,the velocity can be calculated.

    The oil flow passing through the rebound valve can be found out,

    where m is the total number of valve bores,and qvrthe total flow rate of all rebound valve bores.

    The force on the valve disk can be obtained,which consists of static and viscous forces,

    where Δpd=pd(r) - pd(r2).

    Thus,

    The equations above are only valid for small ho/(r2-r1),and in this case,the viscous force is much larger than the inertia force.For large ho/(r2-r1),the case is different[3-5],and the mathematical model will be a non-return model.Therefore,a large open of the valve has to be avoided.The next step is to obtain the relationship between the open height hoand the force F applied on the valve disk.For simple,assume that the force F is distributed linearly along radial direction.Then,

    and

    where E is the modulus of the valve disk,F(xiàn)svthe force in one of valve bores,α the angle of the valve seat and the valve disk,sjthe thickness of the jth valve disk,and ho<hmax.

    If Eq.(15)is not fulfilled,the valve remains closed,and h=0.Combined Eq.(12),(14)and(15),and neglected the second-order term,we have

    and

    If Eq.(17)is not fulfilled,the valve can not open further.If ho=hmax,the relationship between Δp and qvwill become linear,that is,

    2.4 Outboard Inductive Damping Valve

    According to the working principle of the outboard inductive damping valve and the three mathematical models above,there are six states to analyze the characteristic of the valve,i.e.,the valve closes,opens partially and opens fully in compressing process,and the valve closes,opens partially and opens fully in rebound process.Because the structure of the fixed valve is similar to that of the floating valve,the characteristics of the fixed valve are analyzed only.

    When the wheel beat and beat speed are all small in the compressing process,the oil can not flow through the floating valve,so only the bleeding orifice of the floating valve works.In this case,the damping characteristic can be expressed as

    where qvctis the total flow rate through the inductive valve,Δpcfixthe total pressure between both ends of the fixed valve,Acbthe total area of the bleeding orifices in the fixed valve,F(xiàn)cfixpthe preload of the compressive valve in the fixed valve and A1fixthe total interaction area of the valve disks with the valve bores in the fixed valve.

    When the wheel beat is still small and the beat speed increases,the oil can not flow through the floating valve.In this case,the damping characteristic can be expressed as

    where qvc1and qvc2are the flow rate through the bleeding orifices and compressive valve bores in compressing process,Δpcfix1and Δpcfix2the pressure differences between both ends of compressive bores and both sides of the compressive valve disk in the fixed valve,hcfixthe open height of the compressive valve disk,hcmaxthe max open height of the compressive valve disk,Actthe total area of the compressive valve’s bores in the fixed valve and Kcthe preload spring’s stiffness of the compressive valve in the fixed valve.

    When the wheel beat is still small,the beat speed is high enough and the valve opens fully in the compressing process,the oil can not flow through the floating valve.In this case,the damping characteristic can be expressed as

    If the wheel beat and the beat speed are quite small in the rebound process,the oil can not flow through the floating valve,thus,only the bleeding orifice of the fixed valve works.In this case,the damping characteristic can be expressed as

    where Δprfixis the total pressure difference between both ends of the fixed valve,Δprfix1and Δprfix2the pressure differences between both ends of the rebound valve bores and the rebound valve disks of the fixed valve,Artthe total area of the rebound valve bores in the fixed valve,rr1and rr2the inner and outer radii of the rebound valve bore in the fixed valve,Rrfthe distance between the centerline of the fixed valve and the centerline of fixed valve bore,Rrithe radius of the gasket in the fixed valve,αsdthe angle of the valve seat and the valve disk in the fixed valve,sithickness of the ith valve disk,mnthe number of rebound valve bores in the fixed valve.

    When the wheel beat is still small and the beat speed increases in the rebound process,the oil can not flow through the floating valve.In this case,the damping characteristic can be expressed as

    where qvr1and qvr2are the flow rate through the bleeding orifices and the rebound valve bores respectively,homaxthe maximum open height of the rebound valve disk.

