陽波,段吉安
(1. 中南大學(xué) 機(jī)電工程學(xué)院,湖南 長(zhǎng)沙,410083;2. 湖南師范大學(xué) 圖像識(shí)別與計(jì)算機(jī)視覺研究所,湖南 長(zhǎng)沙,410081)
光電子封裝超精密運(yùn)動(dòng)平臺(tái)末端姿態(tài)調(diào)整
陽波1,2,段吉安1
(1. 中南大學(xué) 機(jī)電工程學(xué)院,湖南 長(zhǎng)沙,410083;2. 湖南師范大學(xué) 圖像識(shí)別與計(jì)算機(jī)視覺研究所,湖南 長(zhǎng)沙,410081)
針對(duì)光電子封裝中超精密平臺(tái)運(yùn)動(dòng)控制困難,末端坐標(biāo)系與各軸運(yùn)動(dòng)關(guān)系復(fù)雜等問題,對(duì)串聯(lián)機(jī)構(gòu)的幾何結(jié)構(gòu)以及單自由度運(yùn)動(dòng)軸與末端姿態(tài)變換的關(guān)系進(jìn)行研究。其步驟是:首先,基于串聯(lián)機(jī)構(gòu)的D?H方程,分析運(yùn)動(dòng)軸與其位姿的坐標(biāo)變換并建立各運(yùn)動(dòng)軸和末端陣列光纖的位姿運(yùn)動(dòng)方程;然后,以末端點(diǎn)為原點(diǎn),由位姿運(yùn)動(dòng)方程導(dǎo)出保持末端點(diǎn)不動(dòng)的軸運(yùn)動(dòng)約束方程;最后,由約束方程導(dǎo)出旋轉(zhuǎn)軸運(yùn)動(dòng)條件下移動(dòng)軸的運(yùn)動(dòng)補(bǔ)償方程。研究結(jié)果表明:在微小行程下,通過旋轉(zhuǎn)軸行程的均勻細(xì)分和移動(dòng)軸的運(yùn)動(dòng)補(bǔ)償,末端原點(diǎn)的運(yùn)動(dòng)范圍大大減少,減少的比例與細(xì)分系數(shù)近似呈正比。
波導(dǎo)器件封裝;超精密運(yùn)動(dòng);坐標(biāo)變換;姿態(tài)調(diào)整;原點(diǎn)約束
6-DOF(Degree of freedom )超精密串聯(lián)機(jī)構(gòu)作為光電子封裝的關(guān)鍵設(shè)備主要用于調(diào)整各芯片的位置與姿態(tài),實(shí)現(xiàn)多個(gè)模場(chǎng)之間的高精度耦合。目前,陣列波導(dǎo)器件封裝的單通道功率損耗低于0.3 dB,波導(dǎo)與陣列光纖的橫向?qū)?zhǔn)誤差低于1 μm,角度偏差小于0.5°,下一代陣列波導(dǎo)器件要求功率損耗低于0.15 dB,橫向?qū)?zhǔn)誤差低于0.5 μm[1?4]。芯片位置與姿態(tài)的高精度調(diào)整成為制約波導(dǎo)器件光學(xué)性能的關(guān)鍵技術(shù)之一。串聯(lián)機(jī)構(gòu)因?yàn)榻Y(jié)構(gòu)簡(jiǎn)單、單軸運(yùn)動(dòng)的精度容易實(shí)現(xiàn)以及負(fù)載小等,成為芯片姿態(tài)調(diào)整的主要工具,被廣泛地應(yīng)用于光電子封裝加工過程[5?12]。關(guān)于串聯(lián)機(jī)構(gòu)的運(yùn)動(dòng),Denavit和Hartenberg[9]根據(jù)空間幾何關(guān)系建立了D?H方程。D?H方程不但精確描述了起始坐標(biāo)和終點(diǎn)坐標(biāo)的運(yùn)動(dòng)關(guān)系,而且正向求解速度快。目前,關(guān)于光電子超精度封裝平臺(tái)的研究主要集中在單自由度機(jī)構(gòu)的結(jié)構(gòu)、驅(qū)動(dòng)控制的精度等問題上。Jeong等[5]利用高精度壓電陶瓷柔性平臺(tái)優(yōu)化封裝動(dòng)平臺(tái)的運(yùn)動(dòng)精度,單自由度的運(yùn)動(dòng)精度達(dá)到10 nm。