    When the wheel beat is still small and the beat speed is high enough and the valve opens fully in the rebound process,the oil can not flow through the floating valve.In this case,the damping characteristic can be expressed as

    The external characteristic curves are shown in Fig.4.When the wheel beat is small,the oil can not flow through the floating valve.Only the fixed valve works,so the damping force is small.If the wheel beat is larger,the oil can flow through the floating valve.The damping force produced by the floating valve will be added to the damping force produced by the fixed valve,thus,the damping force is large.The damping force of the floating valve is designed as 50%of the damping force of the fixed valve.

    Fig.4 External characteristics of outboard inductive damping valve

    3 Comparison of Outboard Inductive Damping Valve and Common Damping Valve

    We take a new-type domestic off-road vehicle as an example.The effects of the outboard inductive valve and the common outboard valve on the vehicle comfort and ground adhesion are analyzed by using a 1/4 suspension dynamic model.The main parameters of the original suspension system with common valve are listed in Table.1.For comparison,the transition speed of the outboard inductive valve is the same with that of the common valve.The damping force of the common valve is about 120%of that of the fixed valve in the outboard inductive valve.

    Table 1 Parameters of a suspension system

    The travel zone of the floating valve is set as±15 mm.The RMS of sprung mass acceleration and tire load of the vehicle equipped with the outboard inductive valve and the common outboard valve in grade D,E and F road are shown in Fig.5 to Fig.10.When the speed of the vehicle is low,The RMS of sprung mass acceleration of the suspension equipped with the outboard inductive valve is lower than that of the suspension equipped with the common outboard valve.With the increase of the velocity,the stroke of suspension increases and the probability that the outboard inductive valve enters into hard mode increases also,so the sprung mass acceleration RMS of the suspension with the outboard inductive valve increases more than that of the common valve.When the vehicle speed is low,RMS of tire load of the suspension with the inductive valve is similar to that of the common valve.With the increase of the vehicle speed,the probability that the outboard inductive valve enters into hard mode increases gradually.Thus,the tire load RMS of the suspension the inductive valve is lower than that of the common valve.Therefore,the outboard inductive valve can improve the ride comfort at low speed,while it can improve the ground adherent at high speed.

    4 Test of Outboard Inductive Damping Valve’s External Characteristics

    The mathematical model and adjustment logic of the inductive valve can be verified by using bench test.The bench test and data processing method are based on an automobile standard—QC/T545-_1999.The external characteristics of the damping valve are measured in a test bench,as shown in Fig.11.

    Fig.5 Sprung mass acceleration vs.vehicle velocity(in grade D road)

    Fig.6 Dynamic wheel force vs.vehicle velocity(in grade D road)

    Fig.7 Sprung mass acceleration vs.vehicle velocity(in grade E road)

    Fig.8 Dynamic wheel force vs.vehicle velocity(in grade E road)

    Fig.9 Sprung mass acceleration vs.vehicle velocity(in grade F road)

    Fig.10 Dynamic wheel force vs.vehicle velocity(in grade F road)

    The installation is shown in Fig.11.The input excitation signals are a sine signal with 40 mm in amplitude and 1 Hz in frequency and a sine signal with 30 mm in amplitude and 2 Hz in frequency.The results are shown in Fig.12 and Fig.13,respectively.The damping forces are positive in rebound process and negative in compressing process.

    The damping stage is changed at-15 mm in rebound process and+15 mm in compressing process,as shown in Fig.12 and Fig.13.It shows that the designed adjustment logic is very proper and the outboard

    Fig.11 Test bench

    Fig.12 Damping force vs.displacement(1 Hz±40 mm)

    Fig.13 Damping force vs.displacement(2 Hz±30 mm)

    inductive valve can be adjusted according to the input amplitude.

    The calculated and tested results of damping force are shown in Fig.14.The maximum difference is only 8.3%.It shows that the mathematical model of the valve is quite accurate and the developed outboard inductive damping valve without any electronic control can automatically adjust the damping.

    Fig.14 Comparison of simulation and test results

    5 Conclusions

    A novel outboard inductive damping valve is designed for a hydro-pneumatic suspension,in which the damping coefficient can be adjusted without any electronic control.Its mathematical model is proposed.The comfort and tire load characteristics of the inductive damping valve and common damping valve are compared in grade D,E and F roads.The external characteristic of the inductive valve is verified by bench test.The results show that the mathematical model of the valve is quite accurate and the developed valve can improve the ride comfort at low vehicle speed and ground adherent at high vehicle speed,then it can improve the speed of the off-road vehicle.Therefore,this outboard inductive damping valve is suitable for applications in high speed off-road vehicles.

    [1]YU De-fu.Design study of smoothness-to-safety ratio in suspension shock absorber outer characteristic[J].Vehicle and Power Technology,2002,(3):30 -32.

    [2]John C D.The shock absorber handbook[M].USA:Society of Automotive Engineers,Inc,1999.

    [3]Duym S W.Simulation tools,modeling and identification,for an automotive shock absorber in the context of vehicle dynamics[J].Vehicle System Dynamics,2000,33:261-283.

    [4]LANG H H.A study of the characteristics of automotive hydraulic dampings at high stroking frequencies[D].USA:The University of Michigan,1977.

    [5]Segel L,LANG H H.The mechanics of automotive hydraulic dampings at at high stroking frequencies[J].Vehicle System Dynamics,1981,10:82 -85.

    成人永久免费在线观看视频| 大香蕉久久网| 国产乱人视频| 99热只有精品国产| 国模一区二区三区四区视频| 99久国产av精品| av专区在线播放| 你懂的网址亚洲精品在线观看 | 久久精品国产亚洲av香蕉五月| 国产高清激情床上av| 国产精品国产高清国产av| 好男人视频免费观看在线| 美女xxoo啪啪120秒动态图| 一夜夜www| 日本av手机在线免费观看| 日韩欧美精品免费久久| 久久久国产成人免费| 久久韩国三级中文字幕| 舔av片在线| 六月丁香七月| 亚洲欧美清纯卡通| 美女cb高潮喷水在线观看| 国产中年淑女户外野战色| 午夜激情福利司机影院| 亚洲国产精品成人久久小说 | 久久久久久久久久久免费av| 黄色欧美视频在线观看| 免费人成在线观看视频色| 精品国内亚洲2022精品成人| 观看免费一级毛片| 成人午夜精彩视频在线观看| 国产伦理片在线播放av一区 | 日韩制服骚丝袜av| 成人漫画全彩无遮挡| 日本欧美国产在线视频| 成人av在线播放网站| 亚洲欧美日韩高清专用| 最近的中文字幕免费完整| 桃色一区二区三区在线观看| 在线播放国产精品三级| 国产精品电影一区二区三区| 欧美激情久久久久久爽电影| 此物有八面人人有两片| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性xxxx在线观看| 成人午夜高清在线视频| 性色avwww在线观看| 人妻系列 视频| 国产探花在线观看一区二区| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久精品电影小说 | 黄色配什么色好看| 变态另类成人亚洲欧美熟女| 欧美最新免费一区二区三区| 18禁黄网站禁片免费观看直播| 国产精品无大码| 久久精品影院6| 天堂√8在线中文| 深爱激情五月婷婷| 在线免费十八禁| 亚洲四区av| 日本在线视频免费播放| 欧美最黄视频在线播放免费| 久久人妻av系列| 成人午夜精彩视频在线观看| 小说图片视频综合网站| 精品不卡国产一区二区三区| 日本免费一区二区三区高清不卡| 国产成人91sexporn| 亚洲av第一区精品v没综合| 51国产日韩欧美| 日韩大尺度精品在线看网址| 国产老妇女一区| avwww免费| 国产黄片视频在线免费观看| 麻豆乱淫一区二区| 成人欧美大片| 国产精品一区二区在线观看99 | 国产精品女同一区二区软件| 我要搜黄色片| 国产精华一区二区三区| 久久人人爽人人片av| 