林德教等[6]利用激光干涉反饋設(shè)計(jì)柔性鉸鏈精密平臺(tái),具有納米級(jí)分辨率。雖然國內(nèi)外學(xué)者對(duì)串聯(lián)機(jī)構(gòu)進(jìn)行了大量的研究和優(yōu)化,但以末端點(diǎn)作為參考坐標(biāo)系對(duì)串聯(lián)機(jī)構(gòu)各軸運(yùn)動(dòng)關(guān)系的研究很少。當(dāng)給定調(diào)整運(yùn)動(dòng)要求后,希望能保持末端坐標(biāo)系原點(diǎn)不動(dòng),這樣不但可以縮小末端坐標(biāo)系的運(yùn)動(dòng)范圍,減少芯片間碰撞的可能性,而且可以簡(jiǎn)化對(duì)準(zhǔn)過程,加快對(duì)準(zhǔn)的速度。在此,本文作者通過分析精密運(yùn)動(dòng)平臺(tái)與波導(dǎo)芯片裝配平臺(tái)的坐標(biāo)變換,在此基礎(chǔ)上推導(dǎo)出運(yùn)動(dòng)平臺(tái)、陣列光纖與波導(dǎo)芯片之間的運(yùn)動(dòng)關(guān)系,并提出保持末端坐標(biāo)原點(diǎn)不動(dòng)的軸約束方程?;诖思s束方程,在旋轉(zhuǎn)角度充分細(xì)分的情況下,可以把末端坐標(biāo)原點(diǎn)限定在指定的范圍,以實(shí)現(xiàn)狹小空間的靈活姿態(tài)調(diào)整。
剛體在三維歐氏空間中的位姿調(diào)整包括位置與姿態(tài)的調(diào)整[5,13?15]。為了實(shí)現(xiàn)剛體的位姿調(diào)整,運(yùn)動(dòng)平臺(tái)通常由3個(gè)亞微米精度的移動(dòng)軸和3個(gè)轉(zhuǎn)動(dòng)軸采用串聯(lián)疊加的方式復(fù)合而成,如圖1所示。圖1(a)所示姿態(tài)不考慮裝配誤差,3個(gè)平移軸兩兩正交。圖1(b)所示分別定義x,y和z3個(gè)方向,在x方向軸上依次串聯(lián)3個(gè)與x,y和z平行的旋轉(zhuǎn)軸,按照平移軸的方法分別定義為δx,δy和δz。在平移軸上內(nèi)置光柵尺并采用閉環(huán)控制,平移重復(fù)精度達(dá)到0.1 μm,而在δx,δy和δz轉(zhuǎn)動(dòng)軸上實(shí)現(xiàn)重復(fù)精度20 μrad(即0.001°)。
理想的運(yùn)動(dòng)軸中任意2個(gè)軸之間的運(yùn)動(dòng)是正交的,但疊加復(fù)合平臺(tái)的各運(yùn)動(dòng)軸之間因?yàn)檫\(yùn)動(dòng)只有相鄰兩軸之間相互正交,因此,有必要研究運(yùn)動(dòng)平臺(tái)各軸與歐氏空間坐標(biāo)軸之間的關(guān)系。
為了便于安裝陣列光纖,通常在運(yùn)動(dòng)平臺(tái)的最后一級(jí)運(yùn)動(dòng)機(jī)構(gòu)(z軸)上安裝1個(gè)裝配夾具,裝配夾具與z軸運(yùn)動(dòng)機(jī)構(gòu)保持水平,陣列光纖固定在裝配夾具上。波導(dǎo)芯片非常脆弱,采用真空吸附的方式固定在中間的裝配架上,它們的位置關(guān)系如圖2所示。通過精度運(yùn)動(dòng)平臺(tái)的6-DOF運(yùn)動(dòng),實(shí)現(xiàn)陣列光纖與波導(dǎo)芯片纖芯的高精度對(duì)準(zhǔn),最終實(shí)現(xiàn)纖芯之間高質(zhì)量的模場(chǎng)耦合。
圖1 亞微米精度運(yùn)動(dòng)平臺(tái)與空間姿態(tài)描述Fig.1 Submicron accuracy motion platform and spatial attitude description
圖2 波導(dǎo)芯片與陣列光纖對(duì)準(zhǔn)Fig.2 Schematic diagram of alignment between waveguide chip and fiber array
剛體的位姿在三維歐氏空間中可以由六維列矢量D=[dx, dy, dz, δx, δy, δz]T描述。為了得到簡(jiǎn)約的表達(dá)式,通常也把矢量D分解為2個(gè)矢量d和δ,記作:
其中:d描述平移運(yùn)動(dòng);δ描述轉(zhuǎn)動(dòng)運(yùn)動(dòng)。
根據(jù)機(jī)構(gòu)運(yùn)動(dòng)學(xué)的Denavit?Hartenberg方法[13?14],有:
第i個(gè)坐標(biāo)系相對(duì)于第i?1個(gè)坐標(biāo)系,有和θi有關(guān)。其中:αi-1為確定的常數(shù);θi存在以下2種情況。
(1) 平移副。θi是常數(shù),因此,Ri與運(yùn)動(dòng)副的運(yùn)動(dòng)無關(guān),即平移副不能改變坐標(biāo)系的姿態(tài),但第i個(gè)坐標(biāo)系的原點(diǎn)相對(duì)于第i?1個(gè)坐標(biāo)系,有:
(2) 旋轉(zhuǎn)副。iθ是運(yùn)動(dòng)參數(shù),Ri是關(guān)于運(yùn)動(dòng)參數(shù)的矩陣函數(shù)。
機(jī)構(gòu)6相對(duì)于初始參考坐標(biāo)T0的坐標(biāo)變換,則有:
其中:表示夾具坐標(biāo)系相對(duì)于基坐標(biāo)系的姿態(tài)矩陣;表示夾具坐標(biāo)系的原點(diǎn)在基坐標(biāo)系的位置。波導(dǎo)芯片的纖芯端面作為目標(biāo)坐標(biāo)系G,相對(duì)于基坐標(biāo)系的坐標(biāo)變換用表示。運(yùn)動(dòng)的最終目標(biāo)實(shí)現(xiàn):
由于目標(biāo)位置G相對(duì)于基坐標(biāo)B的坐標(biāo)可以認(rèn)為是運(yùn)動(dòng)的位姿目標(biāo),因此,是確定的,有:
定理1由理想單自由度運(yùn)動(dòng)機(jī)構(gòu)串聯(lián)疊加的運(yùn)動(dòng)平臺(tái)的姿態(tài)變化只與旋轉(zhuǎn)機(jī)構(gòu)有關(guān),與平移機(jī)構(gòu)無關(guān)。
證明:對(duì)于n個(gè)包含旋轉(zhuǎn)副和移動(dòng)副的串聯(lián)單自由度運(yùn)動(dòng)副,利用D?H方法總可以寫成式(1)和(2)。對(duì)于第i個(gè)坐標(biāo)系,其相對(duì)于上一坐標(biāo)系的姿態(tài)矩陣,第n個(gè)坐標(biāo)系相對(duì)于參考坐標(biāo)系的姿態(tài)方程。顯然,Ri只與αi-1和iθ有關(guān),其中αi-1是常數(shù)。當(dāng)運(yùn)動(dòng)副是移動(dòng)副時(shí),θi也是常數(shù),Ri是1個(gè)非奇異矩陣;當(dāng)運(yùn)動(dòng)副是旋轉(zhuǎn)副時(shí),θi是1個(gè)運(yùn)動(dòng)參數(shù)。因此,0Rn是1個(gè)僅與旋轉(zhuǎn)副相關(guān)的量,可見,姿態(tài)調(diào)整只與旋轉(zhuǎn)副有關(guān),與平移副無關(guān),證畢。
由式(3),(5)和(6)可以得到末端坐標(biāo)系相對(duì)于原點(diǎn)坐標(biāo)的坐標(biāo)變換:
保存末端坐標(biāo)系原點(diǎn)不動(dòng),則有
末端坐標(biāo)系原點(diǎn)保存不動(dòng)的充要條件是:
稱上式為末端原點(diǎn)不動(dòng)的軸運(yùn)動(dòng)約束方程??紤]2個(gè)不同的旋轉(zhuǎn)運(yùn)動(dòng)δ1=[δx1, δy1, δz1]T和δ2=[δx2, δy2, δz2]T,其可以采用式(4)的D?H方程描述,即有