亚洲人成网站在线播| 精品熟女少妇av免费看| 欧美不卡视频在线免费观看| 日韩在线高清观看一区二区三区| 丝袜喷水一区| 欧美一级a爱片免费观看看| 真实男女啪啪啪动态图| av专区在线播放| 三级男女做爰猛烈吃奶摸视频| 在线观看一区二区三区| 一本久久中文字幕| 观看免费一级毛片| 男女啪啪激烈高潮av片| 一夜夜www| 国产91av在线免费观看| 亚洲av二区三区四区| 亚洲欧美成人综合另类久久久 | 国产一区亚洲一区在线观看| 亚洲成av人片在线播放无| 国产精品野战在线观看| 国产日韩欧美在线精品| 看免费成人av毛片| 在线a可以看的网站| 日韩,欧美,国产一区二区三区 | 成人欧美大片| 91狼人影院| av福利片在线观看| 国产精品一区二区三区四区久久| 99热全是精品| 九草在线视频观看| 我的女老师完整版在线观看| 能在线免费观看的黄片| 日韩国内少妇激情av| 黄片wwwwww| 毛片一级片免费看久久久久| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 嫩草影院新地址| 午夜精品国产一区二区电影 | 精品免费久久久久久久清纯| 亚洲精品乱码久久久v下载方式| 变态另类成人亚洲欧美熟女| 久久久久久国产a免费观看| 久久久久性生活片| 三级经典国产精品| 亚洲国产欧洲综合997久久,| 日韩一区二区三区影片| 国产精品国产高清国产av| 日韩欧美一区二区三区在线观看| 97热精品久久久久久| 国产大屁股一区二区在线视频| 亚洲一区二区三区色噜噜| 国产成人福利小说| 色视频www国产| 少妇熟女aⅴ在线视频| 久久这里只有精品中国| 国产人妻一区二区三区在| 国产精品人妻久久久久久| 国产真实伦视频高清在线观看| 久久6这里有精品| 色尼玛亚洲综合影院| 天堂中文最新版在线下载 | 亚洲美女搞黄在线观看| 99久久久亚洲精品蜜臀av| 淫秽高清视频在线观看| 久久久久久久久久久丰满| 亚洲中文字幕日韩| 偷拍熟女少妇极品色| 成熟少妇高潮喷水视频| 身体一侧抽搐| 亚洲av第一区精品v没综合| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕日韩| 九九热线精品视视频播放| 国产69精品久久久久777片| 婷婷亚洲欧美| 国产一区二区在线av高清观看| 麻豆乱淫一区二区| 国产老妇女一区| 男女边吃奶边做爰视频| 国产精品久久电影中文字幕| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 国产精品蜜桃在线观看 | 99九九线精品视频在线观看视频| 亚洲天堂国产精品一区在线| 免费看a级黄色片| 69av精品久久久久久| 国产在线精品亚洲第一网站| 国产av在哪里看| 亚洲无线在线观看| 成人性生交大片免费视频hd| 亚洲精品456在线播放app| 国产日韩欧美在线精品| 国语自产精品视频在线第100页| 国产av在哪里看| 欧美性猛交黑人性爽| 高清毛片免费观看视频网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩高清专用| 男人的好看免费观看在线视频| av女优亚洲男人天堂| 成人鲁丝片一二三区免费| 赤兔流量卡办理| 在线观看av片永久免费下载| 亚洲高清免费不卡视频| 少妇的逼水好多| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 一个人看的www免费观看视频| 亚洲国产欧美在线一区| 亚洲欧美精品综合久久99| av.在线天堂| 狂野欧美激情性xxxx在线观看| 中文字幕免费在线视频6| 国产一级毛片七仙女欲春2| 狂野欧美激情性xxxx在线观看| 亚洲久久久久久中文字幕| 国产一级毛片七仙女欲春2| 一级二级三级毛片免费看| 亚洲图色成人| 最好的美女福利视频网| 亚洲精品国产av成人精品| 少妇的逼水好多| 久久精品夜夜夜夜夜久久蜜豆| 国产淫片久久久久久久久| 欧美+日韩+精品| 亚洲av.av天堂| 少妇人妻精品综合一区二区 | 日韩强制内射视频| 亚洲在线自拍视频| 国产高清激情床上av| 乱系列少妇在线播放| 不卡视频在线观看欧美| 亚洲国产欧美在线一区| 亚洲不卡免费看| 男的添女的下面高潮视频| 成人午夜高清在线视频| 国产色婷婷99| 国产精品av视频在线免费观看| 成人av在线播放网站| 看免费成人av毛片| 精品久久国产蜜桃| 99热这里只有精品一区| 日产精品乱码卡一卡2卡三| 欧美成人a在线观看| 可以在线观看毛片的网站| 精华霜和精华液先用哪个| 日本欧美国产在线视频| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 成年免费大片在线观看| 夜夜看夜夜爽夜夜摸| 18禁在线播放成人免费| 日韩视频在线欧美| 国产一区二区在线观看日韩| 国产日本99.免费观看| 日本成人三级电影网站| 日韩成人av中文字幕在线观看| av在线老鸭窝| 色噜噜av男人的天堂激情| 久99久视频精品免费| 黄色一级大片看看| 中国国产av一级| 国产亚洲av片在线观看秒播厂 | 亚洲三级黄色毛片| 美女国产视频在线观看| 中文字幕制服av| 天天躁夜夜躁狠狠久久av| 国产成人a∨麻豆精品| 91精品一卡2卡3卡4卡| 日韩欧美三级三区| 男人狂女人下面高潮的视频| 国产av在哪里看| 在现免费观看毛片| 黄色日韩在线| 国产精品女同一区二区软件| 中文字幕av在线有码专区| 国产精品,欧美在线| 国产一级毛片在线| 久久99精品国语久久久| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 最近中文字幕高清免费大全6| 成人欧美大片| АⅤ资源中文在线天堂| 国产日韩欧美在线精品| 久久精品夜夜夜夜夜久久蜜豆| 日韩一区二区三区影片| 亚洲精品自拍成人| 久99久视频精品免费| 熟女电影av网| 能在线免费看毛片的网站| 国产精品99久久久久久久久| 亚洲国产欧美人成| 真实男女啪啪啪动态图| av免费在线看不卡| 国国产精品蜜臀av免费| 免费黄网站久久成人精品| 午夜福利在线在线| 非洲黑人性xxxx精品又粗又长| 亚洲最大成人中文| 色吧在线观看| 欧美日韩精品成人综合77777| 亚洲性久久影院| 日本-黄色视频高清免费观看| 亚洲自偷自拍三级| 男人的好看免费观看在线视频| 欧美日韩国产亚洲二区| 国产精品一区二区三区四区久久| 成人鲁丝片一二三区免费| 亚洲最大成人中文| 国产不卡一卡二| av在线播放精品| 又爽又黄无遮挡网站| 欧美激情久久久久久爽电影| 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| 国语自产精品视频在线第100页| 久久精品久久久久久噜噜老黄 | 久久久久久大精品| 中文字幕精品亚洲无线码一区| 亚洲性久久影院| 久久精品夜夜夜夜夜久久蜜豆| 18禁在线无遮挡免费观看视频| 亚洲三级黄色毛片| 99热只有精品国产| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 亚洲成a人片在线一区二区| 久久久久国产网址| 中文字幕熟女人妻在线| 中文在线观看免费www的网站| 国产极品天堂在线| 超碰av人人做人人爽久久| 一本精品99久久精品77| 日韩制服骚丝袜av| 精品久久久久久久久久久久久| 成人毛片60女人毛片免费| 日本一二三区视频观看| 国产精品一区二区在线观看99 | 国产精品人妻久久久久久| 又粗又硬又长又爽又黄的视频 | 人体艺术视频欧美日本| 国产一区二区亚洲精品在线观看| av专区在线播放| 国产成年人精品一区二区| 欧美3d第一页| 欧美日本亚洲视频在线播放| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线 | 国模一区二区三区四区视频| 天天躁日日操中文字幕| 欧美色欧美亚洲另类二区| 中文资源天堂在线| 国产精品国产高清国产av| 国产精品1区2区在线观看.