對(duì)于給定的運(yùn)動(dòng)參數(shù)和配置系數(shù),式(15)是個(gè)確定的值,因此,有:
稱式(17)為旋轉(zhuǎn)運(yùn)動(dòng)條件下,移動(dòng)軸的運(yùn)動(dòng)補(bǔ)償方程。
對(duì)于給定的串聯(lián)復(fù)合機(jī)構(gòu),給定它的D?H參數(shù),便可以得到終端的位姿坐標(biāo)矩陣,采用式(6)和(10)表示。設(shè)D?H相鄰兩軸相互垂直,軸間的距離為10 mm,起始坐標(biāo)的原點(diǎn)與第1個(gè)運(yùn)動(dòng)副坐標(biāo)原點(diǎn)重合(BP0=[0,0,0]T)。終端坐標(biāo)設(shè)置在最后1個(gè)D?H方程的運(yùn)動(dòng)軸線上(為了簡(jiǎn)化計(jì)算),根據(jù)式(10)可以建立終端坐標(biāo)系與參考坐標(biāo)系的對(duì)應(yīng)矩陣。
任意選擇一旋轉(zhuǎn)副,不妨取δy,給定初始值δx=0.102 rad,δy=0.020 rad,δz=0 rad,當(dāng)δy以0.4 mrad/s的速度勻速運(yùn)動(dòng)到?0.020 rad時(shí),得到末端坐標(biāo)的運(yùn)動(dòng)軌跡,如圖3所示。相對(duì)于參考坐標(biāo)系,x,y和z方向上的偏移分別為?2 399.8,?40.7和397.9 μm。
末端原點(diǎn)軌跡運(yùn)動(dòng)范圍非常大,為了限定末端的運(yùn)動(dòng)范圍,根據(jù)末端坐標(biāo)系原點(diǎn)不動(dòng)的充要條件,把δy勻速運(yùn)動(dòng)均勻細(xì)分成10步。每步運(yùn)行完成后,采用式(17)調(diào)整原點(diǎn)位置,調(diào)整偏移量如表1所示。
表1 原點(diǎn)不動(dòng)約束時(shí)3個(gè)平移軸調(diào)整偏移量Table 1 Adjustment of 3-axis offsets under condition that terminal origin point was fixed μm
圖3 旋轉(zhuǎn)運(yùn)動(dòng)時(shí)末端坐標(biāo)原點(diǎn)O在3個(gè)坐標(biāo)軸上的投影量Fig.3 Projections of terminal coordinate origin on three basic axes when rotating
從表1可見:δy方向的運(yùn)動(dòng)被均勻細(xì)化為原來的1/10;末端原點(diǎn)在各個(gè)方向軸上的位移也近似為原來的1/10;減少的比例與細(xì)分系數(shù)近似呈正比。
(1) D?H位姿運(yùn)動(dòng)方程描述了串聯(lián)超精密平臺(tái)各運(yùn)動(dòng)軸與末端位姿的幾何關(guān)系。當(dāng)單自由度機(jī)構(gòu)為理想機(jī)構(gòu)時(shí),終端坐標(biāo)系的位姿完全可以確定,且終端的姿態(tài)只與旋轉(zhuǎn)副有關(guān),與平移副無關(guān)。
(2) 末端點(diǎn)不動(dòng)的軸運(yùn)動(dòng)約束方程描述了末端點(diǎn)空間位置不動(dòng)時(shí)各軸運(yùn)動(dòng)的關(guān)系。當(dāng)各運(yùn)動(dòng)副滿足約束方程時(shí),則末端點(diǎn)將保持空間位置不動(dòng),即軸運(yùn)動(dòng)約束方程相當(dāng)于在末端原點(diǎn)建立了一個(gè)原點(diǎn)靜止的坐標(biāo)系統(tǒng)。但通常各軸的運(yùn)動(dòng)精度有限,多軸的聯(lián)動(dòng)控制非常復(fù)雜,因此,末端原點(diǎn)靜止的坐標(biāo)系只是理想狀態(tài)。