| 18禁黄网站禁片免费观看直播| 欧美性猛交黑人性爽| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品大字幕| 免费无遮挡裸体视频| 国产一区二区三区av在线 | 色尼玛亚洲综合影院| 熟妇人妻久久中文字幕3abv| av专区在线播放| 三级男女做爰猛烈吃奶摸视频| 久久欧美精品欧美久久欧美| 97人妻精品一区二区三区麻豆| 日韩制服骚丝袜av| 亚洲精品久久国产高清桃花| 国内精品久久久久精免费| 日本成人三级电影网站| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人av中文字幕在线观看| 国产精品一区www在线观看| 国产v大片淫在线免费观看| 成人亚洲欧美一区二区av| 热99在线观看视频| 精品99又大又爽又粗少妇毛片| 精品人妻偷拍中文字幕| 人妻系列 视频| 夜夜看夜夜爽夜夜摸| 亚洲欧美清纯卡通| 日韩成人伦理影院| 日本爱情动作片www.在线观看| 内射极品少妇av片p| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美精品自产自拍| 青青草视频在线视频观看| 免费av观看视频| 国产成人91sexporn| 国产在视频线在精品| 日本色播在线视频| 亚洲欧美精品综合久久99| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品国产av成人精品| 亚洲第一电影网av| 欧美区成人在线视频| 精品免费久久久久久久清纯| www.av在线官网国产| 国产成年人精品一区二区| 午夜精品一区二区三区免费看| 免费不卡的大黄色大毛片视频在线观看 | 久久精品91蜜桃| 九九热线精品视视频播放| 日韩在线高清观看一区二区三区| 美女xxoo啪啪120秒动态图| 国产伦一二天堂av在线观看| 欧美激情在线99| 亚洲av二区三区四区| 97热精品久久久久久| 全区人妻精品视频| 中国美女看黄片| 一级黄色大片毛片| 春色校园在线视频观看| 亚洲色图av天堂| 欧美成人a在线观看| 人人妻人人澡人人爽人人夜夜 | 天堂av国产一区二区熟女人妻| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 伊人久久精品亚洲午夜| 亚洲av熟女| 老熟妇乱子伦视频在线观看| 黄色一级大片看看| 国产精品久久久久久av不卡| 国产成人一区二区在线| 国产成人a∨麻豆精品| 欧美区成人在线视频| 日韩三级伦理在线观看| 午夜视频国产福利| 91av网一区二区| 亚洲国产色片| 国产三级在线视频| 人妻少妇偷人精品九色| av天堂在线播放| 久久人人爽人人片av| av在线蜜桃| 狂野欧美白嫩少妇大欣赏| 三级经典国产精品| 春色校园在线视频观看| 91久久精品电影网| 国模一区二区三区四区视频| 国内精品美女久久久久久| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 国模一区二区三区四区视频| 少妇高潮的动态图| 亚洲av免费高清在线观看| 三级国产精品欧美在线观看| 久久九九热精品免费| 亚洲中文字幕一区二区三区有码在线看| 最近中文字幕高清免费大全6| 亚洲经典国产精华液单| 成人午夜高清在线视频| 变态另类成人亚洲欧美熟女| 久久久色成人| 亚洲国产高清在线一区二区三| 成人av在线播放网站| 成人高潮视频无遮挡免费网站| 国产一区二区三区在线臀色熟女| 在线播放国产精品三级| 亚洲成人中文字幕在线播放| 亚洲不卡免费看| 日韩三级伦理在线观看| 国产精品野战在线观看| 中文精品一卡2卡3卡4更新| 免费一级毛片在线播放高清视频| 欧美日韩在线观看h| 欧美高清性xxxxhd video| 91麻豆精品激情在线观看国产| 欧美3d第一页| 亚洲av.av天堂| 成人欧美大片| 亚洲18禁久久av| 国产精品人妻久久久久久| 变态另类丝袜制服| kizo精华| 色播亚洲综合网| 日韩大尺度精品在线看网址| a级毛片免费高清观看在线播放| 久久精品国产亚洲av涩爱 | 可以在线观看毛片的网站| 成人三级黄色视频| 99热这里只有是精品在线观看| 男人舔女人下体高潮全视频| 成人鲁丝片一二三区免费| 久久婷婷人人爽人人干人人爱| 国产乱人偷精品视频| 国产蜜桃级精品一区二区三区| 免费观看精品视频网站| 亚洲国产欧美在线一区| 伦精品一区二区三区| 久久午夜福利片| 少妇熟女aⅴ在线视频| 亚洲精品国产av成人精品| 一进一出抽搐gif免费好疼| 一区二区三区免费毛片| 三级经典国产精品| 九九久久精品国产亚洲av麻豆| 女人被狂操c到高潮| av.在线天堂| 日韩欧美精品免费久久| 免费av观看视频| 国产精品国产三级国产av玫瑰| 亚洲一区高清亚洲精品| 亚洲成人精品中文字幕电影| 国产成人a∨麻豆精品| 一个人看视频在线观看www免费| 国产av在哪里看| 麻豆成人午夜福利视频| 麻豆成人av视频| 天堂√8在线中文| 亚洲成a人片在线一区二区| 此物有八面人人有两片| 国产精品久久久久久av不卡| 国内精品一区二区在线观看| 看非洲黑人一级黄片| 午夜精品国产一区二区电影 | 精品久久久久久久久久免费视频| 亚洲欧美精品专区久久| 久久久久性生活片| 在线a可以看的网站| 午夜老司机福利剧场| 一个人看的www免费观看视频| 天天躁日日操中文字幕| 大型黄色视频在线免费观看| 男插女下体视频免费在线播放| 一级黄色大片毛片| 免费在线观看成人毛片| 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产精品合色在线| a级毛片a级免费在线| 久久精品国产亚洲av天美| 少妇被粗大猛烈的视频| 日韩亚洲欧美综合| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| 久久鲁丝午夜福利片| 国产精品人妻久久久影院| 丝袜喷水一区| 在线免费观看的www视频| 亚洲最大成人手机在线| 久久久精品大字幕| 久久精品夜夜夜夜夜久久蜜豆| 校园春色视频在线观看| 男人舔奶头视频| 欧美xxxx性猛交bbbb| 久久久久免费精品人妻一区二区| a级毛片免费高清观看在线播放| 老师上课跳d突然被开到最大视频| 91久久精品国产一区二区三区| 国产精品一区二区在线观看99 | 午夜福利在线观看免费完整高清在 | 国内精品久久久久精免费| 一级毛片久久久久久久久女| 日韩欧美在线乱码| 欧美xxxx黑人xx丫x性爽| 日韩一本色道免费dvd| 欧美xxxx性猛交bbbb| 菩萨蛮人人尽说江南好唐韦庄 | 欧美色视频一区免费| 人妻夜夜爽99麻豆av| 成熟少妇高潮喷水视频| 国产一区二区亚洲精品在线观看| 日韩欧美在线乱码| 最近手机中文字幕大全| 国产真实伦视频高清在线观看| 欧美成人免费av一区二区三区| 国产成人福利小说| 人人妻人人澡人人爽人人夜夜 | 亚洲自拍偷在线| 天堂网av新在线| 亚洲欧美日韩卡通动漫| 久久这里有精品视频免费| 日韩av在线大香蕉| 日韩精品青青久久久久久| 女的被弄到高潮叫床怎么办| 国产精品av视频在线免费观看| 国产午夜精品一二区理论片| 白带黄色成豆腐渣| 亚洲最大成人av| 深夜a级毛片| 最近最新中文字幕大全电影3| 亚洲av成人av| 国语自产精品视频在线第100页| 在线免费观看不下载黄p国产| 99久久中文字幕三级久久日本| 搞女人的毛片| 亚洲国产精品成人久久小说 | 在线免费观看不下载黄p国产| av免费在线看不卡| 国产成人freesex在线| 国产人妻一区二区三区在| 菩萨蛮人人尽说江南好唐韦庄 | 在线a可以看的网站| 日本黄色片子视频| 国产av不卡久久| 伦理电影大哥的女人| 午夜激情欧美在线| 免费不卡的大黄色大毛片视频在线观看 | 最近2019中文字幕mv第一页| 亚洲av男天堂| 国产成人freesex在线| 一进一出抽搐动态| 丰满的人妻完整版| 亚洲在久久综合| 麻豆成人午夜福利视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产高清在线一区二区三| 晚上一个人看的免费电影| 久久久精品94久久精品| 你懂的网址亚洲精品在线观看 | 网址你懂的国产日韩在线| 中文字幕精品亚洲无线码一区| 97超视频在线观看视频| 色综合色国产| 99热全是精品| 亚洲熟妇中文字幕五十中出| 少妇高潮的动态图| 夜夜夜夜夜久久久久| 变态另类丝袜制服| 精品不卡国产一区二区三区| 日韩一区二区三区影片| 深夜精品福利| 人人妻人人澡人人爽人人夜夜 | 91久久精品电影网| 韩国av在线不卡| 久久亚洲精品不卡| 国产 一区 欧美 日韩|