(3) 由軸運(yùn)動(dòng)約束方程可導(dǎo)出旋轉(zhuǎn)軸運(yùn)動(dòng)條件下平移軸的運(yùn)動(dòng)補(bǔ)償方程。通過均勻細(xì)分旋轉(zhuǎn)軸的運(yùn)動(dòng)行程,同時(shí)進(jìn)行平移軸的運(yùn)動(dòng)補(bǔ)償,末端點(diǎn)的運(yùn)動(dòng)范圍將大大減少,在微小行程下,減少的比例與細(xì)分系數(shù)近似呈正比。
[1] ZHANG Rong. Study of novel algorithms for fiber-optic alignment and packaging automation[D]. Irvine: University of California, 2003: 20?56.
[2] Murakawa M, Nosato H, Higuchi T. Automatic optical fiber alignment system using genetic algorithms[C]//The 6th International Conference on Artificial Evolution. Marseilles, 2003: 129?140.
[3] 劉洪舉, 劉大偉. 集成光學(xué)條波導(dǎo)陣列與單模光纖陣列的聯(lián)結(jié)[J]. 光子學(xué)報(bào), 1997, 26(7): 1313?1317.
LIU Hong-ju, LIU Da-wei. Design considerations for the connector of integrated optical strip waveguides to single mode arrays[J]. Acta Photonica Sinica, 1997, 26(7): 1313?1317.
[4] 帥詞俊, 段吉安, 王炯, 等. 光纖耦合器熔融拉錐粘彈性建模與分析[J]. 中南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2006, 37(1): 79?83.
SHUAI Ci-jun, DUAN Ji-an, WANC Jiong, et al. Viscoelastic modeling and analysis of optical fibre in process of fused biconical taper[J]. Journal of Central South University: Science and Technology, 2006, 37(1): 79?83.
[5] Jeong S H, Kim G H, Cha K R. A study on optical device alignment system using ultra precision multi-axis stage[J]. Journal of Materials Processing Technology, 2007, 65: 187?188.
[6] 林德教, 吳健, 殷純永. 具有納米級(jí)分辨率的超精密定位工作臺(tái)[J]. 光學(xué)技術(shù), 2001, 27(6): 556?559.
LIN De-jiao, WU Jian, YIN Chun-yong. Super-precision positioning stage with nanometer resolution[J]. Optical Technique, 2001, 27(6): 556?559.
[7] 沙慧軍, 陳抱雪. 光波導(dǎo)?光纖耦合對(duì)接自動(dòng)化系統(tǒng)的研究[J].光子學(xué)報(bào), 2005, 34(12): 1773?1777.
SHA Hui-jun, CHEN Bao-xue. Research of fiber-waveguide automatic alignment system[J]. Acta Photonic Sinica, 2005, 34(12): 1773?1777.
[8] ZHANG Zhi-yi, LIU Jia-ren, ZHAO Ping, et al. Active alignment of optical fibers to planar waveguides using a thermal-curing adhesive[J]. Journal of Lightwave Technology, 2005, 23(2): 567?570.
[9] Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1995, 21(5): 215?221.
[10] LING Yin, Huang H, Chen W K, et al. Polishing of fiber optic connectors[J]. International Journal of Machine Tools and Manufacture, 2004, 44(6): 659?668.
[11] Main J A, Garcia E. Piezoelectric stack actuators and control system design: Strategies and pitfalls[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 479?485.
[12] 宋金聲. 我國光無源器件的技術(shù)進(jìn)展和發(fā)展趨勢(shì)[J]. 世界寬帶網(wǎng)絡(luò), 2002, 9(11): 16?18.
SONG Jin-sheng. Technological advance and developmental trend of passive devices in China[J]. Broad Band Web in the World, 2002, 9(11): 16?18.
[13] Hsieh C H, Wu T L, Cheng W H. An optimum approach for fabrication of low loss fused fiber couplers[J]. Materials Chemistry and Physics, 2001, 69(7): 199?203.
[14] 劉景琳, 段吉安, 苗健宇, 等. 熔融拉錐型光纖耦合器實(shí)驗(yàn)研究[J]. 中南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2006, 37(1): 103?107.
LIU Jing-lin, DUAN Ji-an, MIAO Jian-yu, et al. Experimental study on fused tapered optical fibre coupler[J]. Journal of Central South University: Science and Technology, 2006, 37(1): 103?107.
[15] Han D, Lin H L, Lun X Y. Computer-aided off-line planning of robot motion[J]. Robotics and Autonomous System, 1991, 7(1): 67?72.
(編輯 陳燦華)
Opto-electronics packaging platform for ultra-precision position and attitude adjustment
YANG Bo1,2, DUAN Ji-an2
(1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; 2. Institute of Image Recognition and Computer Vision, Hunan Normal University, Changsha 410081, China)
Based on the fact that there are many difficulties to control the movement of ultraprecise platform used widely in optoelectronic packaging and to analyze the complex relationship between the end coordinate and those motion axis, the geometry of the serial mechanism and the relationships between single-DOF motion axis and the attitude and position of the end coordinate were studied. The main procedures were as follows. At first, based on the D?H equation applied in serial mechanism, coordinate transformation that revealed relations of axis of motion on its position and attitude was analyzed, the equation of motion that connected the movement axis and the position and orientation of the fiber array was established. Then, axis motion constraint equation was derived from that motion equation regarding the terminal spot as the zero point. At last, the movement compensation equation of translation axis was obtained from the constraint equation under the condition that only rotation axis was activated. The results show that the space range of the origin spot movement is significantly reduced and the proportion of the reducing is approximate to the subdivision, by subdividing the travel of rotational axis uniformly and compensating to adjust the translation axis travel accordingly.
waveguide device packaging; ultra-precision motion; coordinate transformation; attitude adjustment; origin point binding
TN252
A
1672?7207(2011)05?1290?06
2010?04?15;
2010?06?25
國家自然科學(xué)基金重點(diǎn)資助項(xiàng)目(50735007);國家高技術(shù)研究發(fā)展計(jì)劃(“863”計(jì)劃)項(xiàng)目(2007AA04Z344)
段吉安(1969?),男,湖南冷水江人,教授,博士生導(dǎo)師,從事光電子器件制造技術(shù)與裝備、機(jī)械設(shè)計(jì)理論與方法、精密運(yùn)動(dòng)控制的研究;電話:0731-88836858;E-mail: duanjian@csu.edu.cn